Hamiltonian Toric Manifolds

JWR (following Guillemin)

August 26, 2001

1 **Notation** Throughout T is a torus, $T_{\rm C}$ is its complexification,

$$
V = L(T)
$$

is its Lie algebra, and $\Lambda \subset V$ is the kernel of the exponential map so that

 $T = V/\Lambda$, $T_{\mathbf{C}} = V \otimes C/\Lambda$.

The standard *n*-torus T^n has $V = \mathbb{R}^n$ and $\Lambda = \mathbb{Z}^n$ and any torus is isomorphic to a standard one. Denote by $L(T)^*$ the dual space of $L(T)$ (as a vector space over R).

2 Let (M, ω) a symplectic manifold, and $H : M \to L(T)^*$ a smooth map. Each element $u \in L(T)$ determines a Hamiltonian function $H_u : M \to \mathbf{R}$ via the formula

$$
H_u(x) = \langle H(x), u \rangle.
$$

Let $X_u \in \mathcal{X}(M)$ be the corresponding Hamiltonian vectorfield on M. A **Hamil**tonian T-manifold is a triple (M, ω, H) such that the map

$$
L(T) \to \mathcal{X}(M) : u \mapsto X_u
$$

is the derivative of a (necessarily symplectic) group action $T \to \text{Diff}(M)$. The map H is called the **moment map**.

3 Example. Consider the 2n dimensional manifold

$$
M_0=T^k\times\mathbf{R}^k\times\mathbf{C}^{n-k}
$$

and define the coordinates by

$$
\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k) \in T^k, \qquad a = (a_1, a_2 \dots, a_k) \in \mathbf{R}^k,
$$

$$
z = (z_{k+1}, z_{k+2}, \dots, z_n) \in \mathbf{C}^{n-k}.
$$

(The α_i are only defined modulo one.) Introduce the symplectic form

$$
\omega_0 = \sum_{j=1}^k d\alpha_j \wedge da_j + \frac{i}{2} \sum_{j=k+1}^n dz_j \wedge d\overline{z}_j.
$$

Define $H_0: M \to \mathbf{R}^n$ by

$$
H_0((\alpha, a), z, w) = \left((a_1, \ldots, a_k), \frac{|z_{k+1}|^2}{2}, \ldots, \frac{|z_n|^2}{2} \right).
$$

This is the moment map for an action of T^n on M_0 given by

$$
\theta \cdot ((\alpha, a), z) = ((\alpha + \theta', a), \exp(\theta'')z)
$$

where

$$
\theta' = (\theta_1, \theta_2, \dots, \theta_k), \qquad \theta'' = (\theta_{k+1}, \theta_{k+2}, \dots, \theta_n)
$$

for $\theta = (\theta_1, \theta_2, \dots, \theta_n) \in T^n$. The image of moment map is

$$
H_0(M_0) = \{0\} \times \mathbf{R}^k \times [0, \infty)^{n-k}
$$

and the isotropy group of the point $((\alpha, a), z)$ is $\{0\} \times T^I \subset T^k \times T^{n-k}$ where

$$
I = \{i : z_i = 0\}, \qquad T^I = \{\theta'' \in T^{n-k} : \theta_i = 0 \text{ for } i \notin I\}.
$$

4 (Local Normal Form) Let (M, ω, H) be a Hamiltonian T manifold and $o \in$ M. Then there is a neigborhood U of the T orbit To of o in M , a neighborhood U_0 of $(T^k \times 0) \times 0$ in M_0 , a diffeomorphism $f: U_0 \to U$ carrying $((0,0),0)$ to o, a homomorphism $\eta: T \to T^n$, and a constant $c \in L(T)^*$ such that

$$
\omega_0 = f^*\omega, \qquad H \circ f = (\eta^* H_0) + c.
$$

Here we denoted by $\eta: L(T) \to L(T^n)$ the derivative of $\eta: T \to T^n$ and by $\eta^*: L(T^n)^* \to L(T)^*$ its adjoint. If the action is effective then η is injective, and for a toric manifold (see below) η is an isomorphism.

5 (AGS Convexity Theorem) For a compact connected Hamiltonian T^n manifold we have

- (A_n) The preimage $H^{-1}(p)$ of a point $p \in H(M)$ is connected;
- (B_n) The image $H(M)$ is a convex polytope whose vertices are the images under H of the fixed points of the action.
- **6** A polytope in V^* is a compact set $\Delta \subset \mathbb{R}^n$ of form

$$
\Delta = \bigcap_{i=1}^d \{x \in V^* : \langle x, u_i \rangle \ge c_i\}.
$$

The vectors $u_i \in L(T)$ are the normal vectors to the faces of the polytope. A polytope $\Delta \subset V$ is called **Delzant** iff at each vertex the normal vectors of the faces through the vertex may be chosen to be **Z**-basis for Λ . (Thus there are exactly $n = \dim(T)$ faces at each vertex.) A **Hamiltonian toric Manifold** is a compact connected Hamiltonian T manifold M with $\dim(M) = 2 \dim(T)$ and such that the T action is effective.

7 Theorem (Delzant) There is a bijective correspondence between Delzant polytopes and Hamiltonian toric manifolds as follows:

- (I) If (M, ω, H) is a Hamiltonian toric manifold, the image $H(M)$ of the moment map is a Delzant polytope.
- (II) The construction given below assigns to every Delzant polytope Δ a compact connected Hamiltonian toric manifold

$$
(M_{\Delta}, \omega_{\Delta}, H_{\Delta})
$$

such that $H_{\Delta}(M_{\Delta}) = \Delta$.

(III) If (M, ω, H) is a compact Hamiltonian toric manifold and $\Delta = H(M)$. then is (M, ω, H) isomorphic to $(M_\Delta, \omega_\Delta, H_\Delta)$ in the sense that there is a diffeomorphism $f : M \to M_{\Delta}$ such that

$$
\omega_{\Delta} = f^* \omega \quad \text{and} \quad H_{\Delta} = H \circ f.
$$

8 A Delzant polytope $\Delta \subset L(T)^*$ determines an exact sequence

$$
0\to N\mathop{\longrightarrow}\limits^{\iota} T^d\mathop{\longrightarrow}\limits^{\pi} T\to 0
$$

by the condition that the derivative $\pi : L(T^d) \to L(T)$ satisfies

$$
\pi(e_i)=u_i
$$

for $i = 1, 2, ..., d$ where $e_1, e_2, ..., e_d$ are the standard basis for $\mathbf{R}^d = L(T^d)$. Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_d$ denote the dual basis for $L(T^d)^*$ and $H_0: \mathbf{C}^d \to L(T^d)^*$ the map given by

$$
H_0(z) = \sum_{i=1}^d \left(\frac{|z_i|^2}{2} + c_i\right) \varepsilon_i
$$

so that H_0 is a moment map for the standard multiplicative action of T^d on \mathbb{C}^d . Define

$$
H_N = \iota^* \circ H_0, \qquad Z = H_N^{-1}(0).
$$

Then $H_N: \mathbf{C}^d \to L(N)^*$ is a moment map for the restriction of the T^d action to $N \subset T^d$.

9 Theorem (Delzant)

- (1) N acts freely on Z.
- (2) 0 is a regular value of H_N so Z is a manifold.
- (3) (Marsden Weinstein Reduction) There is a unique Hamiltonian $Tⁿ$ space $(M_\Delta, \omega_\Delta, H_\Delta)$ such that $M_\Delta = Z/N$ is the orbit space, $\omega_0 | Z = q^* \omega_\Delta$ where $q : Z \to M_{\Delta}$ is the quotient map, and $\pi^* \circ H_{\Delta} = H_0 \circ q$.
- (4) The image $H_{\Delta}(M_{\Delta})$ is Δ .
- (5) M_{Δ} is compact.

10 Projective space. Let $d = n + 1$ and e_0, e_1, \ldots, e_n be the standard basis for \mathbf{R}^{n+1} . Let

$$
u_0 = e_0 - e_n
$$
, $u_i = e_i - e_{i-1}$

for $i = 1, 2, ..., n$. The **R**-span of $u_0, u_1, ..., u_n$ is the hyperplane $L(T) = \nu^{\perp}$ where $\nu = e_0 + e_1 + \cdots + e_n$. The vectors u_0, u_1, \ldots, u_n generate a lattice Λ and deleting any u_i gives a Z-basis for Λ . Take $c_0 = -1$ and $c_1 = c_2 = \cdots = c_n = 0$. The inclusion $\iota : N = \mathbb{R}/\mathbb{Z} \to \mathbb{R}^{n+1}/\mathbb{Z}^{n+1}$ sends $1 \in \mathbb{R}$ to $\nu \in \mathbb{R}^{n+1}$. Then $Z = S^{2n+1} \subset \mathbb{C}^{n+1}$, N acts via scalar multiplication, Δ is the standard nsimplex $0 \le x_1 \le x_2 \le \cdots \le x_n \le 1$, and T on acts $M_{\Delta} = \mathbb{C}P^n$ via diagonal unitary matrices of determinant one. The form ω_{Δ} is (a multiple of) the Fubini Study form.

11 Each subset $I \subset \{1, 2, \ldots, d\}$ determines a set

$$
\mathbf{C}_I^d = \{ z \in \mathbf{C}^d : z_i = 0 \iff i \in I \}.
$$

The sets \mathbf{C}_I^d are precisely the $T^d_{\mathbf{C}}$ orbits of the standard action. Define

$$
F_I = \{ x \in \Delta : \langle x, u_i \rangle = c_i \iff i \in I \}.
$$

If nonempty, F_I is a face of Δ and it is an open subset of its linear span. Let

$$
\mathbf{C}_{\Delta} = \bigcup_{F_I \neq \emptyset} \mathbf{C}_I^d.
$$

12 Theorem (Delzant) C_{Δ} is an open subset of C^d on which N_C acts freely. $Z \subset \mathbf{C}_{\Delta}$ and every $N_{\mathbf{C}}$ orbit in \mathbf{C}_{Δ} intersects Z in a N orbit. Hence there is a natural isomorphism

$$
M_{\Delta} = Z/N \simeq \mathbf{C}_{\Delta}/N_{\Delta}.
$$

References

- [1] Atiyah (M.F.) Convexity and commuting hamiltonians, Bull. London Math. Soc. **14** (1982) 1-15.
- [2] Atiyah (M.F.) Angular momentum, convex poyhedra, and algebraic geometry, Proc. Edinburgh Math. Soc. 25 (1983) 121-138.
- [3] Delzant (D.) Hamiltoniens p´eriodiques et images convexes de l'applcation moment, Bull. Soc. math. France, 116 (1988) 315-339.
- [4] Frankel (T.) Fixed points and torsion on Kahler manifolds, Annals of Math. 70 (1959) 1-8.
- [5] Guillemin (V.) Moment maps and combinatorial invariants of Hamiltonian $Tⁿ$ spaces, Progress in Mathematics 122 Birkhäuser, 1994.
- [6] Guillemin (V.) and Sternberg (S.) Convexity properties of the moment map, Invent. Math. 67 (1982) 491-513.
- [7] Souriau (J.M.) Structure des Systémes Dynamiques. Dunod, 1970.