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Uche Okpara asked me how explicitly one can solve the recurrence relation

G(n) = G(n− 1) +G(n− 2) +G(n− 3)

with initial condition

G(1) = 2, G(2) = 4, G(4) = 6

The characteristic polynomial is

f(z) = z3 − z2 − z − 1,

which has one real root r = 1.8392... and two complex roots. Using Cardan’s
explicit solution to the cubic [[2], p. 189] one could write down G(n) in terms
of these roots.

The complexity of the result leaves something to be desired. However,
there is another way to proceed, indicated by Euler in his famous book In-
troductio in Analysin Infinitorum [[1], §217]. The basic idea is that powers of
complex numbers in the formula can be replaced by trigonometric functions.
Here’s what Euler’s method leads to in this particular case.

First, let us work with H(n) = G(n)/2 and observe that G(0) = 0. From
the expansion

1

1− x− x2 − x3
= 1 + x+ 2x2 + 4x3 + · · ·

we deduce that ∑
n≥0

H(n)xn =
x+ x2

1− x− x2 − x3
.
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(Note that the denominator is the reverse of f .) Dividing f by z − r leads
to the partial fraction

x+ x2

1− x− x2 − x3
=

A

1− rx
+

Bx+ C

1 + (r − 1)x+ r−1x2
.

By letting x→ r−1 we get

A =
r−1 + r−2

1 + (r − 1)r−1 + r−3
=
r2

22
+

3r

11
− 3

22
.

From the coefficients of 1 and x2 in the numerator of the generating function
we find easily

C = −A

and

B =
−13r2

22
+

5r

11
+

17

22
.

With
ρ =
√
r−1

and

φ = cos−1

(
−
√
r(r − 1)

2

)
,

we have
1 + (r − 1)x+ r−1x2 = 1− 2ρx cosφ+ ρ2x2.

Euler observes that

a+ bρx

1− 2ρx cosφ+ ρ2x2
=
∑
n≥0

a sin((n+ 1)φ) + b sin(nφ)

sinφ
ρnxn.

This leads to the desired formula. We have

G(n) = 2Arn + 2
C sin((n+ 1)φ) +Bρ−1 sin(nφ)

sinφ
ρn.

As a check, Maple’s floating point arithmetic gives 11.99999999 for G(4).

Let’s now look at this from the point of view of algebraic number theory.
The standard (powers of roots) formula forG(n) uses values from the splitting
field K of f . This is a degree 6 extension of Q, imaginary quadratic over
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Q(r). Euler’s solution method requires not only the dominant root r, but
the additional algebraic number ρ. One can see that ρ 6∈ Q(r), as follows.
Modulo p = 7, we have

f(x) = (x+ 4)(x2 + 2x+ 5),

so r ≡ 3 mod P , for a degree 1 prime ideal P lying above 7 in the extension
Q(r)/Q. (Note that 7 doesn’t divide the discriminant of f , which is 44.)
However, 3 is a quadratic nonresidue mod 7, so the extension Q(ρ)/Q(r)
must be proper. Since ρ is real, it cannot belong to K as well.

Thus, Euler’s method has a price. One does get a “real only” solution,
but at the cost of introducing more complicated algebraic numbers than one
might at first expect.
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