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Our purpose is to derive the usual Gronwall Inequality from the following

Abstract Gronwall Inequality

Let M be a topological space which also has a partial order which
is sequentially closed in M ×M . Suppose that a map Γ : M → M
preserves the order relation and has an attractive fixed point v. Then

u ≤ Γ(u) =⇒ u ≤ v.

Proof. Assume u ≤ Γ(u). Since Γ preserves the order relation we get u ≤ Γn(u)
by induction. Since v is an attractive fixed point we have v = limn→∞ Γn(u).
Since the order relation is sequentially closed, we conclude u ≤ v as required.

Assume that the continuous functions u, κ : [0, T ] → [0,∞) and K > 0
satisfy

u(t) ≤ K +
∫ t

0

κ(s)u(s) ds

for all t ∈ [0, T ]. Then the usual Gronwall inequality is

u(t) ≤ K exp
(∫ t

0

κ(s) ds

)
. (1)

The usual proof is as follows. The hypothesis is

u(s)

K +
∫ s

0

κ(r)u(r) dr

≤ 1.

Multiply this by κ(s) to get

d

ds
ln

(
K +

∫ s

0

κ(r)u(r) dr

)
≤ κ(s)

Integrate from s = 0 to s = t, and exponentiate to obtain

K +
∫ t

0

κ(r)u(r) dr ≤ K exp
(∫ t

0

κ(s) ds

)
.
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By hypothesis, the left side is ≥ u(t).

We now show how to derive the usual Gronwall inequality from the abstract
Gronwall inequality. For v : [0, T ] → [0,∞) define Γ(v) by

Γ(v)(t) = K +
∫ t

0

κ(s)v(s) ds. (2)

In this notation, the hypothesis of Gronwall’s inequality is u ≤ Γ(u) where
v ≤ w means v(t) ≤ w(t) for all t ∈ [0, T ]. Since κ(t) ≥ 0 we have

v ≤ w =⇒ Γ(v) ≤ Γ(w).

Hence iterating the hypothesis of Gronwall’s inequality gives

u ≤ Γn(u).

Now change the dummy variable in (2) from s to s1 and apply the inequality
u(s1) ≤ Γ(u)(s1) to obtain

Γ2(u)(t) = K +
∫ t

0

κ(s1)K ds1 +
∫ t

0

∫ s1

0

κ(s1)κ(s2)u(s2) ds2 ds1

More generally, by induction we have

Γn(u) = K
n−1∑
j=0

Gj(t) + En(t)

where

Gj(t) =
∫ t

0

∫ s1

0

· · ·
∫ sj−1

0

κ(s1) · · ·κ(sj) dsj · · · ds1

(with G0(t) = 1) and

En(t) =
∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

κ(s1) · · ·κ(sn)u(sn) dsn · · · ds1

Now Gj(t) is an integral over the j-simplex 0 ≤ sj ≤ · · · ≤ s1 ≤ t and the
integrand is symmetric under a permutation of the variables. Hence

Gj(t) =
1
j!

∫ t

0

∫ t

0

· · ·
∫ t

0

κ(s1) · · ·κ(sj) dsj · · · ds1 =
1
j!

(∫ t

0

κ(s) ds

)j

.

Also |En(t)| is bounded by an nth power times the area 1/n! of the n-simplex.
Hence the term En(t) converges uniformly to zero and the series limits to the
series for the exponential function.

The above argument shows Γ has an attractive fixed point so we can also
prove the Gronwall inequality by solving v = Γ(v); the solution is

v(t) = K exp
(∫ t

0

κ(s) ds

)
.
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We use this approach to prove a more general form of Gronwall’s inequality
where the constant K is replaced by a continuous function K : [0, T ] → [0,∞).
Namely, assume that

u(t) ≤ K(t) +
∫ t

0

κ(s)u(s) ds (3)

for all t ∈ [0, T ]. We prove that

u(t) ≤ K(t) +
∫ t

0

κ(s)K(s) exp
(∫ t

s

κ(r) dr

)
ds. (4)

The abstract Gronwall inequality applies much as before so to prove (4) we show
that the solution of

v(t) = K(t) +
∫ t

0

κ(s)v(s) ds (5)

is

v(t) = K(t) +
∫ t

0

K(s)κ(s)) exp
(∫ t

s

κ(r) dr

)
ds (6)

Equation (5) implies v̇ = K̇ + κv. By variation of constants we seek a solution
in the form

v(t) = C(t) exp
(∫ t

0

κ(r) dr

)
.

Plugging into v̇ = K̇ + κv gives

Ċ(t) exp
(∫ t

0

κ(r) dr

)
= K̇(t)

so

C(t) = C(0) +
∫ t

0

K̇(s) exp
(
−

∫ s

0

κ(r) dr

)
ds

so

v(t) = C(0) exp
(∫ t

0

κ(r) dr

)
+

∫ t

0

K̇(s) exp
(∫ t

s

κ(r) dr

)
ds

Equation (5) requires v(0) = K(0) so

C(0) = K(0).

Integration by parts gives∫ t

0

K̇(s) exp
(∫ t

s

κ(r) dr

)
ds =

K(t)−K(0) exp
(∫ t

0

κ(r) dr

)
+

∫ t

0

K(s)κ(s) exp
(∫ t

s

κ(r) dr

)
ds

Combining the last three displayed equations give (6).
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Here is the proof of (4) sketched in Exercise 1 Chapter 1 of [1]. Define

R(t) :=
∫ t

0

κ(r)u(r) dr.

Then the derivative R′ satisfies

R′(s)− k(s)R(s) = κ(s)
(
u(s)−R(s)

)
≤ κ(s)K(s).

Hence
d

ds
R(s) exp

(∫ t

s

κ(r) dr

)
≤ κ(s)K(s) exp

(∫ t

s

κ(r) dr

)
so integrating gives

R(t) = R(t)−R(0) ≤
∫ t

0

κ(s)K(s) exp
(∫ t

s

κ(r) dr

)
ds.

Now add K(t) to both sides and use the hypothesis u(t) ≤ K(t) + R(t).

If K(t) is a constant, the right hand side of (4) reduces to the right hand
side of (1). This follows on taking K(t) constant in the fixed point equation
v = K +

∫
κv, but here’s a direct proof.

K +
∫ t

0

κ(s)K exp
(∫ t

s

κ(r) dr

)
ds

= K −K

∫ t

0

d

ds
exp

(∫ t

s

κ(r) dr

)
ds

= K −K

(
exp(0)− exp

(∫ t

0

κ(r) dr

))
= K exp

(∫ t

0

κ(r) dr

)
.
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