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The two best things I learned at college.

Too much of anything is bad; otherwise it wouldn’t be too much.
– Norman Kretzmann

There are two kinds of people in this world: those who say “There are two
kinds of people in this world” and those who don’t.

– William Gelman
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(This has nothing to do with the rest of the talk.)
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Catastrophe Theory is ...

Catastrophe theory is a method for describing the evolution of forms in nature. It
was invented by René Thom in the 1960’s. Thom expounded the philosophy
behind the theory in his 1972 book Structural stability and morphogenesis.
Catastrophe theory is particularly applicable where gradually changing forces
produce sudden effects.

The applications of catastrophe theory in classical physics (or more generally in
any subject governed by a ‘minimization principle’) help us understand what
diverse models have in common. The theory has also been applied in the social
and biological sciences.

In this talk I will discuss three examples: Zeeman’s toy (the “catastrophe
machine”), light caustics, and Zeeman’s explanation of stock market booms and
busts.
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René Thom and Christopher Zeeman

Along with his own contributions to the theory and its applications, Christopher
Zeeman played St. Paul to Thom’s Messiah and roamed the world as a tireless
and eloquent expositor.1 Sir Christopher invented the term “Catastrophe Theory”.

1From an AMS feature column by Tony Phillips.
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Vladimir Igorevich Arnold

Arnold was another major contributor to the subject. He wrote an expository
book entitled Catastrophe Theory. It contains a section on the precursors of
catastrophe theory: Huygens, de l’Hôpital, Hamilton, Cayley, Jacobi, Poincaré,
Andronov and many others.
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Of Arnold’s Catastrophe Theory book Math Reviews said

“This book is named in honour of the theory developed in the 1960s by R. Thom
(‘the great topologist’, to use Arnold’s words in the preface) and his followers.
The name is taken to include, in present-day terms, singularity theory and
bifurcation theory, whether applied to mappings or to dynamical systems, and
(very importantly) all the many applications of these disciplines to the world of
science. Thus, among the topics treated are bifurcations of equilibrium states,
caustics, wavefronts, projections of surfaces, the bypassing of obstacles,
symplectic and contact geometry and complex singularities.

. . .

There is probably no one else in the world who could have written this book. It
remains an engrossing summary of a vast body of work which is one of the major
achievements of twentieth-century mathematics.”
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Titles of Some of Zeeman’s Catastrophe Theory Papers.

A catastrophe machine.

Differential equations for heartbeat and nerve impulse.

On the unstable behaviour of stock exchanges.

Duffing’s equation in brain modeling.2

Primary and secondary waves in developmental biology.

A clock and wavefront model for the control of repeated structures during
animal morphogenesis (with J. Cooke).

Euler buckling.

Stability of ships.

Conflicting judgements caused by stress.

A model for institutional disturbances.

(These are all reprinted in E C Zeeman:Catastrophe theory. Selected papers,
1972–1977, Addison-Wesley, 1977. x+675 pp.)
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Some Titles of Thom’s Works.

Structuralism and biology, in Towards a theoretical biology, (Edited by C H
Waddington) 1975.

Structural Stability and Morphogenesis, 1975.

Mathematical Models of Morphogenesis, 1974.

Semiophysics: A Sketch (Aristotelian Physics and Catastrophe Theory), 1988.

All these books are concerned with biological models of morphogenesis. The last
two discuss linguistics.
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Catastrophe Theory is Qualitative.

“The use of the term ’qualitative’ in science, and above all in physics, has a
pejorative ring. It was a physicist who reminded me, not without vehemence, of
Rutherford’s dictum ’qualitative is nothing but poor quantitative. But consider
the following example.’ . . .” 3

Experiment

Theory A

Theory B

Which theory is more accurate ? Better?

3René Thom, Structural Stability and Morphogenesis: An outline of a general theory of
models (page 4).
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Definitions (Informal) from the Theory

Stable Equilibrium (1) A state which depends continuously on the parameters.
(2) An equilibrium such that nearby states remain close as the
state evolves.

Catastrophe A sudden change in state.

Structural Stability A model is structurally stable if its qualitative behavior is
unchanged by small perturbations of the parameters.

Generic A technical term meant to suggest that the property usually holds.
For example, the property that a pair (a, b) of real numbers
satisfies 4a3 + 27b2 6= 0 is generic. (The precise definition varies.)

Thom’s theory characterizes the catastrophes in structurally stable models and
proves that such models are generic. (More later.)
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The General Idea

The state of a system is described by two kind of variables: internal variables
v = (v1, . . . , vm) and control variables c = (c1, . . . , cn). These are related by a
potential function W (c , v). When the control variables c have a fixed value the
system settles into an equilibrium state where the internal variables v minimize
(locally) the function W (c , ·). As the control variables vary, a local minimum can
disappear and the internal variables jump suddenly to a different equilibrium.
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Temporary Change of Notation

For the rest of this talk we will mostly restrict attention to the case m = 1 (one
internal variable) and n = 2 (two control variables). (The local behavior shown
above requires that m ≥ 1 and n ≥ 2.)

At the end I will give a more precise statement of some special cases of Thom’s
theorem. For now we change notation and denote

the internal variable by u (rather than v),

the control variables by (a, b) (rather than c), and

the potential function by V (a, b, u) (rather than W (c , v)).
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The Cusp Catastrophe.

The equilibrium surface has equation u3 + au + b = 0 where
(a, b) are coordinates on the control space and the vertical
coordinate u is only internal variable. As the control (a, b)
varies the state (a, b, u) will be forced to jump to the other
sheet when it crosses the fold curve (i.e. the curve over the
cusp shown in the next frame).
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The Fold Curve and Bifurcation Set (Cusp).
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Two python/tkinter Programs.

(cusp 1.py) In this program the user moves the mouse in the control plane and the

corresponding graph of the potential function changes accordingly. As the mouse

crosses the cusp curve the shape of the graph changes from two local minima to

one (or vice versa).
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Two python/tkinter Programs.

(cusp 1.py) In this program the user moves the mouse in the control plane and the

corresponding graph of the potential function changes accordingly. As the mouse

crosses the cusp curve the shape of the graph changes from two local minima to

one (or vice versa).

(cusp 2.py) In this program the user changes the position of a point in the control

plane by clicking on the buttons. The horizontal line in the control plane represents

a line where the coordinate a is constant. The potential function is shown in the

middle panel and the right panel represents the slice of the equilibrium surface

corresponding to the value of a. The current state of the system is represented in

both panels by a red dot.

Each horizontal slice – except a = 0 – is a generic ‘one control variable model’.
The whole surface is a generic ‘two control variable model’.

Note the hysteresis: crossing the cusp curve in one direction may cause a
catastrophe, but immediately reversing direction does not restore the previous
state.
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Equations for the Cusp Catastrophe.

The potential is

V (a, b, u) =
u4

4
+

au2

2
+ bu.

The equilibrium surface has equation ∂V /∂u = 0, i.e.

u3 + au + b = 0. (†)

The normal to the surface is vertical when ∂2V /∂u2 = 0 i.e. when

3u2 + a = 0. (‡)

The bifurcation set (cusp) is the critical image of the projection (a, b, u) 7→ (a, b)
from the equilibrium surface onto the control space. The equation of the cusp is

4a3 + 27b2 = 0.

It is obtained by eliminating u from the equations (†) and (‡) for the fold curve.
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Three Slices of the Equilibrium Surface u3 + au + b = 0.

b

u

b

u

b

u

a = 1 a = 0 a = −1

The fold curve (see Frame 14) is the space curve given by the parametric equations

u = t, a = −3t2, b = 2t3.

It projects to the bifurcation set (cusp) 4a3 + 27b2 = 0.
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The potential V (a, b, u)

u

V

V = 1
4u

4 + 1
2au

2 + bu

The graph corresponds to the values a = −2.5 and b = 1. The equilibria are the
solutions of u3 + au + b = 0. Since 4a3 + 27b2 < 0 there are three equilibria, two
stable and one unstable.
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The Cusp is the Envelope of a Family of Lines.

The equilibrium surface u3 + au + b = 0 is ruled. Each real number u determines
a line

ℓu = {(a, b) : u3 + au + b = 0}

in the (a, b)-plane below a line in the surface. The lines are tangent to the cusp
4a3 + 27b2 = 0.

a

b

a = −1

a = 1
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Any Family of Curves has an Envelope.

Let f (a, b, u) be a real valued function of three variables. Each real number u
determines a curve

γu = {(a, b) : f (a, b, u) = 0}

in the (a, b)-plane. The envelope is computed by eliminating u from the equations

f (a, b, u) = 0,
∂f

∂u
(a, b, u) = 0.

a

b

a = −1

a = 1
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Evolutes Have Cusps. (It all goes back to Huygens)

The evolute of a curve is the locus of its centers of curvature. (The center of
curvature of a point on the curve is the center of the circular arc that best
approximates the curve near that point.) The perpendicular lines to the curve
are tangent to the evolute.

An involute is a curve obtained from a given curve by attaching an imaginary
taut string to the given curve and tracing its free end as it is wound onto
that given curve.

The involutes of the evolute of a curve are the parallel curves of the ellipse -
including the curve itself.

According to Wikipedia, the notions of the involute and evolute of a curve were
introduced by Christiaan Huygens in his work entitled Horologium oscillatorium
sive de motu pendulorum ad horologia aptato demonstrationes geometricae
(1673).

(See http://en.wikipedia.org/wiki/Involute.)
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The Evolute of an Ellipse.

p

The tangent line at the point p is the line which best approximates the curve near
p. The circle of curvature at p is the circle which best approximates the curve
near p.

See http://www.youtube.com/watch?v=UzDTbKf2I7Q for a movie.
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Curvature of an Ellipse.

The ellipse
x2

a2
+

y2

b2
= 1

has parametric equations x = a cos t, y = b sin t. Its curvature function is

κ =
ab

(ds/dt)3
,

ds

dt
= (a2 sin2 t + b2 cos2 t)1/2

The unit tangent and unit normal are

T =
dt

ds
(−a sin t, b cos t), N =

dt

ds
(−b cos t,−a sin t).

The evolute has parametric equations

x =

(

a2 − b2

a

)

cos3 t, y =

(

b2 − a2

b

)

sin3 t.
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Light Caustics are Cusps.

This cusp is the evolute of an arc of the ellipse
x2

4
+

y 2

3
= 1. The vertical rays pass

through the arc and leave the arc perpendicular to it. This picture violates Snell’s Law

because the ratio of the sine of the angle of incidence to the sine of the angle of

refraction is not constant.
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This Picture Satisfies Both Snell and Fermat.

It is qualitatively the same as the last picture.

Snell’s Law:
sin θ1
sin θ2

=
v1
v2

=
n2
n1

Fermat’s Principle: Light rays between two points (even those passing
through the lens) are geodesics: they follow the path of least time.

Snell’s Law follows from Fermat’s Principle. The index of refraction is n = c/v
where c is the speed of light in the vacuum and v is the speed of light in the lens.
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The Wave Front.

The involutes of the evolute are the wave fronts. A wave front is the envelope of
the circles of a given radius as their centers move along the curve. The light rays
might emanate in all directions from the points on the curve but at any instant a
point on the corresponding wave front is the end of the light ray that got there
first.
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Caustics Are Catastrophes.

Let γ be a curve in the plane parameterized by a variable u. For any point
p = (a, b) in the (a, b)-plane let

V = V (a, b, u)

be the distance from p to γ(u). If γ(u) is the ‘closest’ point on γ to p then

∂V

∂u
(a, b, u) = 0

and the line from p to γ(u) is perpendicular to the curve. (The point γ(u) need
not be closest, but it is ‘locally’ the closest.)
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Zeeman’s Model of the Stock Market.

nor
m a l

bear

bull

a

b

u

u = rate of change of Dow Jones Average.

a = speculative content (as measured by shares held by elves).

b = excess demand for stock.

Zeeman argues that a feedback mechanism explains why crashes are more
common then frenzies.
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The Van der Pol Equation.

In some of his publications Zeeman added a system of differential equations to
model this feedback. (See the articles on brain modeling and heart beat as well as
the one on the stock market.) The equation in control space is a variant of the
Van der Pol – Lienard equation.

The Van der Pol equation is the dynamical system

ẋ = y − c(x2 − 1), ẏ = −x

where c > 0. It is the special case F (x) = c(x3/3− x) and g(x) = x of the
Lienard Equation

ẋ = y − F ′(x), ẏ = −g(x).

Lienard proved that under suitable hypotheses the system has a (necessarily
unique) attracting limit cycle. If you add a periodic forcing term you get the
equation studied by Dame Mary Cartwright and J.E. Littlewood where they
proved it was chaotic.

JWR (UW Madison) Catastrophe Theory February 19, 2013 29 / 45



Zeeman’s Catastrophe Machine.

This device, invented by Christopher Zeeman consists of a wheel which is tethered
by an elastic to a fixed point in its plane. The control input to the system is
another elastic attached to the same point as the first and roughly of the same
length. The other end of the elastic can be moved about an area diametrically
opposite to the fixed point. The particular instantiation of the concept shown in
the next frame is about one meter high. The detail shows the way the two elastics
are attached to the wheel.
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Dr. Zeeman’s Original Catastrophe Machine.
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The Potential V (a, b, θ) for the Catastrophe Machine.

θ

o

q

p

o = (0, h),

q = (sin θ,− cos θ),

p = (b, a),

V = V (a, b, θ)
= Vo(ℓoq) + Vp(ℓpq),

Vo , Vp = ?

The potential energy V is the sum of the potential energies Vo(ℓoq) and Vp(ℓpq) in
the two elastics. These energies depend only on the respective extended lengths ℓoq
and ℓpq of the two elastics.
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A Simplified Model of the Zeeman Catastrophe Machine.

I don’t know good formulas for the potentials Vo and Vq. However, the form of
the potential guarantees that the tangential component of the force vanishes at
equilibrium. Postulate that

V (a, b, θ) =
ℓ2oq
2

+
ℓ2pq
2

+ F (θ).

where F is independent of a and b. If F is nonzero, this destroys the condition
that V depends only on the lengths ℓoq and ℓpq but now the equipotential curves
are straight lines. Postulate further that the derivative F ′(θ) satisfies

F ′(θ) ≈ (θ − θ0)
3

for θ ≈ θ0 and θ0 = 0, π/2, π/3π/4. (4)

4I actually used F ′(θ) = −2 sin(2θ) ≈ −4θ + 8θ3/3 to draw the picture in the next frame.
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I don’t know good formulas for the potentials Vo and Vq. However, the form of
the potential guarantees that the tangential component of the force vanishes at
equilibrium. Postulate that

V (a, b, θ) =
ℓ2oq
2

+
ℓ2pq
2

+ F (θ).

where F is independent of a and b. If F is nonzero, this destroys the condition
that V depends only on the lengths ℓoq and ℓpq but now the equipotential curves
are straight lines. Postulate further that the derivative F ′(θ) satisfies
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The method of ”postulating” what we want has many advantages; they
are the same as the advantages of theft over honest toil.

–Bertrand Russell
Introduction to Mathematical Philosophy 1919, p 71.
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Here’s the Bifurcation Set for the Simplified Machine.
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A More Precise Formulation of Thom’s Theorem.

Now we’ll state Thom’s theorem in the special case where the number n of
control variables is 2. We will assume that the number m of internal variables is
arbitrary. We must give mathematically precise definitions of “qualitative
behavior” and “generic”. (We gave informal definitions in Frame 10.)
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The Definition of “Qualitative Behavior is Unchanged”.

Recall from Frame 11 that c represents a point in the control space, that v is
represents the internal state, and that W (c , v) is the potential.

Definition

Two potential functions W = W (c , v) and W ′ = W ′(c ′, v ′) are said to be
equivalent, if there is a smooth change of variables

c ′ = γ(c), v ′ = φ(c , v)

and a real valued function c ′ = κ(c) such that

W ′(c ′, v ′) = W (c , v) + κ(c).
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The Definition of Generic.

Think of a potential function W = W (c , v) as a function of c whose value is a
function of v . The vector

(j3W )(c , v) =

(

c , ∂1
vV (c , v), ∂2

vV (c , v), ∂3
vV (c , v)

)

is called the 3-jet of V at (c , v). For example, if c = (a, b), v = u, and

V (a, b, u) =
u4

4
+

au2

2
+ bu, then

(j3V )(a, b, u) = (a, b, u3 + au + b, 3u2 + a, 6u).

The space of 3-jets (a, b, p, q, r) has a natural stratification. The strata are the orbits
of the jet group. When the number m of internal variables is one, the stratification is

S3 = {p = q = r = 0} ⊂ S2 = {p = q = 0} ⊂ S1 = {p = 0}.

Definition

The potential W is said be generic if the map j3W is transverse to each stratum of
this stratification.
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Thom’s Theorem (for n = 2).

In a neighborhood of an equilibrium point a generic potential is equivalent to
one of the following three forms:

(Nondegenerate) W (c , v) =

m
∑

j=1

±v2
j

(Fold) W (c , v) =
v3
1

3
+ c1v1 +

m
∑

j=2

±v2
j

(Cusp) W (c , v) =
v4
1

4
+

c2v
2
1

2
+ c1v1 +

m
∑

j=3

±v2
j

The generic potentials are open (any potential sufficiently close to a generic
potential is itself generic) and dense (any potential may be approximated by
a generic potential).

A generic potential is structurally stable (any potential sufficiently close to
the generic potential is equivalent to it).
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The Zeeman Catastrophe Machine Again.

Recall that I said that the exact form of the potential in the ZCM doesn’t matter
too much. (See Frame 32.) Here’s why. Let V0 and V1 be two models for the
ZCM (say defined by different pairs (Vo ,Vp) of tension functions) and let

Vt = V0 + t(V1 − V0).

Then, if each Ft is generic, then V0 and V1 are equivalent. (This is an immediate
consequence of the definitions, Thom’s Theorem, and the compactness of the unit
interval.)
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What Does It All Mean?

Is Rutherford (“qualitative is just bad quantitative”) right? The geometric
optics model can be shown to be a limit of the quantum mechanical model.

Does a heuristic model have any value?

In particular, does a heuristic of the stock market have predictive value?
(Two problems: What do you measure and the market adjusts.)

Is science about making models?
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morphogenèse. Collection 1018, Union Générale d’Éditions, Paris, 1974.) The
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V I Arnold: Singularities of Caustics and Wave Fronts, Mathematics and its
Applications (Soviet Series) 62, Kluwer Academic Publishers, 1990.

V I Arnold: Contact Geometry and Wave Propagation, Monograph 64

L’Enseignement Mathématique, 1990.
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Sciences , Edited by P. Hilton. Springer Lecture Notes in Mathematics, 525
1976.
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1975.
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Web Resources on Catastrophe Theory

The Catastrophe Machine, by Tony Phillips of Stony Brook, (one of the
AMS Monthly Feature Columns).

A set of transparencies from a 1995, San Antonio lecture by E. C. Zeeman
himself.

The Catastrophe Teacher a website of Lucien Dujardin in Lille complete with
ingenious applets illustrating several ”experiments” with the phenomena,
including Zeeman’s Catastrophe Machine.

A lecture on the Lienard Equation by O. Knill of Harvard.

Edward O. Thorp, Beat the Market: A Scientific Stock Market System, 1967,
ISBN 0-394-42439-5 (online version)

Also

Large portions of this talk were shamelessly cribbed (using cut and paste)
from various wikipedia articles.

The web page for this talk is at
http://www.math.wisc.edu/ robbin/catastrophe/. The interactive programs
cusp 1.py and cusp 2.py. from Frame 15 may be downloaded there. They use
Python3.2 and Tcl downloaded from ActiveState.
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http://www.ams.org/samplings/feature-column/fcarc-cusp1
http://www.ams.org/samplings
http://zakuski.math.utsa.edu/~gokhman/ecz/c.html
http://l.d.v.dujardin.pagesperso-orange.fr/ct/eng_index.html
http://www.math.harvard.edu/archive/118r_spring_05/handouts/lienard.pdf
http://www.edwardothorp.com/sitebuildercontent/sitebuilderfiles/beatthemarket.pdf
http://www.math.wisc.edu/~robbin/catastrophe/
http://www.math.wisc.edu/~robbin/catastrophe/cusp_1.py
http://www.math.wisc.edu/~robbin/catastrophe/cusp_2.py
http://www.activestate.com/activetcl?gclid=CPPy3p3DvbUCFY9AMgodgWQAkA

