The Probability Distribution of the Angle of Rotation

JWR

October 2006

1. Each element $g \in SO(3)$ is a rotation through an angle $\theta = \Theta(g)$ about some fixed axis. Our objective is to calculate the probability

$$
P(\alpha \le \Theta \le \beta) := \mu(\Theta^{-1}(\alpha, \beta))
$$

for $0 \leq \alpha \leq \beta \leq \pi$ where the probability measure μ is the normalized Haar measure on $SO(3)$, i.e. the unique volume form on G of total mass one which is invariant under the left translations (and therefore also right translations). Now

$$
P(\alpha \le \Theta \le \beta) = P(\cos \alpha \ge \cos \Theta \ge \cos \beta)
$$

so it is enough to calculate the latter.

Lemma 2. Let

$$
SU(2) \to SO(3): q \mapsto g
$$

denote the double cover, i.e. for $q \in SU(2)$ and $\hat{q} \in T_eSU(2) = \mathbb{R}^3$ we have

$$
g(\hat{q}) = q\hat{q}q^{-1}.
$$

Then

$$
\cos \Theta(g) = \frac{\text{Tr}(q)^2}{2} - 1
$$

where $\text{Tr}(q)$ denotes the trace of q.

Proof. The elements of $SU(2)$ are the unit quaternions

$$
q = \left(\begin{array}{cc} u & v \\ -\bar{v} & \bar{u} \end{array}\right), \qquad u\bar{u} + v\bar{v} = 1.
$$

We can write $q \in SU(2)$ as

$$
q = x_0 \sigma_0 + x_1 \sigma_1 + x_2 \sigma_2 + x_3 \sigma_3 \tag{#}
$$

where $u = x_0 + ix_1$, $v = x_2 + ix_3$ and the σ_i are the Pauli matrices

$$
\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.
$$

The Lie algebra T_e SU(2) of SU(2 is the span of σ_1 , σ_2 , σ_3 . For the diagonal matrix

$$
q_{\phi} = \left(\begin{array}{cc} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{array} \right),
$$

the corresponding rotation g_{ϕ} has axis σ_1 and rotates the span of σ_2 and σ_3 through an angle of $\theta = 2\phi$. Hence

$$
\cos \Theta(g_{\phi}) = \cos(2\phi) = 2\cos^{2}\phi - 1 = \frac{\text{Tr}(q_{\phi})^{2}}{2} - 1.
$$

The lemma follows since every element $q \in SU(2)$ is conjugate to a diagonal matrix. \Box

3. Because the Euclidean norm is multiplicative on the quaternions, the volume element on $\mathbb{S}^3 = \text{SU}(2)$ inherited from \mathbb{R}^4 is invariant under left and right translations by a unit quaternion and is therefore (up to a normalization) the invariant volume form on SU(2). This volume element is obtained by interior multiplication with the radial vector field and restricting to \mathbb{S}^3 and is thus

$$
\omega = x_0 dx_1 dx_2 dx_3 - x_1 dx_0 dx_2 dx_3 + x_2 dx_0 dx_1 dx_3 - x_3 dx_0 dx_1 dx_2.
$$

The volume of \mathbb{S}^3 is $2\pi^2$. Hence for any measurable subset X of SO(3) we have that

$$
\mu(X) = \frac{1}{2\pi^2} \int_{\tilde{X}} \omega
$$

where $\tilde{X} \subset SU(2)$ is the preimage of $X \subset SO(3)$ under the double cover. In the notation of $(\#)$ the trace of q is Tr(q) = 2x₀ so

$$
\cos \Theta(g) = 2x_0^2 - 1
$$

by the lemma. If $q \in \mathbb{S}^3$ is one of the preimage of $g \in SO(3)$, then the other one is −q so

$$
P(b \le \cos \Theta \le a) = \frac{1}{\pi^2} \int_{X(b,a)} \omega \tag{\dagger}
$$

for $-1 \leq b \leq a \leq 1$ where

$$
X(b,a) := \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{S}^3 : \sqrt{\frac{b+1}{2}} \le x_0 \le \sqrt{\frac{a+1}{2}} \right\}.
$$

Note that $X(b, a)$ is a subset of the upper hemisphere $x_0 \geq 0$.

4. To evaluate the integral we parameterize the upper hemisphere by the unit ball $\mathbb{B}^3 \subset \mathbb{R}^3$ via the map $f : \mathbb{B}^3 \to \mathbb{S}^3$ defined by

$$
f(x_1, x_2, x_3) = (\sqrt{1 - \rho^2}, x_1, x_2, x_3), \qquad \rho := x_1^2 + x_2^2 + x_3^2.
$$

Now

$$
f^*(x_0 dx_1 dx_2 dx_3) = \sqrt{1 - \rho^2} dx_1 dx_2 dx_3
$$

 $f^*dx_0 = -\frac{x_1 dx_1 + x_2 dx_2 + x_3 dx_3}{x_1 + x_2 dx_3}$ \dot{x}_0

so

and

$$
f^*(-x_1 dx_0 dx_2 dx_3) = \frac{x_1^2}{x_0} dx_1 dx_2 dx_3
$$

with similar formulas for $f^*(x_2 dx_0 dx_1 dx_3)$ and $f^*(-x_3 dx_0 dx_1 dx_2)$ so

$$
f^*\omega = \left(\sqrt{1-\rho^2} + \frac{\rho^2}{\sqrt{1-\rho^2}}\right) dx_1 dx_2 dx_3 = \frac{dx_1 dx_2 dx_3}{\sqrt{1-\rho^2}}.
$$

In spherical coordinates, $x_1 = \rho \sin \phi \cos \theta$, $x_2 = \rho \sin \phi \sin \theta$, $x_3 = \rho \cos \phi$, we get

$$
f^*\omega = \frac{\rho^2 \sin \phi \, d\rho \, d\phi \, d\theta}{\sqrt{1 - \rho^2}}.
$$

Also

$$
X(b, a) = \{(x_0, x_1, x_2, x_3) \in \mathbb{S}^3 : b \le 1 - 2\rho^2 \le a\}
$$

=
$$
\left\{(x_0, x_1, x_2, x_3) \in \mathbb{S}^3 : \sqrt{\frac{1 - a}{2}} \le \rho \le \sqrt{\frac{1 - b}{2}}\right\}.
$$

Hence by (†) we have

$$
P(b \le \cos \Theta \le a) = \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{\pi} \int \sqrt{\frac{(1-b)/2}{(1-a)/2}} \frac{\rho^2 \sin \phi \, d\rho \, d\phi \, d\theta}{\sqrt{1-\rho^2}}
$$

This evaluates to

$$
P(b \leq \cos \Theta \leq a) = F(a) - F(b)
$$

where

$$
F(x) = \frac{\sqrt{1-x^2}}{\pi} - \frac{2}{\pi} \sin^{-1} \left(\sqrt{\frac{1-x}{2}} \right).
$$

Since

$$
F(\cos \theta) = \frac{\theta - \sin \theta}{\pi}
$$

the expression for the probability simplifies to

$$
P(\alpha \leq \Theta \leq \beta) = \frac{\beta - \sin \beta}{\pi} - \frac{\alpha - \sin \alpha}{\pi}.
$$