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1 Notation Throughout T is a torus, TC is its complexification,

V = L(T )

is its Lie algebra, and Λ ⊂ V is the kernel of the exponential map so that

T = V/Λ, TC = V ⊗ C/Λ.

The standard n-torus Tn has V = Rn and Λ = Zn and any torus is isomorphic
to a standard one. Denote by L(T )∗ the dual space of L(T ) (as a vector space
over R).

2 Let (M,ω) a symplectic manifold, and H : M → L(T )∗ a smooth map.
Each element u ∈ L(T ) determines a Hamiltonian function Hu : M → R via
the formula

Hu(x) = 〈H(x), u〉 .

Let Xu ∈ X (M) be the corresponding Hamiltonian vectorfield on M . A Hamil-
tonian T -manifold is a triple (M,ω,H) such that the map

L(T )→ X (M) : u 7→ Xu

is the derivative of a (necessarily symplectic) group action T → Diff(M). The
map H is called the moment map.

3 Example. Consider the 2n dimensional manifold

M0 = T k ×Rk ×Cn−k

and define the coordinates by

α = (α1, α2, . . . , αk) ∈ T k, a = (a1, a2 . . . , ak) ∈ Rk,

z = (zk+1, zk+2, . . . , zn) ∈ Cn−k.

(The αi are only defined modulo one.) Introduce the symplectic form

ω0 =
k∑
j=1

dαj ∧ daj +
i

2

n∑
j=k+1

dzj ∧ dz̄j .
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Define H0 : M → Rn by

H0((α, a), z, w) =
(

(a1, . . . , ak),
|zk+1|2

2
, . . . ,

|zn|2

2

)
.

This is the moment map for an action of Tn on M0 given by

θ · ((α, a), z) = ((α+ θ′, a), exp(θ′′)z)

where
θ′ = (θ1, θ2, . . . , θk), θ′′ = (θk+1, θk+2, . . . , θn)

for θ = (θ1, θ2, . . . , θn) ∈ Tn. The image of moment map is

H0(M0) = {0} ×Rk × [0,∞)n−k

and the isotropy group of the point ((α, a), z) is {0} × T I ⊂ T k × Tn−k where

I = {i : zi = 0}, T I = {θ′′ ∈ Tn−k : θi = 0 for i /∈ I}.

4 (Local Normal Form) Let (M,ω,H) be a Hamiltonian T manifold and o ∈
M . Then there is a neigborhood U of the T orbit To of o in M , a neighborhood
U0 of (T k × 0)× 0 in M0, a diffeomorphism f : U0 → U carrying ((0, 0), 0) to o,
a homomorphism η : T → Tn, and a constant c ∈ L(T )∗ such that

ω0 = f∗ω, H ◦ f = (η∗H0) + c.

Here we denoted by η : L(T ) → L(Tn) the derivative of η : T → Tn and by
η∗ : L(Tn)∗ → L(T )∗ its adjoint. If the action is effective then η is injective,
and for a toric manifold (see below) η is an isomorphism.

5 (AGS Convexity Theorem) For a compact connected Hamiltonian Tn

manifold we have

(An) The preimage H−1(p) of a point p ∈ H(M) is connected;

(Bn) The image H(M) is a convex polytope whose vertices are the images
under H of the fixed points of the action.

6 A polytope in V ∗ is a compact set ∆ ⊂ Rn of form

∆ =
d⋂
i=1

{x ∈ V ∗ : 〈x, ui〉 ≥ ci}.

The vectors ui ∈ L(T ) are the normal vectors to the faces of the polytope. A
polytope ∆ ⊂ V is called Delzant iff at each vertex the normal vectors of the
faces through the vertex may be chosen to be Z-basis for Λ. (Thus there are
exactly n = dim(T ) faces at each vertex.) A Hamiltonian toric Manifold is
a compact connected Hamiltonian T manifold M with dim(M) = 2 dim(T ) and
such that the T action is effective.
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7 Theorem (Delzant) There is a bijective correspondence between Delzant
polytopes and Hamiltonian toric manifolds as follows:

(I) If (M,ω,H) is a Hamiltonian toric manifold, the image H(M) of the mo-
ment map is a Delzant polytope.

(II) The construction given below assigns to every Delzant polytope ∆ a com-
pact connected Hamiltonian toric manifold

(M∆, ω∆,H∆)

such that H∆(M∆) = ∆.

(III) If (M,ω,H) is a compact Hamiltonian toric manifold and ∆ = H(M).
then is (M,ω,H) isomorphic to (M∆, ω∆,H∆) in the sense that there is
a diffeomorphism f : M →M∆ such that

ω∆ = f∗ω and H∆ = H ◦ f.

8 A Delzant polytope ∆ ⊂ L(T )∗ determines an exact sequence

0→ N
ι−→T d

π−→T → 0

by the condition that the derivative π : L(T d)→ L(T ) satisfies

π(ei) = ui

for i = 1, 2, . . . , d where e1, e2, . . . , ed are the standard basis for Rd = L(T d).
Let ε1, ε2, . . . , εd denote the dual basis for L(T d)∗ and H0 : Cd → L(T d)∗ the
map given by

H0(z) =
d∑
i=1

(
|zi|2

2
+ ci

)
εi

so that H0 is a moment map for the standard multiplicative action of T d on Cd.
Define

HN = ι∗ ◦H0, Z = H−1
N (0).

Then HN : Cd → L(N)∗ is a moment map for the restriction of the T d action
to N ⊂ T d.

9 Theorem (Delzant)

(1) N acts freely on Z.

(2) 0 is a regular value of HN so Z is a manifold.

(3) (Marsden Weinstein Reduction) There is a unique Hamiltonian Tn

space (M∆, ω∆,H∆) such that M∆ = Z/N is the orbit space, ω0|Z = q∗ω∆

where q : Z →M∆ is the quotient map, and π∗ ◦H∆ = H0 ◦ q.
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(4) The image H∆(M∆) is ∆.

(5) M∆ is compact.

10 Projective space. Let d = n+ 1 and e0, e1, . . . , en be the standard basis
for Rn+1. Let

u0 = e0 − en, ui = ei − ei−1

for i = 1, 2, . . . , n. The R-span of u0, u1, . . . , un is the hyperplane L(T ) = ν⊥

where ν = e0 + e1 + · · ·+ en. The vectors u0, u1, . . . , un generate a lattice Λ and
deleting any ui gives a Z-basis for Λ. Take c0 = −1 and c1 = c2 = · · · = cn = 0.
The inclusion ι : N = R/Z → Rn+1/Zn+1 sends 1 ∈ R to ν ∈ Rn+1. Then
Z = S2n+1 ⊂ Cn+1, N acts via scalar multiplication, ∆ is the standard n-
simplex 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1, and T on acts M∆ = CPn via diagonal
unitary matrices of determinant one. The form ω∆ is (a multiple of) the Fubini
Study form.

11 Each subset I ⊂ {1, 2, . . . , d} determines a set

Cd
I = {z ∈ Cd : zi = 0 ⇐⇒ i ∈ I}.

The sets Cd
I are precisely the T dC orbits of the standard action. Define

FI = {x ∈ ∆ : 〈x, ui〉 = ci ⇐⇒ i ∈ I}.

If nonempty, FI is a face of ∆ and it is an open subset of its linear span. Let

C∆ =
⋃
FI 6=∅

Cd
I .

12 Theorem (Delzant) C∆ is an open subset of Cd on which NC acts freely.
Z ⊂ C∆ and every NC orbit in C∆ intersects Z in a N orbit. Hence there is a
natural isomorphism

M∆ = Z/N ' C∆/N∆.

References

[1] Atiyah (M.F.) Convexity and commuting hamiltonians, Bull. London Math.
Soc. 14 (1982) 1-15.

[2] Atiyah (M.F.) Angular momentum, convex poyhedra, and algebraic geom-
etry, Proc. Edinburgh Math. Soc. 25 (1983) 121-138.

[3] Delzant (D.) Hamiltoniens périodiques et images convexes de l’applcation
moment, Bull. Soc. math. France, 116 (1988) 315-339.

[4] Frankel (T.) Fixed points and torsion on Kahler manifolds, Annals of Math.
70 (1959) 1-8.

4



[5] Guillemin (V.) Moment maps and combinatorial invariants of Hamiltonian
Tn spaces, Progress in Mathematics 122 Birkhäuser, 1994.
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