Solving the Cubic and Drawing the Cusp Surface

JWR

February 3, 2013

§[1](#page-7-0). The goal is to solve the cubic equation¹

$$
x^3 - 3ax + b = 0.\t(1)
$$

where a and b are real numbers. If $x = u + v$ then

$$
x^3 - 3ax + b = u^3 + v^3 + 3(uv - a)(u + v) + b
$$

so any solution (u, v) of the equations

$$
uv = a, \qquad u^3 + v^3 = -b \tag{2}
$$

gives a solution $x = u + v$ of [\(1\)](#page-0-0). By Bezout a conic and a cubic intersect in six points but if (u, v) satisfies (2) so does (v, u) and these give the same value for x.

§2. Now [\(2\)](#page-0-1) implies that the product of u^3 and v^3 is a^3 and the sum is $-b$ which in turn implies that u^3 and v^3 are the roots of the quadratic equation

$$
W^2 + bW + a^3 = 0 \tag{3}
$$

Conversely, if w is any solution of

$$
w^6 + bw^3 + a^3 = 0 \tag{4}
$$

then, because

$$
\left(\frac{a}{w}\right)^6 + b\left(\frac{a}{w}\right)^3 + a^3 = \left(\frac{a^3}{w^6}\right)\left(w^6 + bw^3 + a^3\right)
$$

 a/w is another solution and because

$$
w^{6} + bw^{3} + a^{3} = w^{3} \left(w^{3} + \left(\frac{a}{w}\right)^{3} + b\right),
$$

the pair $(u, v) = (w, a/w)$ satisfies [\(2\)](#page-0-1). This means that if w_1, \ldots, w_6 are the solutions of [\(4\)](#page-0-2), then $(u_i, v_i) = (w_i, a/w_i)$ are the solutions of [\(2\)](#page-0-1) and $x_i = w_i + a/w_i$ are the solutions of [\(1\)](#page-0-0) each appearing twice in the list.

§3. It is amusing that the construction yields non-real values for u^3 and v^3 precisely when the roots $x = u + v$ of the original equation are real. We see this by graphing $y = f(x)$ where $f(x) = x^3 - 3ax + b$ so $f'(x) = 3(x^2 - a)$. In case $a < 0$ the derivative $f'(x)$ is always positive so there is only one real root and $b^2 - 4a^3 > 0$ so the values of u^3 and v^3 are real. In case $a > 0$ the function $f(x)$ has a local minimum at $x = \sqrt{a}$ and a local maximum at $x = -\sqrt{a}$ so there are three real roots if and only if

$$
f(\sqrt{a}) < 0 < f(-\sqrt{a}).\tag{5}
$$

But $f($ √ \overline{a}) = $-2a^{3/2}-b$ and $f(-\sqrt{a})$ \overline{a}) = 2 $a^{3/2}-b$ so condition [\(5\)](#page-1-0) is equivalent to the condition $-2a^{3/2} + b < 0 < 2a^{3/2} + b$ i.e. to $b^2 - 4a^3 < 0$ which is the condition that the solutions u^3 and v^3 to [\(3\)](#page-0-3) be non-real.

§4. Here's another way to look at it. The solutions of [\(4\)](#page-0-2) are the cube roots of the solutions

$$
U = \frac{-b + \sqrt{b^2 - 4a^3}}{2}, \qquad V = \frac{-b - \sqrt{b^2 - 4a^3}}{2}.
$$

of [\(3\)](#page-0-3). The two numbers U and V satisfy $U + V = -b$ and $UV = a³$. The solutions of (4) are therefore

$$
U^{1/3}
$$
, $U^{1/3}\omega$, $U^{1/3}\omega^2$, $V^{1/3}$, $V^{1/3}\omega$, $V^{1/3}\omega^2$.

Here $U^{1/3}$ and $V^{1/3}$ are cube roots of U and V respectively and ω is a primitive cube root of unity (so $\bar{\omega} = \omega^2 = \omega^{-1}$ is the other other one). Define

$$
u_j = U^{1/3} \omega^j, \qquad v_j = V^{1/3} \omega^j
$$

for $j = 0, 1, 2$. Then $u_j^3 + v_k^3 = -b$. If we choose the cube roots so that $U^{1/3}V^{1/3} = a$, then $u_jv_k = a\omega^{j+k}$ so $u_0v_0 = u_1v_2 = u_2v_1 = a$ and the three solutions of the cubic are

$$
x_0 = u_0 + v_0
$$
, $x_1 = u_1 + v_2$, $x_2 = u_2 + v_1$.

- §5. We distinguish two cases.
- (I) If $b^2 > 4a^3$, the roots U and V are real and distinct. The real cube root $W^{1/3}$ of a real number W is real so W and $W^{1/3}$ have the same sign. This assures that $U^{1/3}V^{1/3} = a$. In this case

$$
x_0 = U^{1/3} + V^{1/3}
$$

is the only real root by §[3.](#page-1-1)

(II) If $b^2 < 4a^3$, the roots U and V are complex conjugate. In this case a is positive and $U = a^{3/2} e^{i\theta}$ and $V = a^{3/2} e^{-i\theta}$ where θ is the unique solution of $\cos \theta = b/(2a^{3/2})$ with $0 < \theta < \pi$. The solutions of [\(4\)](#page-0-2) are solution of $\cos \theta = \frac{\theta}{(2a + 1)}$ with $0 < \theta < \pi$. The solutions of (4) are
as in case (I) but with $U^{1/3} = \sqrt{a}e^{i\theta/3}$ and $V^{1/3} = \sqrt{a}e^{-i\theta/3}$. Again $U^{1/3}V^{1/3} = a$. The three roots x_0, x_1, x_2 are

$$
x_0 = \sqrt{a} (e^{i\theta/3} + e^{-i\theta/3}) = 2\sqrt{a} \cos \frac{\theta}{3},
$$

\n
$$
x_1 = \sqrt{a} (e^{i\theta/3} \omega + e^{-i\theta/3} \bar{\omega}) = 2\sqrt{a} \cos \frac{\theta + 2\pi}{3},
$$

\n
$$
x_2 = \sqrt{a} (e^{i\theta/3} \bar{\omega} + e^{-i\theta/3} \omega) = 2\sqrt{a} \cos \frac{\theta - 2\pi}{3}.
$$

As in §[3](#page-1-1) the x_i are real. As $0 < \theta < \pi$ we have

$$
0<\frac{\theta}{3}<\frac{\pi}{3}, \qquad \frac{2\pi}{3}<\frac{\theta+2\pi}{3}<\pi, \qquad -\frac{2\pi}{3}<\frac{\theta-2\pi}{3}<-\frac{\pi}{3}.
$$

Thus x_0 is positive and x_1 is negative and $x_1 < x_2 < x_0$.

§6. The following stage^2 stage^2 program implements the above.^{[3](#page-8-0)}

```
def solve(a,b):
if a==0 and b==0: return [0]
if a==0: return [-b/abs(b)^(2/3)]d=b^2-4*a^3;U=(-b+sqrt(abs(d)))/2; V=(-b-sqrt(abs(d)))/2;
if d>0:
    u_0=U/(abs(U)^(2/3)); v_0=V/(abs(V)^(2/3))x_0=u_0+v_0
    return [x_0]
else: # d<=0:
    theta=acos(-(b/2)/a^(3.0/2))
    x_0=2*sqrt(a)*cos(theta/3)
    x_1=2*sqrt(a)*cos((theta+2*pi)/3)x_2=2*sqrt(a)*cos((theta-2*pi)/3)
    return [x_1, x_2, x_0]
```
§7. Let p, q, r be the roots of [\(1\)](#page-0-0). The constant term b is the product pqr of the roots and the sum of $p + q + r$ of the roots is zero because [\(1\)](#page-0-0) contains no x^2 term. Thus

$$
x^3 - 3ax + b = (x - p)(x - q)(x - r) = x^3 - (pq + pr + qr)x + pqr.
$$

The discriminant $b^2 - 4a^3$ vanishes when there is a double root, say when $p = q = -\frac{1}{2}$ $\frac{1}{2}r$ and in this case

$$
x^3 - 3ax + b = (x + \frac{1}{2}r)^2(x - r).
$$

The surface in (a, b, x) -space defined by (1) is invariant under the symmetry $(a, b, x) \mapsto (a, -b, -x)$ and this symmetry has the effect of reversing the signs of the three roots. The curve $b^2 - 4a^3 = 0$ has parametric equations $a = t^2$, $b = 2t³$. Over this curve we have the factorization

$$
(x-t)^2(x+2t) = (x^2 - 2tx + t^2)(x+2t) = x^3 - 3t^2x + 2t^3
$$

and the roots lie on the twisted cubic $a = t^2$, $b = 2t^3$, $x = t$. The root $x = -2t$ also lies on the twisted cubic as

$$
a = (-2t)^2
$$
, $b = 2(-2t)^3 \implies 4a^3 = b^2$.

Figure 1: A hand drawn graph of the cusp surface $x^3 - 3ax + b = 0$

§ 8. Figure [1](#page-4-0) shows a hand drawn graph of the cusp surface [\(1\)](#page-0-0). When drawing the cusp surface, the vertical coordinate is the x-axis, the horizontal coordinate is the b -axis, and the a -axis drawn as a line of positive slope; the left face has equation $b = -1$, the right face has equation $b = 1$, the back face has equation $a = -1$, and the front face has equation $a = 1⁴$ $a = 1⁴$ $a = 1⁴$ To draw the surface with the computer, we can use the vertical coordinate x to parameterize curves in the surface as follows.[5](#page-8-2)

§9. The cusp surface [\(1\)](#page-0-0) intersects the plane $a = constant$ in the graph of the polynomial

$$
b = -x^3 + 3ax.\tag{6}
$$

The following table determines the qualitative behavior of the graph when $a=1.$

For $a < 0$ the polynomial (6) is strictly decreasing. The endpoints of this curve in the interval $-2 \le x \le 2$ are the points $(a, b, x) = (1, -2, 2)$ and $(a, b, x) = (1, 2, -2)$. (See Figure [2.](#page-6-0))

§10. The following table determines the qualitative behavior of the intersec-tion of the surface [\(1\)](#page-0-0) with the plane $b = -2$.

\boldsymbol{x}	x^2 2 $\it a$ = $\overline{3}$ 3x	da 2x \overline{dx} $\overline{3}$ $3x^2$
	$+\infty$	
$\frac{-\infty}{-1}$		
	$+\infty$	
$0+$	(\mathbf{X})	

The symmetry $(a, b, x) \mapsto (-a, -b, -x)$ sends the intersection with the plane $b = -2$ to the intersection with the plane $b = +2$.

\boldsymbol{x}	$\frac{x^2}{3} +$ a $\overline{3x}$	$d\mathfrak{a}$ 2x \overline{dx} $3x^2$ 3
$-\infty$	$+\infty$	
$0 -$	$-\infty$	
$^{0+}$	$+\infty$	

Each of these two curves has two branches, but only one branch is indicated in the picture of the cusp surface shown in Figure [2.](#page-6-0)

§11. The picture of the surface $x^3 - 3ax + b^2 = 0$ $x^3 - 3ax + b^2 = 0$ $x^3 - 3ax + b^2 = 0$ drawn in Figure 2 it is a little wonky. The quadrilateral in the base is almost, but not exactly, a parallelogram. Here's why that happened. The picture is drawn by projecting the boundary curves in (a, b, x) -space to curves in (X, Y) -space via a linear transformation

$$
X = c_{11} a + c_{12} b + c_{13} x
$$

\n
$$
Y = c_{21} a + c_{22} b + c_{23} x
$$
\n(7)

and drawing the image. If $c_{13} = 0$ this linear transformation maps a vertical line $a = a_0, b = b_0$ to a vertical line $X = X_0$. This feature is desirable

Figure 2: The cusp surface $x^3 - 3ax + b = 0$

but doesn't produce a good picture because the image of the back curve $x^3 + 3x + b = 0$ overlaps the image of the front curve $x^3 - 3x + b = 0$. Hence we must choose a nonzero value for c_{13} . But now the image of a vertical line in (a, b, x) -space is not vertical in (X, Y) -space. To compensate for this the projection of a point (a, b, x) onto the (a, b) plane was drawn by subtracting a fixed length from the Y coordinate of the image (X, Y) of that point. Since the four corners in the surface are almost the vertices of a parallelogram (but not exactly: they are not even coplanar) the resulting picture is not too bad.

§12. To draw a better picture we could use two transformations

$$
(X,Y) = P(a,b,x),
$$
 $(X,Y) = Q(a,b,x);$

the first transformation P to draw a parallelogram in the base and the second transformation Q to draw the intersection of the preimage $Q^{-1}(\ell)$ of a side l of the parallelogram with the surface $x^3 - 3ax + b^2 = 0$. We impose the following two properties

- (I) The restriction of P to the plane $x = 0$ is linear.
- (II) If $(X_0, Y_0) = P(a, b, 0)$ then the image $(X, Y) = Q(a, b, x)$ of any point on the vertical line through $(a, b, 0)$ lies on the vertical line $X = X_0$ through $P(a, b, 0)$.

Condition (I) assures that the image under P of a parallelogram in the plane $x = 0$ is a parallelogram in the view plane.

Notes

[1](#page-0-4) Of course, the most general cubic equation is

$$
c_3y^3 + c_2y^2 + c_1y + c_0 = 0
$$

where $c_3 \neq 0$. However it is easy to transform this equation equation to equation [\(1\)](#page-0-0). After dividing by c_3 we may assume w.l.o.g. that $c_3 = 1$. Then, after performing the substitution $y = x - c_2/3$, the equation takes the desired form [\(1\)](#page-0-0). (The substitution $y = x - c_2/3$ is an example of a Tschirnhaus transformation.)

[2](#page-3-0) sage is a free open-source mathematics software system licensed under the GPL. It combines the power of many existing open-source packages into a common Pythonbased interface. The URL is <http://www.sagemath.org>.

- [3](#page-3-1) To run this program in python indicate raising to a power by x**p and be sure that at least one of the arguments in a division is not an integer (say by multiplying by1.0). In either language the command from math import cos must also be included in the program.
- [4](#page-4-2) In calculus courses the letters a, b, x correspond to the letters x, y, z so the equation for the cusp surface would be $z^3 - 3xz + y = 0$.
- [5](#page-4-3) In precalculus and first semester calculus the x-axis is the horizontal axis but in the drawings in Figure [2](#page-6-0) it is the vertical axis.