Hamiltonian Toric Manifolds

JWR (following Guillemin)

August 26, 2001

1 Notation Throughout T is a torus, $T_{\mathbf{C}}$ is its complexification,

$$V = L(T)$$

is its Lie algebra, and $\Lambda \subset V$ is the kernel of the exponential map so that

 $T = V/\Lambda, \qquad T_{\mathbf{C}} = V \otimes C/\Lambda.$

The standard *n*-torus T^n has $V = \mathbf{R}^n$ and $\Lambda = \mathbf{Z}^n$ and any torus is isomorphic to a standard one. Denote by $L(T)^*$ the dual space of L(T) (as a vector space over \mathbf{R}).

2 Let (M, ω) a symplectic manifold, and $H : M \to L(T)^*$ a smooth map. Each element $u \in L(T)$ determines a Hamiltonian function $H_u : M \to \mathbf{R}$ via the formula

$$H_u(x) = \langle H(x), u \rangle.$$

Let $X_u \in \mathcal{X}(M)$ be the corresponding Hamiltonian vectorfield on M. A **Hamiltonian** *T*-manifold is a triple (M, ω, H) such that the map

$$L(T) \to \mathcal{X}(M) : u \mapsto X_u$$

is the derivative of a (necessarily symplectic) group action $T \to \text{Diff}(M)$. The map H is called the **moment map**.

3 Example. Consider the 2n dimensional manifold

$$M_0 = T^k \times \mathbf{R}^k \times \mathbf{C}^{n-k}$$

and define the coordinates by

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k) \in T^k, \qquad a = (a_1, a_2, \dots, a_k) \in \mathbf{R}^k,$$
$$z = (z_{k+1}, z_{k+2}, \dots, z_n) \in \mathbf{C}^{n-k}.$$

(The α_i are only defined modulo one.) Introduce the symplectic form

$$\omega_0 = \sum_{j=1}^k d\alpha_j \wedge da_j + \frac{i}{2} \sum_{j=k+1}^n dz_j \wedge d\bar{z}_j.$$

Define $H_0: M \to \mathbf{R}^n$ by

$$H_0((\alpha, a), z, w) = \left((a_1, \dots, a_k), \frac{|z_{k+1}|^2}{2}, \dots, \frac{|z_n|^2}{2} \right).$$

This is the moment map for an action of T^n on M_0 given by

$$\theta \cdot ((\alpha, a), z) = ((\alpha + \theta', a), \exp(\theta'')z)$$

where

$$\theta' = (\theta_1, \theta_2, \dots, \theta_k), \qquad \theta'' = (\theta_{k+1}, \theta_{k+2}, \dots, \theta_n)$$

for $\theta = (\theta_1, \theta_2, \dots, \theta_n) \in T^n$. The image of moment map is

$$H_0(M_0) = \{0\} \times \mathbf{R}^k \times [0, \infty)^{n-k}$$

and the isotropy group of the point $((\alpha, a), z)$ is $\{0\} \times T^I \subset T^k \times T^{n-k}$ where

$$I = \{i : z_i = 0\}, \qquad T^I = \{\theta'' \in T^{n-k} : \theta_i = 0 \text{ for } i \notin I\}.$$

4 (Local Normal Form) Let (M, ω, H) be a Hamiltonian T manifold and $o \in M$. Then there is a neighborhood U of the T orbit To of o in M, a neighborhood U_0 of $(T^k \times 0) \times 0$ in M_0 , a diffeomorphism $f : U_0 \to U$ carrying ((0,0), 0) to o, a homomorphism $\eta : T \to T^n$, and a constant $c \in L(T)^*$ such that

$$\omega_0 = f^*\omega, \qquad H \circ f = (\eta^* H_0) + c.$$

Here we denoted by $\eta : L(T) \to L(T^n)$ the derivative of $\eta : T \to T^n$ and by $\eta^* : L(T^n)^* \to L(T)^*$ its adjoint. If the action is effective then η is injective, and for a toric manifold (see below) η is an isomorphism.

5 (AGS Convexity Theorem) For a compact connected Hamiltonian T^n manifold we have

- (A_n) The preimage $H^{-1}(p)$ of a point $p \in H(M)$ is connected;
- (B_n) The image H(M) is a convex polytope whose vertices are the images under H of the fixed points of the action.
- **6** A **polytope** in V^* is a compact set $\Delta \subset \mathbf{R}^n$ of form

$$\Delta = \bigcap_{i=1}^{d} \{ x \in V^* : \langle x, u_i \rangle \ge c_i \}.$$

The vectors $u_i \in L(T)$ are the normal vectors to the faces of the polytope. A polytope $\Delta \subset V$ is called **Delzant** iff at each vertex the normal vectors of the faces through the vertex may be chosen to be **Z**-basis for Λ . (Thus there are exactly $n = \dim(T)$ faces at each vertex.) A **Hamiltonian toric Manifold** is a compact connected Hamiltonian T manifold M with $\dim(M) = 2\dim(T)$ and such that the T action is effective.

7 Theorem (Delzant) There is a bijective correspondence between Delzant polytopes and Hamiltonian toric manifolds as follows:

- (I) If (M, ω, H) is a Hamiltonian toric manifold, the image H(M) of the moment map is a Delzant polytope.
- (II) The construction given below assigns to every Delzant polytope Δ a compact connected Hamiltonian toric manifold

$$(M_{\Delta}, \omega_{\Delta}, H_{\Delta})$$

such that $H_{\Delta}(M_{\Delta}) = \Delta$.

(III) If (M, ω, H) is a compact Hamiltonian toric manifold and $\Delta = H(M)$. then is (M, ω, H) isomorphic to $(M_{\Delta}, \omega_{\Delta}, H_{\Delta})$ in the sense that there is a diffeomorphism $f: M \to M_{\Delta}$ such that

$$\omega_{\Delta} = f^* \omega$$
 and $H_{\Delta} = H \circ f$.

8 A Delzant polytope $\Delta \subset L(T)^*$ determines an exact sequence

$$0 \to N \xrightarrow{\iota} T^d \xrightarrow{\pi} T \to 0$$

by the condition that the derivative $\pi: L(T^d) \to L(T)$ satisfies

$$\pi(e_i) = u_i$$

for i = 1, 2, ..., d where $e_1, e_2, ..., e_d$ are the standard basis for $\mathbf{R}^d = L(T^d)$. Let $\varepsilon_1, \varepsilon_2, ..., \varepsilon_d$ denote the dual basis for $L(T^d)^*$ and $H_0 : \mathbf{C}^d \to L(T^d)^*$ the map given by

$$H_0(z) = \sum_{i=1}^d \left(\frac{|z_i|^2}{2} + c_i\right)\varepsilon_i$$

so that H_0 is a moment map for the standard multiplicative action of T^d on \mathbf{C}^d . Define

$$H_N = \iota^* \circ H_0, \qquad Z = H_N^{-1}(0)$$

Then $H_N : \mathbf{C}^d \to L(N)^*$ is a moment map for the restriction of the T^d action to $N \subset T^d$.

9 Theorem (Delzant)

- (1) N acts freely on Z.
- (2) 0 is a regular value of H_N so Z is a manifold.
- (3) (Marsden Weinstein Reduction) There is a unique Hamiltonian T^n space $(M_{\Delta}, \omega_{\Delta}, H_{\Delta})$ such that $M_{\Delta} = Z/N$ is the orbit space, $\omega_0 | Z = q^* \omega_{\Delta}$ where $q : Z \to M_{\Delta}$ is the quotient map, and $\pi^* \circ H_{\Delta} = H_0 \circ q$.

- (4) The image $H_{\Delta}(M_{\Delta})$ is Δ .
- (5) M_{Δ} is compact.

10 Projective space. Let d = n + 1 and e_0, e_1, \ldots, e_n be the standard basis for \mathbb{R}^{n+1} . Let

$$u_0 = e_0 - e_n, \qquad u_i = e_i - e_{i-1}$$

for i = 1, 2, ..., n. The **R**-span of $u_0, u_1, ..., u_n$ is the hyperplane $L(T) = \nu^{\perp}$ where $\nu = e_0 + e_1 + \cdots + e_n$. The vectors $u_0, u_1, ..., u_n$ generate a lattice Λ and deleting any u_i gives a **Z**-basis for Λ . Take $c_0 = -1$ and $c_1 = c_2 = \cdots = c_n = 0$. The inclusion $\iota : N = \mathbf{R}/\mathbf{Z} \to \mathbf{R}^{n+1}/\mathbf{Z}^{n+1}$ sends $1 \in \mathbf{R}$ to $\nu \in \mathbf{R}^{n+1}$. Then $Z = S^{2n+1} \subset \mathbf{C}^{n+1}$, N acts via scalar multiplication, Δ is the standard *n*simplex $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq 1$, and T on acts $M_{\Delta} = \mathbf{C}P^n$ via diagonal unitary matrices of determinant one. The form ω_{Δ} is (a multiple of) the Fubini Study form.

11 Each subset $I \subset \{1, 2, \ldots, d\}$ determines a set

$$\mathbf{C}_{I}^{d} = \{ z \in \mathbf{C}^{d} : z_{i} = 0 \iff i \in I \}.$$

The sets \mathbf{C}_{I}^{d} are precisely the $T_{\mathbf{C}}^{d}$ orbits of the standard action. Define

$$F_I = \{ x \in \Delta : \langle x, u_i \rangle = c_i \iff i \in I \}.$$

If nonempty, F_I is a face of Δ and it is an open subset of its linear span. Let

$$\mathbf{C}_{\Delta} = \bigcup_{F_I \neq \emptyset} \mathbf{C}_I^d.$$

12 Theorem (Delzant) \mathbf{C}_{Δ} is an open subset of \mathbf{C}^d on which $N_{\mathbf{C}}$ acts freely. $Z \subset \mathbf{C}_{\Delta}$ and every $N_{\mathbf{C}}$ orbit in \mathbf{C}_{Δ} intersects Z in a N orbit. Hence there is a natural isomorphism

$$M_{\Delta} = Z/N \simeq \mathbf{C}_{\Delta}/N_{\Delta}.$$

References

- Atiyah (M.F.) Convexity and commuting hamiltonians, Bull. London Math. Soc. 14 (1982) 1-15.
- [2] Atiyah (M.F.) Angular momentum, convex poyhedra, and algebraic geometry, Proc. Edinburgh Math. Soc. 25 (1983) 121-138.
- [3] Delzant (D.) Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. math. France, 116 (1988) 315-339.
- [4] Frankel (T.) Fixed points and torsion on Kahler manifolds, Annals of Math. 70 (1959) 1-8.

- [5] Guillemin (V.) Moment maps and combinatorial invariants of Hamiltonian Tⁿ spaces, Progress in Mathematics **122** Birkhäuser, 1994.
- [6] Guillemin (V.) and Sternberg (S.) Convexity properties of the moment map, *Invent. Math.* 67 (1982) 491-513.
- [7] Souriau (J.M.) Structure des Systémes Dynamiques. Dunod, 1970.