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§1. The goal is to solve the cubic equation1

x3 − 3ax+ b = 0. (1)

where a and b are real numbers. If x = u+ v then

x3 − 3ax+ b = u3 + v3 + 3(uv − a)(u+ v) + b

so any solution (u, v) of the equations

uv = a, u3 + v3 = −b (2)

gives a solution x = u + v of (1). By Bezout a conic and a cubic intersect
in six points but if (u, v) satisfies (2) so does (v, u) and these give the same
value for x.

§2. Now (2) implies that the product of u3 and v3 is a3 and the sum is −b
which in turn implies that u3 and v3 are the roots of the quadratic equation

W 2 + bW + a3 = 0 (3)

Conversely, if w is any solution of

w6 + bw3 + a3 = 0 (4)

then, because ( a
w

)6

+ b
( a
w

)3

+ a3 =

(
a3

w6

) (
w6 + bw3 + a3

)
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a/w is another solution and because

w6 + bw3 + a3 = w3

(
w3 +

( a
w

)3

+ b

)
,

the pair (u, v) = (w, a/w) satisfies (2). This means that if w1, . . . , w6 are
the solutions of (4), then (ui, vi) = (wi, a/wi) are the solutions of (2) and
xi = wi + a/wi are the solutions of (1) each appearing twice in the list.

§3. It is amusing that the construction yields non-real values for u3 and v3

precisely when the roots x = u+ v of the original equation are real. We see
this by graphing y = f(x) where f(x) = x3 − 3ax + b so f ′(x) = 3(x2 − a).
In case a < 0 the derivative f ′(x) is always positive so there is only one real
root and b2 − 4a3 > 0 so the values of u3 and v3 are real. In case a > 0
the function f(x) has a local minimum at x =

√
a and a local maximum at

x = −
√
a so there are three real roots if and only if

f(
√
a) < 0 < f(−

√
a). (5)

But f(
√
a) = −2a3/2−b and f(−

√
a) = 2a3/2−b so condition (5) is equivalent

to the condition −2a3/2 + b < 0 < 2a3/2 + b i.e. to b2 − 4a3 < 0 which is the
condition that the solutions u3 and v3 to (3) be non-real.

§4. Here’s another way to look at it. The solutions of (4) are the cube roots
of the solutions

U =
−b+

√
b2 − 4a3

2
, V =

−b−
√
b2 − 4a3

2
.

of (3). The two numbers U and V satisfy U + V = −b and UV = a3. The
solutions of (4) are therefore

U1/3, U1/3ω, U1/3ω2, V 1/3, V 1/3ω, V 1/3ω2.

Here U1/3 and V 1/3 are cube roots of U and V respectively and ω is a primitive
cube root of unity (so ω̄ = ω2 = ω−1 is the other other one). Define

uj = U1/3ωj, vj = V 1/3ωj

for j = 0, 1, 2. Then u3j + v3k = −b. If we choose the cube roots so that

U1/3V 1/3 = a, then ujvk = aωj+k so u0v0 = u1v2 = u2v1 = a and the three
solutions of the cubic are

x0 = u0 + v0, x1 = u1 + v2, x2 = u2 + v1.

2



§5. We distinguish two cases.

(I) If b2 > 4a3, the roots U and V are real and distinct. The real cube root
W 1/3 of a real number W is real so W and W 1/3 have the same sign.
This assures that U1/3V 1/3 = a. In this case

x0 = U1/3 + V 1/3

is the only real root by §3.

(II) If b2 < 4a3, the roots U and V are complex conjugate. In this case
a is positive and U = a3/2eiθ and V = a3/2e−iθ where θ is the unique
solution of cos θ = b/(2a3/2) with 0 < θ < π. The solutions of (4) are
as in case (I) but with U1/3 =

√
aeiθ/3 and V 1/3 =

√
ae−iθ/3. Again

U1/3V 1/3 = a. The three roots x0, x1, x2 are

x0 =
√
a(eiθ/3 + e−iθ/3) = 2

√
a cos θ

3
,

x1 =
√
a(eiθ/3ω + e−iθ/3ω̄) = 2

√
a cos θ+2π

3
,

x2 =
√
a(eiθ/3ω̄ + e−iθ/3ω) = 2

√
a cos θ−2π

3
.

As in §3 the xi are real. As 0 < θ < π we have

0 <
θ

3
<
π

3
,

2π

3
<
θ + 2π

3
< π, −2π

3
<
θ − 2π

3
< −π

3
.

Thus x0 is positive and x1 is negative and x1 < x2 < x0.

cos(θ)

sin(θ)
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§6. The following sage2 program implements the above.3

def solve(a,b):

if a==0 and b==0: return [0]

if a==0: return [-b/abs(b)^(2/3)]

d=b^2-4*a^3;

U=(-b+sqrt(abs(d)))/2; V=(-b-sqrt(abs(d)))/2;

if d>0:

u_0=U/(abs(U)^(2/3)); v_0=V/(abs(V)^(2/3))

x_0=u_0+v_0

return [x_0]

else: # d<=0:

theta=acos(-(b/2)/a^(3.0/2))

x_0=2*sqrt(a)*cos(theta/3)

x_1=2*sqrt(a)*cos((theta+2*pi)/3)

x_2=2*sqrt(a)*cos((theta-2*pi)/3)

return [x_1,x_2,x_0]

§7. Let p, q, r be the roots of (1). The constant term b is the product pqr of
the roots and the sum of p + q + r of the roots is zero because (1) contains
no x2 term. Thus

x3 − 3ax+ b = (x− p)(x− q)(x− r) = x3 − (pq + pr + qr)x+ pqr.

The discriminant b2 − 4a3 vanishes when there is a double root, say when
p = q = −1

2
r and in this case

x3 − 3ax+ b = (x+ 1
2
r)2(x− r).

The surface in (a, b, x)-space defined by (1) is invariant under the symmetry
(a, b, x) 7→ (a,−b,−x) and this symmetry has the effect of reversing the signs
of the three roots. The curve b2 − 4a3 = 0 has parametric equations a = t2,
b = 2t3. Over this curve we have the factorization

(x− t)2(x+ 2t) = (x2 − 2tx+ t2)(x+ 2t) = x3 − 3t2x+ 2t3

and the roots lie on the twisted cubic a = t2, b = 2t3, x = t. The root
x = −2t also lies on the twisted cubic as

a = (−2t)2, b = 2(−2t)3 =⇒ 4a3 = b2.
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Figure 1: A hand drawn graph of the cusp surface x3 − 3ax+ b = 0

§8. Figure 1 shows a hand drawn graph of the cusp surface (1). When
drawing the cusp surface, the vertical coordinate is the x-axis, the horizontal
coordinate is the b-axis, and the a-axis drawn as a line of positive slope;
the left face has equation b = −1, the right face has equation b = 1, the
back face has equation a = −1,and the front face has equation a = 1.4 To
draw the surface with the computer, we can use the vertical coordinate x to
parameterize curves in the surface as follows.5

§9. The cusp surface (1) intersects the plane a = constant in the graph of
the polynomial

b = −x3 + 3ax. (6)

The following table determines the qualitative behavior of the graph when
a = 1.

x b = −x3 + 3x
db

dx
= −3(x2 − 1)

d2b

dx2
= −6x

2 −2 −9 −12
1 2 0 −6
0 0 3 0
−1 −2 0 6
−2 2 9 12
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For a < 0 the polynomial (6) is strictly decreasing. The endpoints of this
curve in the interval −2 ≤ x ≤ 2 are the points (a, b, x) = (1,−2, 2) and
(a, b, x) = (1, 2,−2). (See Figure 2.)

§10. The following table determines the qualitative behavior of the intersec-
tion of the surface (1) with the plane b = −2.

x a =
x2

3
− 2

3x

da

dx
=

2x

3
+

2

3x2

−∞ +∞
−1 1 0
0− +∞
0+ −∞
+∞ +∞

The symmetry (a, b, x) 7→ (−a,−b,−x) sends the intersection with the plane
b = −2 to the intersection with the plane b = +2.

x a =
x2

3
+

2

3x

da

dx
=

2x

3
− 2

3x2

−∞ +∞
0− −∞
0+ +∞
1 1 0

+∞ +∞

Each of these two curves has two branches, but only one branch is indicated
in the picture of the cusp surface shown in Figure 2.

§11. The picture of the surface x3 − 3ax + b2 = 0 drawn in Figure 2 it is a
little wonky. The quadrilateral in the base is almost, but not exactly, a par-
allelogram. Here’s why that happened. The picture is drawn by projecting
the boundary curves in (a, b, x)-space to curves in (X, Y )-space via a linear
transformation

X = c11 a+ c12 b+ c13 x
Y = c21 a+ c22 b+ c23 x

(7)

and drawing the image. If c13 = 0 this linear transformation maps a vertical
line a = a0, b = b0 to a vertical line X = X0. This feature is desirable
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Figure 2: The cusp surface x3 − 3ax+ b = 0
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but doesn’t produce a good picture because the image of the back curve
x3 + 3x+ b = 0 overlaps the image of the front curve x3− 3x+ b = 0. Hence
we must choose a nonzero value for c13. But now the image of a vertical line
in (a, b, x)-space is not vertical in (X, Y )-space. To compensate for this the
projection of a point (a, b, x) onto the (a, b) plane was drawn by subtracting
a fixed length from the Y coordinate of the image (X, Y ) of that point. Since
the four corners in the surface are almost the vertices of a parallelogram (but
not exactly: they are not even coplanar) the resulting picture is not too bad.

§12. To draw a better picture we could use two transformations

(X, Y ) = P (a, b, x), (X, Y ) = Q(a, b, x);

the first transformation P to draw a parallelogram in the base and the second
transformation Q to draw the intersection of the preimage Q−1(`) of a side
` of the parallelogram with the surface x3 − 3ax + b2 = 0. We impose the
following two properties

(I) The restriction of P to the plane x = 0 is linear.

(II) If (X0, Y0) = P (a, b, 0) then the image (X, Y ) = Q(a, b, x) of any point
on the vertical line through (a, b, 0) lies on the vertical line X = X0

through P (a, b, 0).

Condition (I) assures that the image under P of a parallelogram in the plane
x = 0 is a parallelogram in the view plane.

Notes

1 Of course, the most general cubic equation is

c3y
3 + c2y

2 + c1y + c0 = 0

where c3 6= 0. However it is easy to transform this equation equation to equation (1).
After dividing by c3 we may assume w.l.o.g. that c3 = 1. Then, after performing the
substitution y = x− c2/3, the equation takes the desired form (1). (The substitution
y = x− c2/3 is an example of a Tschirnhaus transformation.)

2 sage is a free open-source mathematics software system licensed under the GPL. It
combines the power of many existing open-source packages into a common Python-
based interface. The URL is http://www.sagemath.org.
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3 To run this program in python indicate raising to a power by x**p and be sure that
at least one of the arguments in a division is not an integer (say by multiplying by1.0).
In either language the command from math import cos must also be included
in the program.

4 In calculus courses the letters a, b, x correspond to the letters x, y, z so the equation
for the cusp surface would be z3 − 3xz + y = 0.

5 In precalculus and first semester calculus the x-axis is the horizontal axis but in the
drawings in Figure 2 it is the vertical axis.
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