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I am describing joint work [7, 8, 9] with Dietmar Salamon and Ralf
Gautschi. The definition of Combinatorial Floer homology is due to Vin
De Silva [17]. The (higher dimensional, analytic) Floer homology described
at the end of the talk was introduced by Floer (see [4] and studied by many
authors, e.g. [13]). We undertook this project in an attempt to understand
Wu Chung Hsiang’s speculation [10] on the Poincaré conjecture and Floer
homology. Yasha Eliashberg explained this speculation to Dietmar and I
first heard about it in a seminar talk at the University of Wisconsin in 1999.

2 Summary of Talk

I will describe three theorems (A,B, and C) which summarize what survives
in three dimensional of Smale’s proof of the higher dimensional Poincaré
conjecture. These theorems are well known to the experts. The proofs require
(a) a slightly improved version of Smale’s Cancellation Lemma and (b) a
theorem asserting the existence of a “lune”.

Floer homology will be used to count lunes. The number of lunes joining
two given points will be a coefficient in the boundary operator of a homology
theory. We will define three kinds of lune - smooth, combinatorial, and
holomorphic - but the number of lunes joining two given points is the same
for each kind. In our application the Floer homology will be invariant under
isotopy and not just Hamiltonian isotopy as in Floer’s original theory.



3 Intersection Numbers

For transverse embedded closed curves «, 3 in a orientable 2-manifold ¥ there
are three ways we can count the number of points in their intersection:

1. The numerical intersection number num («a, 3) is the actual number
of intersection points.

2. The geometric intersection number geo (o, 3) is defined as the min-
imum of the numbers num (a, 3') over all embedded loops [’ that are
transverse to o and isotopic to (3.

3. The algebraic intersection number alg («, 3) is the absolute value
alg (o, B) = |a - B| of the sum o~ 3 =} 5 +1 where the plus sign
is chosen iff the two orientations of T, = T,a ¢ 1,3 match. This
definition is independent of the choice of orientations of «, 3, and .

The inequalities

alg (o, 8) < geo (a, f) < num («, 3)

are immediate.

Remark 3.1. A theorem of Epstein [2] says that two embedded loops in X
are homotopic if and only if they are isotopic, i.e. if, in the definition of geo-
metric intersection number, the word isotopic is replaced by word homotopic,
the value of geo («, 3) is unchanged.

4 Morse—Smale Systems

A Morse—Smale vector field on a manifold M is a vector field ¢ having
only hyperbolic rest points with stable and unstable manifolds intersecting
transversally and admitting a smooth function h : M — R (called a height
function for £) such that dh(z)£(z) < 0 if z is not a rest point. It is not
hard to prove that £ admits a self indexing height function, i.e. one which
satisfies h(p) = k for p a rest point of index k. Our terminology is non
standard in that for us a Morse-Smale system has no periodic orbits.



5 HMS Structures

Notation 5.1. Throughout Y is a closed (i.e. compact and without bound-
ary) smooth oriented connected 3-manifold.

Definition 5.2. An HMS structure on Y is a quadruple (Yy, Y7, %, §) con-
sisting of a Morse-Smale vector field £ on Y and a decomposition Y = Y UY;
of Y into two 3-submanifolds intersecting in their common boundary

Y=Y,UY,, S=Y,nY;=0aY,=ov, (1)
such that

(1) £ has one rest point py of index zero, one rest point gy of index three, g
rest points py, ..., p, of index one, and g rest points qi, ..., g, of index
two;

(if) po,p1,---,pg € Yo and qo, q1, - -, ¢y € Y1
(iii) ¢ is transverse to X.

A Heegard splitting of Y is a decomposition as in (1) which arises from
some HMS structure. An HMS structure determines embedded curves

a; =W (p;) N, B = W% q;) N L, ih,j=1,...,g. (2)

The curves ag, ..., o, are pairwise disjoint as are the curves (3i,..., 3, but
each connecting orbit from ¢; to p; intersects X in an intersection point of «;
and 3;. The pair

a=a;UayU---Uay, B=pUBU---UPf,

of 1-submanifolds is called the trace of the HMS structure in . It is easy
to see that the number g is the genus of 3; we call it the genus of the HMS
structure.

Remarks 5.3. 1) Given a Morse-Smale vector field satisfying (i) we may
construct an HMS structure using a self-indexing height function h; simply
take

Yo=h'((0,3/2),  S=hT3/2)  Yi=hU(3/2,3).



2) If a Morse-Smale vector field on Y has exactly one critical point of index
zero and exactly one critical point of index three, then (by Morse Theory)
the number of critical points of index one must equal the number of critical
points of index two.

3) By definition of “Morse-Smale vector field” W#(p;) intersects W*(g;)
transversally in Y it follows from item (iii) above that the curves o, and g,
intersect transversally in ..

Definition 5.4. We say that an HMS structure is

algebraically alg (i, B;) = d;;
geometrically » reduced iff { geo(;, ;) = 0;;
numerically num (g, 3;) = 6;;

fori,j=1,...,9.

Theorem A. The 3-manifold Y admits an HMS' structure.

Theorem B. The 3-manifold Y is an integral homology 3-sphere if and only
if it admaits an algebraically reduced HMS structure.

Theorem C. The following are equivalent.

(1) Y s diffeomorphic to the 3-sphere.

(i) Y admits an HMS structure of genus zero.

(iii) Y admits a numerically reduced HMS structure.
(iv) Y admits a geometrically reduced HMS structure.

These theorems are proved in [7]. Except for the implication (iv) = (iii)
the proofs of these theorems are not much different from the higher dimen-
sional case treated in Smale’s original paper [18]. (The standard exposition
is [12].) Theorem A is explicitly stated in [18]. Its proof uses the Cancella-
tion Theorem and the “Morse homology theory” described below. Theorem B
also uses this Morse homology theory and a “handle sliding argument”. The
implications (i) = (ii) = (iii) == (iv) of Theorem C are trivial. The
implication (ii) == (i) is a smooth version of Reeb’s Theorem [15]; it follows



easily from Smale’s theorem [19] that Diff | (S?) is connected. The implica-
tion (iii) = (ii) is very similar to the higher dimensional case; it requires an
Improved Cancellation Lemma (7.1 below) which assures that the cancella-
tion of critical points does not introduce new (index difference one) connect-
ing orbits between the remaining critical points. The connection with Floer
Homology comes in the proof of (iv) = (iii) and will be explained below.

Theorems A-C fail to prove the Poincaré conjecture because there is an al-
gebraically reduced HMS structure on S which is not geometrically reduced.
See Example 9.13 below.

6 Morse Homology

Let & be a Morse-Smale vector field on an oriented manifold M, P be the
set of rest points £ of index k, and C, be the free abelian group generated by
Py. Orient each W*"(p) arbitrarily and orient W#(p) so that the orientation
of T,M =T,W*(p) & T,W?*(p) is the orientation of T,,M. Let v(q,p) be the
algebraic intersection number of W*(¢) Nh~ (k+3) with W5(p)Nh~*(k+3)
for ¢ € Pyy1 and p € P, where h is a self-indexing height function. Define
0:Cyy1 — C, by

Co=EDZp,  0g=>) vig.p)p, ¢E€ Pep. (3)
pE Py pEP;

This chain complex is usually ascribed to Witten [21] and Floer [5], but the
following theorem is older: a proof may be found in [11].

Theorem 6.1. The operator 0 defined in equation (3) satisfies 000 = 0 and
its homology is isomorphic to the usual (singular) homology of M :
Kernel (0 : Cy, — Cx_1)
Image (0 : Cry1 — C)

Proof of Theorem B. Take M =Y and & the vector field of an HMS struc-
ture. Then equation (3) is

~ H,(M,Z).

g

dqo = 0, dq; = Z(Oéi - B5)pis Op; = 0.

=1

Thus Y is an integral homology sphere if and only if the intersection matrix
(o - B;) is unimodular. This is certainly the case if the HMS structure is
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algebraically reduced. For the converse transform the matrix (n;;) to the
identity matrix using elementary operations: reversing the sign of a col-
umn, interchanging two rows or two columns, adding one column to another.
Each operation may be realized by a corresponding operation on the HMS
structure: reversing the sign of the jth column corresponds to reversing the
orientation of W*"(g;), interchanging rows or columns corresponds to relabel-
ing, and adding the kth column to the ¢th column corresponds to replacing
¢ by & where o} = «;, 8 = 3; for j # £ and [3) = Bi# [ a connected sum of
B¢ and By. (To construct £ use handle sliding as in [12].) O

7 The Cancellation Lemma

For a Morse-Smale vector field £ on a compact manifold M let P(£) denote
the set of rest points of £ and for p,q € P(€) let n(q, p, &) denote the number
of connecting orbits from ¢ to p; define n(q, p,£) = 0 if the index of ¢ is not
equal to one more than the index of p. When £ is as in Definition 5.2 we
have

n(%’,pi) = nuin (0%,5]')

fore,7 =1,2,...,9. The following is an improved form of Smale’s Cancella-
tion Lemma with essentially the same proof. See [7].

Theorem 7.1 (Cancellation Lemma). Suppose that £ is a Morse-Smale
vector field on M and let p,q € P(§) be such that

n(q,p;§) = 1.

Let T" denote the closure of the connecting orbit. Then, for every neighborhood
U of T', there exists a Morse—Smale vector field n on M which agrees with &
on the complement of U and satisfies

Pn) = PE)\A{p,a}, (4)

and
n(q,p;n) = n(q, p; §) +n(q, p;§)n(q, p; €) (5)
forp,q € P(n).

Proof of Theorem A. By transversality Y admits a Morse-Smale vector field
¢ For g € Pi(§) and p € Py(§) we have n(q,p) = 0,1,2 and v(q,p) = 0 if
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n(q,p) = 0,1. Hence by Theorem 6.1 there must be a pair with n(q,p) = 1 if
Py(€) has more than one element. Then by Theorem 7.1 we may find another
Morse-Smale vector field n with Py(n) of smaller size than Py(&). The same
argument works to reduce Ps(§). O

Proof of Theorem C' (iii) = (ii). Theorem 7.1 says that we can modify a
numerically reduced HMS structure so as to produce another numerically
reduced HMS structure of genus one less. (Then use induction.) O

8 Isotopy

Lemma 8.1 (Isotopy Lemma). Let (Y, Y1, %,€) be an HMS structure on
Y with trace
a=oU---Uag, B=p5U---U/pSy.

Suppose that f : X — X is a diffeomorphism isotopic to the identity such
that f(() is transverse to oo. Then there is an HMS structure (Yo, Y1, 3, &)
on 'Y with trace

a=o3U---Uay, f(B)=f(B1)U---U f(By)-

Proof. Use the graph of the isotopy to modify the flow. O

Lemma 8.1 does not suffice to prove (iv) == (iii) in Theorem C. If the
HMS structure is geometrically reduced but not algebraically reduced there
is a pair of indices (ig, jo) and a diffeomorphism f isotopic to the identity
with

51'07]'0 = geo (ai07 Bjo) = num (ai07 f(ﬁjo)) < num (aiov ﬁjo); (6>

This does not prove (iv) = (iii) because we do not know that

num (o, f(6;)) < num (o, 3;) (7)

forall 7,7 = 1,2,...,9. We need to choose f more carefully. The following
lemma is a consequence of the smooth Floer homology theory explained
below.

Lemma 8.2. Denote the standard half disk by

D:={2€C|Imz>0, |z| <1}



and let o, B C X be two embedded circles in a closed 2-manifold Y. Assume
that

geo (o, f) < num (a, ).
Then there is a smooth embedding u : D — ¥ such that

u(DNR) C a, u(DN S C B.

Proof of Theorem C' (iv) = (iii). Let (Yp,Y1,%,€) be a geometrically re-
duced HMS structure on Y with trace

a=oU---Uag, B=0U---U/fy.
Assume that this HMS structure is not numerically reduced so that

geo (aig, Bj,) < num (v, Gj,)

for some pair (ig, jo). By Lemma 8.2 there is a smooth embedding v : D —
¥ with u(D N R) C «a;, and u(D N S') C Bj,. Using u we construct a
diffeomorphism f isotopic to the identity which moves u(D) to a small strip
just below u(DNR) and is the identity off a small neighborhood of w(ID). This
eliminates the intersection points u(£1) so that (6) holds. Any intersection
points in u(D N S') N« are removed and no others are changed so that (7)
holds. Now use induction. O

9 Smooth Floer homology

To define an operator as in equation (3) we require only a set of “critical
points”, a notion of “connecting orbit of index (difference) one”, and a way
of counting these connecting orbits. We now describe a theory where the
critical points are the intersection points o N G of two transverse embedded
circles o and 3 in a closed orientable 2-manifold ¥ and the connecting orbits
are objects called “lunes”. We eventually define three kinds of lune - smooth,
combinatorial, and holomorphic - and we prove that for z,y € a N @ the
number n(z,y) of lunes from z to y is the same in all three cases.

Definition 9.1. Throughout a and 3 are transverse embedded circles in a
closed orientable 2-manifold . A smooth (a,3)-lune is an equivalence
class of orientation preserving immersions u : D — ¥ such that

u(DNR) C a, u(DN S C B.



The equivalence relation is defined by

iff there is an orientation preserving diffeomorphism ¢ : D — DD such that

o(—1) = —1, o(1) =1, ' =wuod.

That v is an immersion means that u is smooth and du is injective in all
of D, even at the corners +1. The endpoints of the lune are intersection
points

u(—1),u(l) eang

of a and 3. When z = u(—1) and y = u(1) we say the lune is from z to y.
A smooth lune is called embedded if the map w is injective. These notions

Figure 1: Three lunes.

are clearly independent of the choice of the immersion u representing the
smooth lune.

Theorem 9.2. Define a chain complex 0 : CF(«, ) — CF(«, 5) by

CF(a, p) = @ Zszx, Or = Z(n(:c, y) mod 2) y. (8)

z€aN Y

Then
000 =0. 9)

The homology group
HF(a, §) := ker 9/im0

of this chain complex is called the Floer homology of the pair («, ().

Proposition 9.3. Assume that neither o nor (8 is contractible and that they
are not isotopic to each other. (This can only happen if ¥ has positive genus.)
Forz,y € anp let n(x,y) denote the number of smooth (a, 3)-lunes from x
toy. Then

n(z,y) € {0,1}.



Proof. 1t is not hard to prove (see [8]) that a lune [u] is determined by its
boundary AU B where A = w(RND) and B = u(S' N D). As there are
only two choices for A (the two arcs in « from z to y) and two for B there
are at most four lunes from x to y. However two can be excluded because
u(—1) = z and u(1) = y and u is orientation preserving. If there were two
lunes we could construct an isotopy between a and (3. O

Theorem 9.4. Under the hypothesis of Proposition 9.3, smooth Floer homol-
ogy 1s invariant under isotopy: If o', C X are transverse embedded loops
such that « is isotopic to o and (3 is isotopic to (3 then

HF (e, 8) = HF (o, ).
Corollary 9.5. dim HF(«, 5) = geo (v, 3).

Remark 9.6. It is not hard to prove (see [8]) that if there is an («, 3)-lune
then there is an embedded (o, 3)-lune.

Proof of Corollary 9.5. By Theorem 9.4 we may assume that num (o, 5) =
geo (o, 3). Suppose that there exists an (a, 3)-lune. Then by 9.6 there is
an embedded («, §)-lune and hence there exists an embedded curve ' that
is isotopic to B and satisfies num (¢, /') < num (¢, ). This contradicts our
assumption. Hence there exists no («, #)-lune, hence the Floer boundary
operator is zero, and hence the dimension of HF(a, 8) = CF(a, ) is the
geometric intersection number geo (v, 3). O

Proof of Lemma 8.2. By Corollary 9.5, the Floer homology group HF(a, (3)
has dimension geo (a, 3). Since the Floer chain complex CF(«, ) has di-
mension num («, 3) it follows that the Floer boundary operator is nonzero.

Hence there exists a smooth («, 3)-lune and hence, by 9.6 there exists an
embedded («, 3)-lune. O

Remark 9.7. The hypothesis that a and # not be isotopic is crucial. Let
¥ = T*S*, a be the zero section and 3 be the graph of df where f: S' — R
is a Morse function with two critical points z and y. Then there are two
lunes from (say) = to y and no lunes from y to x so dim HF (o, 3) = 1. But
3 is isotopic to 3 where aN B = 0 and hence dim HF (v, ) = 0. By joining
the ends we can make an example where ¥ is a torus. (The Floer homology
of [4] is invariant under Hamiltonian isotopy; the curves § and /' are not
Hamiltonian isotopic.)
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Remark 9.8. The hypothesis that o and 3 are not contractible is also cru-
cial. For example if § is the boundary of a small disk intersecting « in exactly
two points x and y, then dr =y and dy = x so 9o d # 0.

We now sketch the proofs of Theorems 9.2 and 9.4. For more details
see [8].

Definition 9.9. Let x,z € aN (. A broken («, $)-heart from x to z is a
triple

h = (lul, y, [v])

such that y € a N G, [u] is a smooth (a, §)-lune from z to y, and [v] is a
smooth (a, #)-lune from y to z. The point y is called the midpoint of the
heart.

Proposition 9.10. Let h = ([u],y,[v]) be a broken («, 3)-heart from x to
z and abbreviate Ay, = uw(RND), A, = v(RND), By, = u(S' ND),
B,. = v(S'ND). Then exactly one of the following four alternatives (see
Figure 2) holds:

(a) Auy N Ay ={y}, By S Bay. (b) Azy N By = {y}, By & Bye.

(c) By N By, ={y}, A, € Ayy. (d) By N By, ={y}, Asy T Ay

Figure 2: Four broken hearts.
Let N C C be an embedded convex half disk such that
[0,1] Ud[0,e) U (1 +41]0,e)) C ON, N C [0, 1] + [0, 1]
for some € > 0 and define
H :=([0,1] +40,1) U(i+ N)U (1 +i—iN).
(See Figure 3.) The boundary of H decomposes as
OH = 0yH U0 H

where dpH denotes the boundary arc from 0 to 1 4 ¢ that contains the hor-
izontal interval [0, 1] and 0y H denotes the arc from 0 to 1 + 4 that contains
the vertical interval ¢[0, 1].
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Figure 3: The domains N and H.

Definition 9.11. Let z,z € aN 3. A smooth (a, 3)-heart of type (ac)
from x to z is an equivalence class of orientation preserving immersions
w : H — X that satisfy

w(0) =z, w(l+1) =z, w(0H) C «a, w(OH) C 5. (ac)

The equivalence relation is defined by [w] = [w'] iff there exists an orientation
preserving diffeomorphism y : H — H such that

x(0) =0, X(1+14) =141, w =woy.

A smooth («, §)-heart of type (bd) from z to z is a smooth (3, a)-heart
of type (ac) from z to z. Let [w] be a smooth («a, #)-heart of type (ac) from
x to y and h = ([u],y, [v]) be a broken («, 3)-heart from = to y of type (a)
or (¢). The broken heart h is called compatible with the smooth heart [w]
if there exist orientation preserving embeddings ¢ : D — H and ¢ : D — H
such that

o(—1) =0, (1) =141, (10)
H=¢D)UpD),  ¢(D)Ny([D)=¢@D)N4p(0D), (11)
u=woda, v=wo1. (12)

Proposition 9.12. (i) Let h = ([u],y, [v]) be a broken (
(a) or (c¢) from x to z. Then there ezists a unique smooth
type (ac) from x to z that is compatible with h.

(ii) Let [w] be a smooth («, 3)-heart of type (ac) from x to z . Then there
exists precisely one broken («, 3)-heart of type (a) from x to z that is com-
patible with [w], and precisely one broken (v, 3)-heart of type (c) from x to
z that is compatible with [w].

a, B)-heart of type
(e, B)-heart [w] of

Figure 4: Breaking a heart.

12



Proof of Theorem 9.2. The square of the boundary operator is given by

J0x = Z ny(z,2)z,

z€aNf

where

TLH(ZL’,Z) = Z n(x,y)n(y, 2)

yeans

is the number of broken hearts from z to z. By Proposition 9.12 broken
hearts from x to z occur in pairs so their number ng(x, z) is even for all
and z and hence 0 o 0 = 0. O

Sketch of proof of Theorem 9.4: By composing with a suitable ambient iso-
topy assume without loss of generality that & = /. Furthermore assume the
isotopy {3 }o<i<1 with By = [ and §; = 3 is generic in the following sense.
There exists a finite sequence of pairs (¢;, z;) € [0, 1] x X such that

O<ti <ty <- - <ty,<lI,

a , B unless (t,z) = (t;,z) for some i, and for each i there exists a
coordinate chart U; — R? : z — (£,7) at z; such that

anlU;={n=0}, BNU={n=-+£t—-1t;)} (13)

for ¢t near t;. It is enough to consider two cases. Case 1 is m = 0. In this case
there exists an ambient isotopy ¢; such that ¢;(a) = a and ¢,(5) = F;. It
follows that the map CF(«, ) — CF(a, #') induced by ¢; : anNp — ang'is
a chain isomorphism that identifies the boundary maps. In Case 2 we have
m = 1, the isotopy is supported near Uy, and (13) holds with the minus sign.
This means that there are two intersection points in U; for ¢ < #; and none
for t > t;. One proves

n'(2',y') = n(',y) +n(a’, y)n(z, y') (14)

for o',y € an p'\ {z,y}, where n(a’,y’) denotes the number of (o, 3)-lunes
from 2’ to ¢y and n/(2’,y") denotes the number of (a, ')-lunes from z’ to y/'.
(Note the similarity with the Cancellation Lemma 7.1.) That HF(«, ) and
HF (o, f') are isomorphic follows by the arguments of [5]; see [8] for more
details.

13



Figure 5: Three HMS structures

Example 9.13. Let X = 0Y; = 0Y; have genus two and let the embedded
loops aq, as, [y, [ form a standard basis of H;(X). The embedded loop
v C Y is homologous to zero in X and contractible in both handlebodies Yj
and Y7 (see Figure 5). Hence the Dehn twist ¢ : 3 — ¥ along v extends to a
diffeomorphism of Y7 and hence the pair (o, #’) is a trace of the same Heegard
splitting of S3. It is algebraically reduced, but not geometrically reduced.
Replacing ¢ by a diffeomorphism which rotates > by a half turn on one side
of v (i.e. a square root of ¢) we obtain a trace (a, 3”) of the same Heegard
splitting, which is not algebraically reduced. (Francois Laudenbach and Denis
Auroux showed this example to Dietmar Salamon. It comes from [3].)

10 Combinatorial Floer Homology

Let a and 3 be transverse embedded circles in a closed orientable 2-manifold
Y. Assume that ¥ has positive genus and that a and 3 are not isotopic and
that neither is contractible. Denote by

7:R* =%

the universal cover of X.
Definition 10.1. An («, §)-pre-lune is a quadruple

A= (z,y,A B) (15)
that satisfies the following conditions.
(i) z and y are distinct intersection points of o and .
(ii) Aisan arcin « from x to y and B is an arc in § from z to y.
(iii) A is homotopic to B with endpoints fixed.

Proposition 10.2. For a smooth (o, 3)-lune [u] the quadruple
Ay = (u(=1),u(1),u(RND),u(S' N D)) (16)

is a (o, B)-pre-lune. It is called the pre-lune determined by [u].
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Proof. As u is an immersion so are u|R N'D and u|S' N D. One must show
that they are injective. See [8]. O

Let [u] be a smooth («, 3)-lune [u] from z to y and Z € 7~ (x). Then
there is a unique lift @ : D — C (i.e. 7o @ = wu) such that a(—1) = 7.
Similarly the (a, 3)-pre-lune (eq:pre-lune) has a lift

A= (7,5, 4, B)
determined uniquely by the choice of # € 7~ !(z): A and B of A and B which
start at . By (iii) these lifts must end at the same point 7 € Wﬁl(y); For
z € C\ (AU B) let wi(2) denote the winding number of the loop A — B
about Z. The winding number of the pre-lune (eq:pre-lune) is the locally
constant function

wp: L\ (AUB) - Z
defined by
walz)= ) wild) (17)
zer—1(z)
For z € ¥\ (AU B). As an immediate consequence of Rouché’s Theorem we
have

Proposition 10.3. Let u be a smooth («, 3)-lune. Then the winding number
of Ay counts the number of points in the preimage in the sense that

wa, (2) = #u ' () (18)
for every z € ¥\ (AU B).

Remark 10.4. The winding number satisfies

wA(7(1) = wa((0)) = A-v = B-7. (19)

for every smooth curve v : [0,1] — ¥ such that 7(0),v(1) ¢ AU B and
z,y ¢ v([0,1]). The function w, is uniquely determined by equation (19)
and its value at one point. To see this think of the arcs A and B as train
tracks. Crossing A increases w, by one if the train comes from the left, and
decreases it by one if the train comes from the right. Crossing B decreases
wy by one if the train comes from the left and increases it by one if the train
comes from the right. Moreover, at each point of AN B\ {x,y}, the function
wy takes the values k, k+ 1, k, K — 1 as we march counterclockwise along a
small circle surrounding the intersection point.
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Figure 6: Pre-lunes which are not lunes.

Definition 10.5. A combinatorial («, $)-lune is an («, 3)-pre-lune one
(and hence all) of whose lifts satisfies the following conditions.

(I) The intersection number of A and B at # is +1 and at 7 is —1.
(IT) w;(z) € {0,1} for = sufficiently close to z or y.
(ITI) wj(z) > 0 for every z € ¥\ (AU B).

Note that condition (I) says that the angle from A to B at 7 is between zero
and 7w and the angle from B to A at gy is also between zero and .

The following theorem provides a solution of a special case of the Picard-
Loewner problem; see for example [6] and the references cited therein, e.g. [20,
1, 14]. Our result is a special case because no critical points are allowed, the
source is a disc, and the prescribed boundary circle decomposes into two
embedded arcs.

Theorem 10.6. If [u] is a smooth (o, 3)-lune, then A, is a combinato-
rial (o, B)-lune. The map [u| — A, defines a bijection between the set of
smooth («, B)-lunes and the set of combinatorial (c, 3)-lunes. In particular,
for z,y € aN B, the number (zero or one) of smooth («, 3)-lunes from x to
y is the same as the number of combinatorial (o, 3)-lunes from x to y.

The proof will be found in [8].

11 Analytic Floer Homology

Let o and (8 be transverse embedded circles in a closed Riemann surface ¥
and suppose that z,y € aNf. An («, §)-strip from z to y is a holomorphic
map u : S — X where

S =R +14[0,1]

is the infinite strip,

u(R) C a, uw(R+1i) C S,
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and
lim wu(s+it) =z, lim u(s +it) =y,

S§——00 S§— 00

both limits being uniform in ¢.

Let w : S — ¥ be a («,§)-strip, let £ = C>®(u*TY) be the set of
smooth sections of the pull back bundle, and B, be the set of smooth sections
¢ € C°°(u*T'Y) which satisfy the boundary conditions

£(s) € Ty, &(s+1i) € Ty
for all s € R. The linear operator D, : B, — &, defined by
D& =06+ 0
is Fredholm. (Here j is the complex structure on X.)

Definition 11.1. A holomorphic («a, )-lune is an equivalence class of
(cv, B)-strips of Fredholm index one; two strips being equivalent if they differ
by a time shift.

Theorem 11.2. The holomorphic («, 3)-lunes from x to y is the same as
the number of smooth («, 3)-lunes from = to y.

The proof will be found in [9].
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