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1 Notation Throughout 7" is a torus, T¢ is its complexification,
V=L(T)
is its Lie algebra, and A C V is the kernel of the exponential map so that
T=V/A, Tce =V ®C/A.

The standard n-torus 7™ has V = R" and A = Z" and any torus is isomorphic
to a standard one. Denote by L(T)* the dual space of L(T') (as a vector space
over R).

2 Let (M,w) a symplectic manifold, and H : M — L(T)* a smooth map.
Each element v € L(T') determines a Hamiltonian function H, : M — R via
the formula

Hy(z) = (H(x),u) .

Let X,, € X (M) be the corresponding Hamiltonian vectorfield on M. A Hamil-
tonian T-manifold is a triple (M, w, H) such that the map

L(T) = XM):u— X,

is the derivative of a (necessarily symplectic) group action T' — Diff (M). The
map H is called the moment map.

3 Example. Consider the 2n dimensional manifold
My =T" x R¥ x ¢k
and define the coordinates by
Oé:(Oll,CVQ,...7OZk)ETk, a:(al,ag...,ak)ERk,

2= (Zhs1, Zhpos - -y 2n) € CV7K,
(The «; are only defined modulo one.) Introduce the symplectic form

k . n
wo =Zdo¢jAdaj+% Z de/\de.

j=1 j=k+1



Define Hy : M — R"™ by

2 2
Ho<<a,a>7z,w>—(<a1,...,ak>, leal” - leal )

2 72
This is the moment map for an action of 7™ on M, given by
0-((o,a),2) = ((a+6',a),exp(6”)z)
where
0 = (01,04,...,0k), 0" = (041, 0k12,---,0n)

for 6 = (01,0s,...,0,) € T™. The image of moment map is
Hy(Mo) = {0} x R* x [0,00)" "
and the isotropy group of the point ((a,a), z) is {0} x T1 C T* x T"~* where
I={i:2,=0}, T'={0"cT " :0,=0forig¢l}.

4 (Local Normal Form) Let (M,w, H) be a Hamiltonian T" manifold and o €
M. Then there is a neigborhood U of the T orbit To of 0 in M, a neighborhood
Up of (T* x 0) x 0 in My, a diffeomorphism f : Uy — U carrying ((0,0),0) to o,
a homomorphism 7 : T — T", and a constant ¢ € L(T)* such that

wo = frw, Ho f=(n"Hp) +c.

Here we denoted by n : L(T) — L(T"™) the derivative of n : T — T™ and by
n* : L(T™)* — L(T)* its adjoint. If the action is effective then 7 is injective,
and for a toric manifold (see below) 7 is an isomorphism.

5 (AGS Convexity Theorem) For a compact connected Hamiltonian T™
manifold we have

(A,) The preimage H~!(p) of a point p € H(M) is connected;

(Br) The image H(M) is a convex polytope whose vertices are the images
under H of the fixed points of the action.

6 A polytope in V* is a compact set A C R" of form

d
A= ﬂ{x eV i (zyu;) > ¢}

i=1

The vectors u; € L(T) are the normal vectors to the faces of the polytope. A
polytope A C V is called Delzant iff at each vertex the normal vectors of the
faces through the vertex may be chosen to be Z-basis for A. (Thus there are
exactly n = dim(7") faces at each vertex.) A Hamiltonian toric Manifold is
a compact connected Hamiltonian 7" manifold M with dim(M) = 2dim(T") and
such that the T action is effective.



7 Theorem (Delzant) There is a bijective correspondence between Delzant
polytopes and Hamiltonian toric manifolds as follows:

(I) If (M,w, H) is a Hamiltonian toric manifold, the image H(M) of the mo-
ment map is a Delzant polytope.

(II) The construction given below assigns to every Delzant polytope A a com-
pact connected Hamiltonian toric manifold

(MA,LUA,HA)
such that Ha(Ma) = A.

(TII) If (M,w, H) is a compact Hamiltonian toric manifold and A = H(M).
then is (M,w, H) isomorphic to (Ma,wa, Ha) in the sense that there is
a diffeomorphism f : M — Ma such that

wa = ffw and HAa=Hof.
8 A Delzant polytope A C L(T')* determines an exact sequence
0->N-5T? 570
by the condition that the derivative 7 : L(T%) — L(T) satisfies
m(e;) = u;

for i = 1,2,...,d where ey, ea,...,eq are the standard basis for R? = L(T%).
Let €1,€2,...,e4 denote the dual basis for L(T?)* and Hy : C* — L(T%)* the

map given by
d 2
2
Ho(z) = Z <| ;‘ +Cz‘> €i
i=1

so that Hy is a moment map for the standard multiplicative action of 7% on C?.
Define

Hy =" o Hy, Z = Hy'(0).

Then Hy : C? — L(N)* is a moment map for the restriction of the 7% action
to N c T

9 Theorem (Delzant)
(1) N acts freely on Z.
(2) 0 is a regular value of Hy so Z is a manifold.

(3) (Marsden Weinstein Reduction) There is a unique Hamiltonian T™
space (Ma,wa, Hp) such that Ma = Z/N is the orbit space, wo|Z = q*wa
where q : Z — MAa 1is the quotient map, and 7* o Hx = Hgoq.



(4) The image Ha(Mp) is A.
(5) Ma is compact.

10 Projective space. Let d =n + 1 and eg, eq,...,e, be the standard basis
for R"*1. Let
Up=€g—€n, U =€ — €1

for i = 1,2,...,n. The R-span of ug,u,...,u, is the hyperplane L(T) = v+

where v = ey +e1+ - -+ e,. The vectors ug, uy, ..., u, generate a lattice A and
deleting any w; gives a Z-basis for A. Takeco = —land ¢y =co=---=¢, =0.
The inclusion ¢ : N = R/Z — R""1/Z"*! sends 1 € R to v € R""!. Then
Z = §?ntl c C"t, N acts via scalar multiplication, A is the standard n-
simplex 0 < x7 <29 <--- <x, <1, and T on acts Ma = CP"™ via diagonal
unitary matrices of determinant one. The form wa is (a multiple of) the Fubini
Study form.

11 Each subset I C {1,2,...,d} determines a set
Cli={zeCl:2,=0 < icl}.
The sets C¢ are precisely the Té orbits of the standard action. Define
Fr={zxeA:{(z,u) =¢; < i€}
If nonempty, Fy is a face of A and it is an open subset of its linear span. Let

Ca= Jcf
Fr#0

12 Theorem (Delzant) Cx is an open subset of C? on which Nc acts freely.
Z C Ca and every Ng orbit in Ca intersects Z in a N orbit. Hence there is a
natural isomorphism

MA = Z/N ~ CA/NA.
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