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On page 23 of his famous monograph [2], D. V. Anosov writes

Every five years or so, if not more often, someone ‘discovers’ the
theorem of Hadamard and Perron proving it either by Hadamard’s
method or Perron’s. I myself have been guilty of this.

1 Notation

If (X,dx) and (Y,dy) are metric spaces and T': X — Y is a map then the
Lipschitz constant of T is the quantity

dy (T'(z1),T(z2))
dx(xy,x2)

lip(T):sup{ 21'1,1‘26X3717é$2}.

If X and Y are Banach spaces and ¢ : X — Y satisfies ¢(0) = 0 then the
Lipschitz constant at 0 is the quantity

lall. = sup { la@)lly .« x\ o}

]l x

2 Lipschitz Inverse Function Theorem
Theorem 2.1. Suppose that X is a Banach space and
fX—-X

has form
flx) =z +r(z)
where
lip(r) < 1.

Then f is a lipeomorphism and

lip(f~') < (1 —lip(r))~"



Proof. Choose u € X and define £, : X — X by
&u(z) =u—r(x).
Thus f(z) = u if and only if &, (z) = z. Aslip(&,) = lip(r) < 1 there is a unique

fixed point x (for each choice of u) by the Contraction Mapping Principle; thus
f is bijective. To estimate the Lipschitz constant of f~! we compute

17 w) = )]

=y

= [u(=) = &)l

[(u =r()) = (v =r)|

lu — ol +1lip(r)[|lz — y||

= Ju—vl +1lip(r) [/~ (w) = f7 (v)]

where = f~!(u) and y = f~1(v). This proves

1F = (u) = f7H @) < (1 =Tip(r) ™ u — ]|

as required. O
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3 The Resolvent Inequality
Lemma 3.1. Now suppose f; : X — X fori=1,2 both have form
filz) = 2+ ri(a)
where lip(r;) < 1 and now assume also that
r;(0) = 0.

Then
I = 3 < ereallrn — 7ol

where
ci=(1- lip(ri))fl.

Proof. For u € X we have

F7H ) = u—ri(f7 (u))

so that

17 w) = @)l <7 +0 O
where

7= () = m(fy (W)
and

o =(r1 —ro)(fy ()]



for 7 we have
7 <lip(ry)ll i (w) = £ (u)]
so that (!) becomes

(1= lip(r)) I fi () = £ (W] < 0.

For o we have
o < |lry = rall« [1f5 " (@)])-

But lip(f; ') < ¢z by the Lipschitz Inverse Function Theorem 2.1 so
172 @)l < eallul]
as f5 1(0) = 0. Combining these inequalities gives the estimate
£ (w) = £ @)l < erealiry — ralls flul
as required. O

For linear transformations the Lipschitz constant and the Lipschitz constant
from 0 are both equal to the operator norm and the inequality just proved takes

the form
1Tt =T M < T HITS Ty — Tl

This in turn follows immediately from the identity
T =Tyt =TT — )Ty
When T; and T5 commute this is
=T = (L -T)T T,
and a special case of this is the Resolvent Identity
Ry — R, = (p—A)RAR,

where Ty =A—T, Ty =pu—T, Ry =T, ", and R, =T, '
1 1% 2

4 Graph Transform Lemma

The arguments in this section come from [4]. Let X, Y, U, V be Banach spaces
(ultimately we take X = U and Y = V') and

F:XxY—->UxV

have the form
F(xvy) = (A(x) + R(x,y),H(x,y))

where A: X - U, R: X xY U, H:XxY —>V.



Lemma 4.1. Assume that the map A : X — U 1is bijective and
lip(A~lip(R) < 1
Then for each a: X — Y satisfying
lip(e) <1

there exists a (necessarily unique because the graph of a function determines the
function uniquely) 8 : U — V satisfying

graph(f3) = F(graph(a))
The map [ is called the graph transform of o by F.

Proof. We can rewrite this as follows. Define
¢o: X —-U

depending on « by
¢p=A+Ro(1l,a).

Then we must solve
Bop=Ho(l,q).
This suggests inverting ¢. Now ¢ has the form

¢6=(1+Ro(l,a)o A 1) o A.
where A is bijective. The term Ro(1,a)oA~! has a Lipschitz constant satisfying
lip(Ro (1,a) 0 A1) <lip(R)lip(A™1) < 1

since lip((1,a)) = 1. (The norm on U x V is ||(u,v)|| = max(|lu|,[|v]]).) Ac-
cording to the Lipschitz Inverse Function Theorem 2.1, the map ¢ is a bijection
so (3 is given by

B=Ho(l,a)o¢p L. O

5 Hadamard

The arguments in this section come from [4]. Let X and Y be Banach spaces

and
F:XxY—-XxY

have the form
F(z,y) = (A(z) + R(z,y), H(z,y))

where
A: X - X, R: X XY — X, H: XxY =Y.



Theorem 5.1. Assume that the map A : X — X 1is bijective, that

lip(A= ") lip(H) < 1 (1)
and that
A(0) =0, R(0,0)=0, H(0,0)=0. (2)
Assume also
lip(R) < ¢ (3)

where € > 0 is a small constant depending only on lip(H) and lip(A~1) defined
explicitly in the proof. Then there exists a unique o : X — 'Y satisfying

F(graph(a)) = graph(a)

and
a(0) =0, lip(a) <1.

Proof. According to the Graph Transform Lemma 4.1 each o : X — Y with
lip(a) < 1 determines a unique §: X — Y satisfying F'(graph(a)) = graph(5).
This graph transform is defined by

B:=Ho(l,a)o¢ !, ¢p:=A+ Ro(l,a). (4)

To satisfy the hypothesis of Lemma 4.1 we require only € < lip(4A~1)~!. Denote
by G the space of all a : X — Y such that a(0) = 0 and lip(«) < 1. We first
show that the graph transform maps G to itself. By hypothesis (2) we have
F(0,0) = (0,0) so 3(0) = 0 follows from «(0) = 0. Equation (4) gives the
estimate

lip(8) < lip(H)lip(¢™").

But ¢ = (1+ Ro(1l,a)o A~!) o A and hence by the Lipschitz Inverse Function
Theorem 2.1 we have the estimate

lip(¢p™!) < lip(A™)C
where
C = (1-lip(R)lip(A~1))~". (5)
Thus
lip(8) < lip(H)lip(A~")C.

Now C'is near 1 by (3) so that lip(3) < 1 follows from the hypothesis (1).

Next we show that the map which assigns to o € G its graph transform
B € G is a strict contraction in the norm || - ||., i.e. there is a constant A < 1
such that

81 = Ballx < Allar — | (6)

whenever «;(0) = 0 and lip(ey) <1 (for i = 1,2) and f; is the graph transform
of a;;. Abbreviate

¢i=A+Ro(1,ay), r;=Ro(l,a;)0 A7, fi=1+m,



so ¢; = f; o A and hence ¢;1 =A"1lo f;l. For u € X we have

[61(u) = Ba(u)]| <o +7
where
=|Ho(1,a1) 07 (u) = Ho(l,a1) 0 dy " (u)
and
7i=|[H o (1,a1) 065" (u) = H o (1,02) 0 ¢ (u)].
Recall that lip((1,a)) = 1 and C = (1 — lip(R)lip(A~1))~L. We estimate o:

Hu) — oy (w)]
lip(H)lip ATHIT () = _1( )l

g

lip(A™)CHip(R) ||y — azl« | A~ (w)]]

1
(A7)
ip(A™)
lip(A™H)C?lip(R) a1 (A7 (u) — a2(A7 (u)]|
(A7)
lip(A™1)2C2lip(R)[|lox — aua|s [[ull

(VAN VAN VAN VAN VANRE VAN
AA:FZAAA

We estimate 7:

lip(H)|| (a1 — a2)(83 " (w))]|
lip(H)lov — aalls |65 ()]
lip(H)|Jar — |« lip(A™H)Clul|

INIAIA

Combining the estimates for o and 7 gives

181(w) = Ba(u)]] < Ao — | [|uf

where A < 1 for lip(R) small enough. This proves (6).

The space G is a complete metric space in the metric d(aq, as) = || — as||«.
This is because convergence in the norm || - ||, implies pointwise convergence
and uniform Lipschitz estimates are preserved under pointwise limits. Hence

the theorem follows from the Contraction Mapping Principle.

6 Perron

The arguments in this section come from [8]. Let X and Y be Banach spaces

and
F: XxY—-XxY

have the form
F(x,y) = (K(z,y), By + S(z,y))

where
K: X xY - X, B:Y =Y, S: XxY Y.



Theorem 6.1. Assume that the map B :Y — Y is linear and invertible, that

187 (hp<K> N np<s>) <1 ™)

and that
K(0,0) =0, S(0,0)=0.

Choose § € (0,1) so small that
A= ||B7Y <(1 + 0)lip(K) + lip(S)) <1 (8)
and assume that lip(S) is so small that
1B (§1ip(K) +lip(S)) < 4. (9)
Then there exists a unique o : X — Y satisfying

F(graph(a)) = graph(a)

and
a(0) =0, lip(a) < 4.

Proof. The condition F(graph(a)) = graph(a) may be written in the form
Ba+So(l,a)=aocKo(l,a)

which is in turn equivalent to
a=T(a)

where I'(a) : X — Y is defined by
I'(a)=B""! (aOKO(l,a)—SO(La)). (10)

Lemma 6.2. Suppose a : X — Y satisfies a(0) = 0 and lip(or) < § Then
B =T(«a) satisfies these same conditions: 3(0) = 0 and lip(5) < 4.

Proof. Since K(0,0) = 0, S(0,0) = 0, B~! is linear, and a(0) = 0 it follows
that 8(0) = 0 from the definition of 8. For the Lipschitz estimate we compute

lip(8) < |B7Y (lip(a) oKo(l,a)—So(l, a))

< 157 (tifao K o (1)) +Tip(S o (1,0))

< 1 (@i Otp((1.0) + li(S)lp((1,)
= 1571 (tieti() + in(s) )

< 157 (S00) + () )

< 4.



Here we have use the fact that lip(1,a) = 1 (from lip(a) < & < 1). This
completes the proof of lemma 6.2. O

Lemma 6.3. The map T is a contraction in the || - ||« norm. More precisely, if
a;: X =Y fori=1,2 satisfies a;(0) = 0 and lip(a;) < 6 and if 5; = T'(«;),
then

181 = Ball« < Mlaa — azl+

Proof. Choose z € X. Then
[81(z) = Bo(z)|| < | B~ H|(o + 7+ p)
where

= llea(K (2, 01(2))) — ar (K (,
[t (K (2, a2 (2))) — o (K (2, a2 (2))) |
= [IS(z, cn(@)) = S(x, az(2))||

For o we have

o < lip(en)lip(K)llen () — az(z)||
< 8lip(K)||an (z) — ag(z)]|
For 7 we have
< lon — agll lip(K) max(e]l s (2)])

[len — ag|l lip(K)||
since a2(0) = 0,K(0,0) =0, and lip(ag) < § < 1. For p we have

p < lip(S) o (z) — (@)

Now divide by ||z|| and take the supremum over z. This completes the proof of
lemma 6.3. O

Now the space Gs of all & : X — Y with «(0) = 0 and lip(a) < 6 form a
complete metric space in the metric d(aq, as) = ||a; — agl|«. This is because
convergence in the norm |||« implies pointwise convergence and uniform Lipscitz
estimates are preserved under pointwise limits. According to lemmas 6.2 and 6.3
the map I is a strict contraction on this space. This completes the proof of
Theorem 6.1. O

7 Smoothness

Lemma 7.1 (Fiber Contraction Principle). Let G be a topological space, H be
a complete metric space, and ® : G x H — G X H a map of form

®(g,h) = (T(9), Ag(h))-

Assume



(i) T: G — G has an attractive fized point.
(ii) For each h € H the map G — H : g — Ay(h) is continuous.

(iii) There exists p € [0,1) such that d(Ag(h1),Ag(h2)) < pd(hi, he) for all
g€ G andhy,hy € H.

Then ® : H — H has an attractive fized point.

Proof. Let g be the fixed point of I" and h be the fixed point of the contraction
map Aj. Choose (g,h) € H x H and let (gn, hy,) = @™ (g, h), and o, = d(hp, h).
Then g, — g as n — oo by (i); we must show o,, — 0 as n — oo. Now by (iii)

d(hns1,h) = d(Dg, (hn), h)

i.e. opy1 < poy, + 0, where 8, = d(A,, (h),h). Hence by induction

n—1

oy < pno_o + anflfkék.
k=0

For 0 < m < n we have

m n—1 Cpn—l—m T
on < anU +Czpn—1—k Y Z pn—l—k < anO + ﬁ
k=0 k=m+1

where C' = maxo<p<m 0k < maxy 0y and ¢ = maXy<k<n O < MaXy,<f 0. But
Ag(h) = hso 6, =d(A,, (h),Az(h)) so 8, — 0asn — oo by (i) and (ii). Hence
oy, is small if n > 2m and m is large. O

Theorem 7.2. Assume that F: X xY — X x Y is a C* diffeomorphism on
a product of Banach spaces of form

F(x,y) = (Ax + R(x,y), By + S(x, y))

where

R(0,0) =0, S5(0,0)=0,dR(0,0)=0, dS(0,0)=0
and A € L(X,X) and B € L(Y,Y) are invertible linear maps satisfying the
spectral gap condition

A" 1B < 1, 1=1,2,...,k. (11)

Then for each k = 1,2, ... there exists 6, > 0 such that if |R||x + [|S]|kx < Ok,
then the (hypotheses of Theorem 5.1 hold and) the map o : X — Y defined in
Theorem 5.1 is C*.



Proof. First we show that with H(x,y) = By + S(z,y) the hypotheses of The-
orem 5.1 hold for ||R||; + ||S||1 < 1 and & = §; sufficiently small. This follows
casily from lip(R) < [[R]l, lip(S) < ||, lip(A~1) = [|A~1], lip(B) = | B].
and the fact that (11) (with ¢ = 1) implies that (1) and (3) hold for R = 0 and
S =0.

Let G be the metric space of all maps o : X — Y with a(0) = 0 and
lip(a) < 1 with metric d(aq,as) = |[Ja; — asl|« as in the proof of Theorem 5.1.
Define I' : G — G by

[(@) = Baod ™' + 50 (La)og¢™",  ¢:=A+Ro(la),

i.e. T'(a) is the graph transform of « as in (4) in the proof of Theorem 5.1.
Assume that « is smooth. Then so is 8 = I'(«). Differentiating §(z) with
respect to x gives

dp(z) = (Bda(x’) + dS(m’,y')(l,da(x’))) de(x)™*

where 2/ = ¢~ 1(x) and ¥ = (¢ (x)). From do~1(x) = dp(¢p~1(x)) " we get

do~(z) = (A +dR(x,y') (1, da(x')) -

In both formulas the derivative of « is evaluated at z’ so combining gives a
formula of form

dp(z) = J1i (2, a(z’), da(z)).

Successive differentiation gives a formula of form
7 B(x) = Tu(a’, aa’), jFa(a"))
where j* indicates the k-jet, i.e.
Fa(x) = (do(z), d*a(x), -, d*a(x)).

The Banach space of bounded linear maps from X to Y is denoted by
L(X,Y), the space L*¥(X,Y) bounded k-multilinear maps from X* to Y is
defined inductively by the equations

LY(X,Y) =Y, LFYX)Y) = L(X,LF(X,Y))

and the subspace of symmetric maps is denoted by Lfym(X, Y) c LF(X,Y).
Define
P*X,Y)=L(X,Y)x L% (X,Y) x---x L¥ _(X,Y)

Sym Sym

so that the k-jet of a C* map a: X — Y is a map j¥a: X — P¥(X,Y). Let H
be the Banach space of all bounded continuous maps h : X — P*(X,Y) with
the sup norm. For o € G define A, : H — H by

Aa(h)(z) = Tk(2', a(a'), h(z")).

10



If R and S vanish identically, we have that I'(a)(x) = Ba(A~'x) and hence
Ay (h)(z) = BA.(h(A~ 1)) where A, : P*(X,Y) — P*(X,Y) is defined by

Au(pripa, - pR) (@) = (p1(A718),pa(AT12)%, . pe(AT12)F).

The spectral gap condition (11) guarantees that A, is a contraction uniformly
in o when R and S vanish identically and hence if || R||; znd ||S]; are sufficiently
small. By the Fiber Contraction Principle the map ®(a, h) = (I'(«), An(h)) has
an attractive fixed point. But if (a,, hy) = ®"(a, h), a is C*. and h = j*a,
then h, = j*a,, so the first k derivatives of «,, converge uniformly and the
limit is also C*. U

Remark 7.3. A similar proof is given in [8] using the map I' from the proof of
Theorem 6.1 in place of the graph transform.

Example 7.4. We show that Theorem 7.2 fails for £ = co. Choose a smooth
function S : R — R with S(0) = dS(0) = 0. Take X =R%2 Y =R, p = 1/2,
and let F': X XY — X x Y be a diffeomorphism such that

F(f,(l?,y) = (E,Esc,,uy + S(I))

in a neighborhood U of (¢,z,y) = (1,0,0). (It follows that this point is a
fixed point of F.) We show that F' has no invariant manifold graph(«) where
a: X —Y is smooth and «(1,0) = 0. The condition F'(graph(«a)) = graph(«)
implies that

pa(l,x) + h(z) = a(l, lx)

for (¢,x,a(l,z)) € U. If & € C* this implies

oo’ " L0
Taking (£,x) = (p'/™,0) and n is so large that (£,z,a(f,z)) € U shows that
d™S(0) = 0. Thus if dS™(0) # 0 for infinitely many n no such smooth « exists.
By multiplying the nonlinear terms by a smooth cuttoff function and rescaling
we can construct, for any positive integer k, a smooth diffeomorphism

F(f,l‘,y) = (é,:c,,uy) + Q(€7z7y)

where @) vanishes to first order at the fixed point, the C* norm of Q is as small
as desired, and the invariant manifold y = a(¢, z) of Theorem 7.2 is not smooth.
(This example comes from Lanford’s lecture notes [7] where it was adapted it
from [9].)

Now we sketch the proof of smoothness from [5]. It is a discrete version of the
proofs of [3] and [6], but unlike those, it explicitly uses the infinite dimensional
implicit function theorem.

Let F be a C" map (r > 1) from a Banach space to itself with a hyperbolic
fixed point at the origin. Thus after a suitable linear change of co-ordinates and
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choice of norms, the Banach space is a product X x Y of closed subspaces and
F: X XY — X xY has the form

F(J),y) = (AI + R(xvy)vBy + S(a:7y))

where A is a linear contraction on X, B~! is a linear contraction on Y, and
R, S, DR, DS vanish at the origin. Give X x Y the product norm and let
Bx xy = Bx x By be a small ball about the origin. The stable manifold theorem
asserts the existence of a (necessarily unique) C” map a: Bx — By such that
the graph of « is precisely the set of all 2 € Bx«y such that F™(z) € Bxxy for
all n > 0. It follows that F™(z) — 0 as n — oo for z € graph(«).

Choose z = (z,a(x)) € graph(a) and define (2, yn) = 2z, = F™(2) so that

Tn4+1 = Az, + R(Zn)7 Yn+1 = By, + S(zn) (T)

It follows easily that

n—1 e}
Ty =AM+ Y A"VR(z), ya=— > B"VS(%). (1)
v=0 v=n

The former is by induction and the first formula in (). The latter follows by
letting m go to infinity in the formula

n+m—1

Yn = Bimyn—o—m - Z BniliuS(zu)

v=n

which in turn follows by induction from the formula y,, = B~ 1y, 11 — B~15(zy),
a consequence of the second formula in (). The equations () may be written
in the form

I(z,v(z)) =0, (*)

where () denotes the sequence {z,} and, for x € Bx and any sequence o of
elements of By xy such that o, — 0 as n — oo, I'(z, o) is the sequence defined
by

n—1 s}
D(x,0)n = 0y — (A"x +Y ATTVR(e,), - ) B"‘l‘”Sw) :
v=0 v=n

For a suitable Banach space S of sequences, I': Bx xS — Sis C" and I'(0,0) = 0
and DoI'(0,0) = identity. Thus by the implicit function theorem (%) can be
solved and « is C". Tt it easily shown that « is given by v(z)o = (z, a(z)), so
that a is C" by the smoothness of the evaluation map.
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