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Our purpose is to derive the usual Gronwall Inequality from the following

Abstract Gronwall Inequality

Let M be a topological space which also has a partial order which
s sequentially closed in M x M. Suppose that a map T’ : M — M
preserves the order relation and has an attractive fived point v. Then

u<D(u) = u<w.

Proof. Assume u < T'(u). Since T' preserves the order relation we get v < I'™(u)
by induction. Since v is an attractive fixed point we have v = lim, .o I (u).
Since the order relation is sequentially closed, we conclude u < v as required. [

Assume that the continuous functions w,x : [0,7] — [0,00) and K > 0
satisfy

u(t) < K —l—/o k(s)u(s) ds

for all ¢ € [0, T]. Then the usual Gronwall inequality is
t
u(t) < Kexp </ K(s) ds) . (1)
0

The usual proof is as follows. The hypothesis is

u(s) <1

K +/ k(r)u(r) dr N
0
Multiply this by (s) to get
d S
—1In (K +/ K(r)u(r) dr) < k(s)
ds 0

Integrate from s = 0 to s = ¢, and exponentiate to obtain

K+ /Ot K (r)u(r) dr < K exp (/Ot (s) ds) .



By hypothesis, the left side is > u(t).

We now show how to derive the usual Gronwall inequality from the abstract
Gronwall inequality. For v : [0,T] — [0, 00) define I'(v) by

Lw)(t) = K —|—/0 k(s)v(s) ds. (2)

In this notation, the hypothesis of Gronwall’s inequality is u < T'(u) where
v < w means v(t) < w(t) for all ¢t € [0,T]. Since k(t) > 0 we have

v<w = I'(v) <T(w).
Hence iterating the hypothesis of Gronwall’s inequality gives
u < T"(u).
Now change the dummy variable in (2) from s to s; and apply the inequality

u(s1) < T'(u)(s1) to obtain

t

M(u)(t) = K —|—/ k(s1)K dsy —|—/O /:1 k(s1)K(s2)u(s2) dsa dsy

0

More generally, by induction we have

where

G = [ [ [T st ntsy sy

(with Go(t) = 1) and

En(t)_/ot/:l.../osnl K(51) - - k(50 )u(sn) dsp - -~ ds1

Now G;(t) is an integral over the j-simplex 0 < s; < --- < s; < t and the
integrand is symmetric under a permutation of the variables. Hence

G =4 [ [ [ st sy an = A /Oys)ds)j.

Also |E,,(t)] is bounded by an nth power times the area 1/n! of the n-simplex.
Hence the term FE,,(t) converges uniformly to zero and the series limits to the
series for the exponential function.

The above argument shows I' has an attractive fixed point so we can also
prove the Gronwall inequality by solving v = I'(v); the solution is

o(t) = K exp </Ot () ds) .



We use this approach to prove a more general form of Gronwall’s inequality
where the constant K is replaced by a continuous function K : [0,7] — [0, 00).
Namely, assume that

u(t) < K(t) —|—/0 k(s)u(s) ds (3)

for all ¢ € [0,T]. We prove that
u(t) < K(t) +/0 k(s)K(s) exp (/S k() dr> ds. (4)

The abstract Gronwall inequality applies much as before so to prove (4) we show
that the solution of

o(t) = K(t) + /0 k(s)u(s) ds (5)

o(t) = K(t) + /O K (5)(s)) exp ( / ) dr) ds (6)

Equation (5) implies © = K + kv. By variation of constants we seek a solution

in the form .
o(#) = O(t) exp ( /0 w(r) dr) .

Plugging into ©v = K + kv gives

C(t) exp ( /0 ) dr) — K@)

C(t) = C(0) + /O "K(s) exp (- /O () dr) ds

v(t) = C(0) exp </Ot K(r) dr) + /Ot K (s)exp (/t K (r) dr> ds

Equation (5) requires v(0) = K(0) so

SO

Integration by parts gives

Ot K(s)exp </t w(r) dr) ds =
K(t) - K(0)exp ( /0 ) dr) + /O " K(s)(s) exp ( / () dr) ds

Combining the last three displayed equations give (6).



Here is the proof of (4) sketched in Exercise 1 Chapter 1 of [1]. Define

R(t) ::/0 K(r)u(r) dr.

Then the derivative R’ satisfies

Hence

% R(s) exp ( / ) dr) < k(s)K(s) exp ( / ) dr)

so integrating gives

R(t) = R(t) — R(0) < /O (8K (s) exp ( / ) dr) ds.

Now add K(t) to both sides and use the hypothesis u(t) < K(t) + R(¢).

If K(t) is a constant, the right hand side of (4) reduces to the right hand
side of (1). This follows on taking K(t) constant in the fixed point equation

v =K + [ kv, but here’s a direct proof.

K-l—/oth;(s)KeXp (/t () dr) ds
_ K—K/Otjsexp (/stn(r)dr) s
- KK (exp(O) ~ exp (/Ot (r) dr))
~ Kexp (/Otn(r)dr>.
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