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On page 23 of his famous monograph [2], D. V. Anosov writes

Every five years or so, if not more often, someone ‘discovers’ the
theorem of Hadamard and Perron proving it either by Hadamard’s
method or Perron’s. I myself have been guilty of this.

1 Notation

If (X, dX) and (Y, dY ) are metric spaces and T : X → Y is a map then the
Lipschitz constant of T is the quantity

lip(T ) = sup
{

dY (T (x1), T (x2))
dX(x1, x2)

: x1, x2 ∈ X x1 6= x2

}
.

If X and Y are Banach spaces and q : X → Y satisfies q(0) = 0 then the
Lipschitz constant at 0 is the quantity

‖q‖∗ = sup
{
‖q(x)‖Y

‖x‖X
: x ∈ X \ 0

}

2 Lipschitz Inverse Function Theorem

Theorem 2.1. Suppose that X is a Banach space and

f : X → X

has form
f(x) = x + r(x)

where
lip(r) < 1.

Then f is a lipeomorphism and

lip(f−1) ≤ (1− lip(r))−1.
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Proof. Choose u ∈ X and define ξu : X → X by

ξu(x) = u− r(x).

Thus f(x) = u if and only if ξu(x) = x. As lip(ξu) = lip(r) < 1 there is a unique
fixed point x (for each choice of u) by the Contraction Mapping Principle; thus
f is bijective. To estimate the Lipschitz constant of f−1 we compute

‖f−1(u)− f−1(v)‖ = ‖x− y‖
= ‖ξu(x)− ξv(y)‖
= ‖(u− r(x))− (v − r(y))‖
≤ ‖u− v‖+ lip(r)‖x− y‖
= ‖u− v‖+ lip(r)‖f−1(u)− f−1(v)‖

where x = f−1(u) and y = f−1(v). This proves

‖f−1(u)− f−1(v)‖ ≤ (1− lip(r))−1‖u− v‖

as required.

3 The Resolvent Inequality

Lemma 3.1. Now suppose fi : X → X for i = 1, 2 both have form

fi(x) = x + ri(x)

where lip(ri) < 1 and now assume also that

ri(0) = 0.

Then
‖f−1

1 − f−1
2 ‖∗ ≤ c1c2‖r1 − r2‖∗

where
ci = (1− lip(ri))−1.

Proof. For u ∈ X we have

f−1
i (u) = u− ri(f−1

i (u))

so that
‖f−1

1 (u)− f−1
2 (u)‖ ≤ τ + σ (!)

where
τ = ‖r1(f−1

1 (u)− r1(f−1
2 (u)‖

and
σ = ‖(r1 − r2)(f−1

2 (u))‖.
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for τ we have
τ ≤ lip(r1)‖f−1

1 (u)− f−1
2 (u)‖

so that (!) becomes

(1− lip(r1))‖f−1
1 (u)− f−1

2 (u)‖ ≤ σ.

For σ we have
σ ≤ ‖r1 − r2‖∗ ‖f−1

2 (u)‖.

But lip(f−1
2 ) ≤ c2 by the Lipschitz Inverse Function Theorem 2.1 so

‖f−1
2 (u)‖ ≤ c2‖u‖

as f−1
2 (0) = 0. Combining these inequalities gives the estimate

‖f−1
1 (u)− f−1

2 (u)‖ ≤ c1c2‖r1 − r2‖∗ ‖u‖

as required.

For linear transformations the Lipschitz constant and the Lipschitz constant
from 0 are both equal to the operator norm and the inequality just proved takes
the form

‖T−1
1 − T−1

2 ‖ ≤ ‖T−1
1 ‖ ‖T−1

2 ‖ ‖T1 − T2‖.

This in turn follows immediately from the identity

T−1
1 − T−1

2 = T−1
1 (T2 − T1)T−1

2 .

When T1 and T2 commute this is

T−1
1 − T−1

2 = (T2 − T1)T−1
1 T−1

2

and a special case of this is the Resolvent Identity

Rλ −Rµ = (µ− λ)RλRµ

(where T1 = λ− T , T2 = µ− T , Rλ = T−1
1 , and Rµ = T−1

2 .)

4 Graph Transform Lemma

The arguments in this section come from [4]. Let X, Y , U , V be Banach spaces
(ultimately we take X = U and Y = V ) and

F : X × Y → U × V

have the form
F (x, y) = (A(x) + R(x, y),H(x, y))

where A : X → U , R : X × Y → U , H : X × Y → V .

3



Lemma 4.1. Assume that the map A : X → U is bijective and

lip(A−1)lip(R) < 1

Then for each α : X → Y satisfying

lip(α) ≤ 1

there exists a (necessarily unique because the graph of a function determines the
function uniquely) β : U → V satisfying

graph(β) = F (graph(α))

The map β is called the graph transform of α by F .

Proof. We can rewrite this as follows. Define

φ : X → U

depending on α by
φ = A + R ◦ (1, α).

Then we must solve
β ◦ φ = H ◦ (1, α).

This suggests inverting φ. Now φ has the form

φ = (1 + R ◦ (1, α) ◦A−1) ◦A.

where A is bijective. The term R◦(1, α)◦A−1 has a Lipschitz constant satisfying

lip(R ◦ (1, α) ◦A−1) ≤ lip(R)lip(A−1) < 1

since lip((1, α)) = 1. (The norm on U × V is ‖(u, v)‖ = max(‖u‖, ‖v‖).) Ac-
cording to the Lipschitz Inverse Function Theorem 2.1, the map φ is a bijection
so β is given by

β = H ◦ (1, α) ◦ φ−1.

5 Hadamard

The arguments in this section come from [4]. Let X and Y be Banach spaces
and

F : X × Y → X × Y

have the form
F (x, y) = (A(x) + R(x, y),H(x, y))

where
A : X → X, R : X × Y → X, H : X × Y → Y.
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Theorem 5.1. Assume that the map A : X → X is bijective, that

lip(A−1) lip(H) < 1 (1)

and that
A(0) = 0, R(0, 0) = 0, H(0, 0) = 0. (2)

Assume also
lip(R) < ε (3)

where ε > 0 is a small constant depending only on lip(H) and lip(A−1) defined
explicitly in the proof. Then there exists a unique α : X → Y satisfying

F (graph(α)) = graph(α)

and
α(0) = 0, lip(α) ≤ 1.

Proof. According to the Graph Transform Lemma 4.1 each α : X → Y with
lip(α) ≤ 1 determines a unique β : X → Y satisfying F (graph(α)) = graph(β).
This graph transform is defined by

β := H ◦ (1, α) ◦ φ−1, φ := A + R ◦ (1, α). (4)

To satisfy the hypothesis of Lemma 4.1 we require only ε < lip(A−1)−1. Denote
by G the space of all α : X → Y such that α(0) = 0 and lip(α) ≤ 1. We first
show that the graph transform maps G to itself. By hypothesis (2) we have
F (0, 0) = (0, 0) so β(0) = 0 follows from α(0) = 0. Equation (4) gives the
estimate

lip(β) ≤ lip(H)lip(φ−1).

But φ = (1 + R ◦ (1, α) ◦A−1) ◦A and hence by the Lipschitz Inverse Function
Theorem 2.1 we have the estimate

lip(φ−1) ≤ lip(A−1)C

where
C = (1− lip(R)lip(A−1))−1. (5)

Thus
lip(β) ≤ lip(H)lip(A−1)C.

Now C is near 1 by (3) so that lip(β) ≤ 1 follows from the hypothesis (1).
Next we show that the map which assigns to α ∈ G its graph transform

β ∈ G is a strict contraction in the norm ‖ · ‖∗, i.e. there is a constant λ < 1
such that

‖β1 − β2‖∗ ≤ λ‖α1 − α2‖∗ (6)

whenever αi(0) = 0 and lip(α1) ≤ 1 (for i = 1, 2) and βi is the graph transform
of αi. Abbreviate

φi := A + R ◦ (1, αi), ri = R ◦ (1, αi) ◦A−1, fi = 1 + ri,
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so φi = fi ◦A and hence φ−1
i = A−1 ◦ f−1

i . For u ∈ X we have

‖β1(u)− β2(u)‖ ≤ σ + τ

where
σ := ‖H ◦ (1, α1) ◦ φ−1

1 (u)−H ◦ (1, α1) ◦ φ−1
2 (u)‖

and
τ := ‖H ◦ (1, α1) ◦ φ−1

2 (u)−H ◦ (1, α2) ◦ φ−1
2 (u)‖.

Recall that lip((1, α)) = 1 and C = (1− lip(R)lip(A−1))−1. We estimate σ:

σ ≤ lip(H)‖φ−1
1 (u)− φ−1

2 (u)‖
≤ lip(H)lip(A−1)‖f−1

1 (u)− f−1
2 (u)‖

≤ lip(H)lip(A−1)C2‖r1(u)− r2(u)‖
≤ lip(H)lip(A−1)C2lip(R)‖α1(A−1(u))− α2(A−1(u))‖
≤ lip(H)lip(A−1)C2lip(R)‖α1 − α2‖∗ ‖A−1(u)‖
≤ lip(H)lip(A−1)2C2lip(R)‖α1 − α2‖∗ ‖u‖

We estimate τ :

τ ≤ lip(H)‖(α1 − α2)(φ−1
2 (u))‖

≤ lip(H)‖α1 − α2‖∗ ‖φ−1
2 (u))‖

≤ lip(H)‖α1 − α2‖∗ lip(A−1)C‖u‖

Combining the estimates for σ and τ gives

‖β1(u)− β2(u)‖ ≤ λ‖α1 − α2‖∗ ‖u‖

where λ < 1 for lip(R) small enough. This proves (6).
The space G is a complete metric space in the metric d(α1, α2) = ‖α1−α2‖∗.

This is because convergence in the norm ‖ · ‖∗ implies pointwise convergence
and uniform Lipschitz estimates are preserved under pointwise limits. Hence
the theorem follows from the Contraction Mapping Principle.

6 Perron

The arguments in this section come from [8]. Let X and Y be Banach spaces
and

F : X × Y → X × Y

have the form
F (x, y) = (K(x, y), By + S(x, y))

where
K : X × Y → X, B : Y → Y, S : X × Y → Y.
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Theorem 6.1. Assume that the map B : Y → Y is linear and invertible, that

‖B−1‖
(

lip(K) + lip(S)
)

< 1, (7)

and that
K(0, 0) = 0, S(0, 0) = 0.

Choose δ ∈ (0, 1) so small that

λ := ‖B−1‖
(

(1 + δ)lip(K) + lip(S)
)

< 1 (8)

and assume that lip(S) is so small that

‖B−1‖ (δ lip(K) + lip(S)) < δ. (9)

Then there exists a unique α : X → Y satisfying

F (graph(α)) = graph(α)

and
α(0) = 0, lip(α) ≤ δ.

Proof. The condition F (graph(α)) = graph(α) may be written in the form

Bα + S ◦ (1, α) = α ◦K ◦ (1, α)

which is in turn equivalent to
α = Γ(α)

where Γ(α) : X → Y is defined by

Γ(α) = B−1

(
α ◦K ◦ (1, α)− S ◦ (1, α)

)
. (10)

Lemma 6.2. Suppose α : X → Y satisfies α(0) = 0 and lip(α) ≤ δ Then
β = Γ(α) satisfies these same conditions: β(0) = 0 and lip(β) ≤ δ.

Proof. Since K(0, 0) = 0, S(0, 0) = 0, B−1 is linear, and α(0) = 0 it follows
that β(0) = 0 from the definition of β. For the Lipschitz estimate we compute

lip(β) ≤ ‖B−1‖
(

lip(α) ◦K ◦ (1, α)− S ◦ (1, α)
)

≤ ‖B−1‖
(

lip(α ◦K ◦ (1, α)) + lip(S ◦ (1, α))
)

≤ ‖B−1‖
(

lip(α)lip(K)lip((1, α)) + lip(S)lip((1, α))
)

= ‖B−1‖
(

lip(α)lip(K) + lip(S)
)

≤ ‖B−1‖
(

δ lip(K) + lip(S)
)

≤ δ.
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Here we have use the fact that lip(1, α) = 1 (from lip(α) ≤ δ ≤ 1). This
completes the proof of lemma 6.2.

Lemma 6.3. The map Γ is a contraction in the ‖ · ‖∗ norm. More precisely, if
αi : X → Y for i = 1, 2 satisfies αi(0) = 0 and lip(αi) ≤ δ and if βi = Γ(αi),
then

‖β1 − β2‖∗ ≤ λ‖α1 − α2‖∗.

Proof. Choose x ∈ X. Then

‖β1(x)− β2(x)‖ ≤ ‖B−1‖(σ + τ + ρ)

where

σ = ‖α1(K(x, α1(x)))− α1(K(x, α2(x)))‖
τ = ‖α1(K(x, α2(x)))− α2(K(x, α2(x)))‖
ρ = ‖S(x, α1(x))− S(x, α2(x))‖

For σ we have

σ ≤ lip(α1)lip(K)‖α1(x)− α2(x)‖
≤ δlip(K)‖α1(x)− α2(x)‖

For τ we have

τ ≤ ‖α1 − α2‖∗ lip(K) max(‖x‖, ‖α2(x)‖)
= ‖α1 − α2‖∗ lip(K)‖x‖

since α2(0) = 0,K(0, 0) = 0, and lip(α2) ≤ δ ≤ 1. For ρ we have

ρ ≤ lip(S)‖α1(x)− α2(x)‖

Now divide by ‖x‖ and take the supremum over x. This completes the proof of
lemma 6.3.

Now the space Gδ of all α : X → Y with α(0) = 0 and lip(α) ≤ δ form a
complete metric space in the metric d(α1, α2) = ‖α1 − α2‖∗. This is because
convergence in the norm ‖·‖∗ implies pointwise convergence and uniform Lipscitz
estimates are preserved under pointwise limits. According to lemmas 6.2 and 6.3
the map Γ is a strict contraction on this space. This completes the proof of
Theorem 6.1.

7 Smoothness

Lemma 7.1 (Fiber Contraction Principle). Let G be a topological space, H be
a complete metric space, and Φ : G ×H → G ×H a map of form

Φ(g, h) = (Γ(g),∆g(h)).

Assume
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(i) Γ : G → G has an attractive fixed point.

(ii) For each h ∈ H the map G → H : g 7→ ∆g(h) is continuous.

(iii) There exists ρ ∈ [0, 1) such that d(∆g(h1),∆g(h2)) ≤ ρd(h1, h2) for all
g ∈ G and h1, h1 ∈ H.

Then Φ : H → H has an attractive fixed point.

Proof. Let ḡ be the fixed point of Γ and h̄ be the fixed point of the contraction
map ∆ḡ. Choose (g, h) ∈ H×H and let (gn, hn) = Φn(g, h), and σn = d(hn, h̄).
Then gn → ḡ as n →∞ by (i); we must show σn → 0 as n →∞. Now by (iii)

d(hn+1, h̄) = d(∆gn
(hn), h̄)

≤ d(∆gn
(hn),∆gn

(h̄)) + d(∆gn
(h̄), h̄)

≤ ρd(hn, h̄) + d(∆gn
(h̄), h̄)

i.e. σn+1 ≤ ρσn + δn where δn = d(∆gn
(h̄), h̄). Hence by induction

σn ≤ ρnσ0 +
n−1∑
k=0

ρn−1−kδk.

For 0 < m < n we have

σn ≤ ρnσ0 + C
m∑

k=0

ρn−1−k + c
n−1∑

k=m+1

ρn−1−k ≤ ρnσ0 +
Cρn−1−m + c

1− ρ

where C = max0≤k≤m δk ≤ maxk δk and c = maxm<k≤n δk ≤ maxm<k δk. But
∆ḡ(h̄) = h̄ so δn = d(∆gn

(h̄),∆ḡ(h̄)) so δn → 0 as n →∞ by (i) and (ii). Hence
σn is small if n > 2m and m is large.

Theorem 7.2. Assume that F : X × Y → X × Y is a Ck diffeomorphism on
a product of Banach spaces of form

F (x, y) =
(
Ax + R(x, y), By + S(x, y)

)
where

R(0, 0) = 0, S(0, 0) = 0, dR(0, 0) = 0, dS(0, 0) = 0

and A ∈ L(X, X) and B ∈ L(Y, Y ) are invertible linear maps satisfying the
spectral gap condition

‖A−1‖i ‖B‖ < 1, i = 1, 2, . . . , k. (11)

Then for each k = 1, 2, . . . there exists δk > 0 such that if ‖R‖k + ‖S‖k < δk,
then the (hypotheses of Theorem 5.1 hold and) the map α : X → Y defined in
Theorem 5.1 is Ck.
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Proof. First we show that with H(x, y) = By + S(x, y) the hypotheses of The-
orem 5.1 hold for ‖R‖1 + ‖S‖1 < δ1 and δ = δ1 sufficiently small. This follows
easily from lip(R) ≤ ‖R‖1, lip(S) ≤ ‖S‖1, lip(A−1) = ‖A−1‖, lip(B) = ‖B‖.
and the fact that (11) (with i = 1) implies that (1) and (3) hold for R = 0 and
S = 0.

Let G be the metric space of all maps α : X → Y with α(0) = 0 and
lip(α) ≤ 1 with metric d(α1, α2) = ‖α1 − α2‖∗ as in the proof of Theorem 5.1.
Define Γ : G → G by

Γ(α) := Bα ◦ φ−1 + S ◦ (1, α) ◦ φ−1, φ := A + R ◦ (1, α),

i.e. Γ(α) is the graph transform of α as in (4) in the proof of Theorem 5.1.
Assume that α is smooth. Then so is β = Γ(α). Differentiating β(x) with
respect to x gives

dβ(x) =
(

Bdα(x′) + dS(x′, y′)(1, dα(x′))
)

dφ(x)−1

where x′ = φ−1(x) and y′ = α(φ−1(x)). From dφ−1(x) = dφ(φ−1(x))−1 we get

dφ−1(x) =
(

A + dR(x′, y′)(1, dα(x′)
)−1

In both formulas the derivative of α is evaluated at x′ so combining gives a
formula of form

dβ(x) = J1(x′, α(x′), dα(x′)).

Successive differentiation gives a formula of form

jkβ(x) = Jk(x′, α(x′), jkα(x′))

where jk indicates the k-jet, i.e.

jkα(x) = (dα(x), d2α(x), · · · , dkα(x)).

The Banach space of bounded linear maps from X to Y is denoted by
L(X, Y ), the space Lk(X, Y ) bounded k-multilinear maps from Xk to Y is
defined inductively by the equations

L0(X, Y ) = Y, Lk+1(X, Y ) = L(X, Lk(X, Y ))

and the subspace of symmetric maps is denoted by Lk
sym(X, Y ) ⊂ Lk(X, Y ).

Define
P k(X, Y ) = L(X, Y )× L2

sym(X, Y )× · · · × Lk
sym(X, Y )

so that the k-jet of a Ck map α : X → Y is a map jkα : X → P k(X, Y ). Let H
be the Banach space of all bounded continuous maps h : X → P k(X, Y ) with
the sup norm. For α ∈ G define ∆α : H → H by

∆α(h)(x) = Jk(x′, α(x′), h(x′)).
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If R and S vanish identically, we have that Γ(α)(x) = Bα(A−1x) and hence
∆α(h)(x) = BA∗(h(A−1x)) where A∗ : P k(X, Y ) → P k(X, Y ) is defined by

A∗(p1, p2, . . . , pk)(x̂) =
(
p1(A−1x̂), p2(A−1x̂)2, . . . , pk(A−1x̂)k

)
.

The spectral gap condition (11) guarantees that ∆α is a contraction uniformly
in α when R and S vanish identically and hence if ‖R‖k znd ‖S‖k are sufficiently
small. By the Fiber Contraction Principle the map Φ(α, h) = (Γ(α),∆α(h)) has
an attractive fixed point. But if (αn, hn) = Φn(α, h), α is Ck. and h = jkα,
then hn = jkαn, so the first k derivatives of αn converge uniformly and the
limit is also Ck.

Remark 7.3. A similar proof is given in [8] using the map Γ from the proof of
Theorem 6.1 in place of the graph transform.

Example 7.4. We show that Theorem 7.2 fails for k = ∞. Choose a smooth
function S : R → R with S(0) = dS(0) = 0. Take X = R2, Y = R, µ = 1/2,
and let F : X × Y → X × Y be a diffeomorphism such that

F (`, x, y) = (`, `x, µy + S(x))

in a neighborhood U of (`, x, y) = (1, 0, 0). (It follows that this point is a
fixed point of F .) We show that F has no invariant manifold graph(α) where
α : X → Y is smooth and α(1, 0) = 0. The condition F (graph(α)) = graph(α)
implies that

µα(`, x) + h(x) = α(`, `x)

for (`, x, α(`, x)) ∈ U . If α ∈ C∞ this implies

µ
∂nα

∂xn
(`, x) + dnS(x) = `n ∂nα

∂xn
(`, `x)

Taking (`, x) = (µ1/n, 0) and n is so large that (`, x, α(`, x)) ∈ U shows that
dnS(0) = 0. Thus if dSn(0) 6= 0 for infinitely many n no such smooth α exists.
By multiplying the nonlinear terms by a smooth cuttoff function and rescaling
we can construct, for any positive integer k, a smooth diffeomorphism

F (`, x, y) = (`, x, µy) + Q(`, x, y)

where Q vanishes to first order at the fixed point, the Ck norm of Q is as small
as desired, and the invariant manifold y = α(`, x) of Theorem 7.2 is not smooth.
(This example comes from Lanford’s lecture notes [7] where it was adapted it
from [9].)

Now we sketch the proof of smoothness from [5]. It is a discrete version of the
proofs of [3] and [6], but unlike those, it explicitly uses the infinite dimensional
implicit function theorem.

Let F be a Cr map (r ≥ 1) from a Banach space to itself with a hyperbolic
fixed point at the origin. Thus after a suitable linear change of co-ordinates and
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choice of norms, the Banach space is a product X × Y of closed subspaces and
F : X × Y → X × Y has the form

F (x, y) = (Ax + R(x, y), By + S(x, y))

where A is a linear contraction on X, B−1 is a linear contraction on Y , and
R, S, DR, DS vanish at the origin. Give X × Y the product norm and let
BX×Y = BX×BY be a small ball about the origin. The stable manifold theorem
asserts the existence of a (necessarily unique) Cr map α : BX → BY such that
the graph of α is precisely the set of all z ∈ BX×Y such that Fn(z) ∈ BX×Y for
all n ≥ 0. It follows that Fn(z) → 0 as n →∞ for z ∈ graph(α).

Choose z = (x, α(x)) ∈ graph(α) and define (xn, yn) = zn = Fn(z) so that

xn+1 = Axn + R(zn), yn+1 = Byn + S(zn). (†)

It follows easily that

xn = Anx +
n−1∑
ν=0

An−1−νR(zν), yn = −
∞∑

ν=n

Bn−1−νS(zν). (‡)

The former is by induction and the first formula in (†). The latter follows by
letting m go to infinity in the formula

yn = B−myn+m −
n+m−1∑

ν=n

Bn−1−νS(zν)

which in turn follows by induction from the formula yn = B−1yn+1−B−1S(zn),
a consequence of the second formula in (†). The equations (‡) may be written
in the form

Γ(x, γ(x)) = 0, (∗)

where γ(x) denotes the sequence {zn} and, for x ∈ BX and any sequence σ of
elements of BX×Y such that σn → 0 as n →∞, Γ(x, σ) is the sequence defined
by

Γ(x, σ)n = σn −

(
Anx +

n−1∑
ν=0

An−1−νR(σν),−
∞∑

ν=n

Bn−1−νS(σν)

)
.

For a suitable Banach space S of sequences, Γ: BX×S → S is Cr and Γ(0, 0) = 0
and D2Γ(0, 0) = identity. Thus by the implicit function theorem (∗) can be
solved and γ is Cr. It it easily shown that α is given by γ(x)0 = (x, α(x)), so
that α is Cr by the smoothness of the evaluation map.
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