An Integral

JWR

Thursday September 27, 2001

Kepler's third law is

$$
T = \frac{2\pi}{\sqrt{GM}} \left(\frac{r_{\text{min}} + r_{\text{max}}}{2}\right)^{3/2}
$$

where T is the period of the planet, i.e. the time it takes the planet to go around the sun one time, r_{min} is the closest it comes to the sun, r_{max} is the farthest it is from the sun, M is the mass of the sun, and G is the gravitational constant. This is often expressed in words as "the square of the period varies as the cube of the mean distance". Milnor pointed out that calling the quantity

$$
a = \frac{r_{\min} + r_{\max}}{2}
$$

the mean distance is a misnomer; actually

$$
\frac{1}{T} \int_0^T r \, dt = a \left(1 + \frac{e^2}{2} \right)
$$

where e is the eccentricity of the orbit. To prove this we use the fact that in suitable polar coordinates (with the sun at the origin) the orbit has equation

$$
r = \frac{k}{1 + e \cos \theta}
$$

where $k = h^2/GM$ and h is the constant in Kepler's second law $r^2 d\theta/dt = h$. Thus $dt/d\theta = r^2/h$ so the formula for the average value of r is

$$
\frac{1}{T} \int_0^T r \, dt = \frac{1}{hT} \int_0^{2\pi} r^3 \, d\theta = \frac{k^3}{hT} \int_0^{2\pi} \frac{d\theta}{(1 + e \cos \theta)^3}
$$

The integral on the right is a rational function of the trigonometric functions and can be done (as in Math 222) via the substitution $u = \tan(\theta/2)$ but it's not pretty. It is easy to check that $a = k/(1-e^2)$ and then that the constant on the right simplifies to

$$
\frac{k^3}{hT} = \frac{a(1 - e^2)^{5/2}}{2\pi}.
$$

1 Ernesto's Solution

Our aim is to evaluate the integral

$$
I_n = \int_0^{2\pi} \frac{d\theta}{(1 + e \cos \theta)^n}
$$

where $n = 1, 2, \ldots$ and $0 < e < 1$. This can be written as a line integral

$$
I_n = -i \oint \frac{dz}{z \left(1 + \frac{e}{2}(z + \frac{1}{z})\right)^n} = -i \oint \frac{z^{n-1} dz}{\left(z + \frac{e}{2}(z^2 + 1)\right)^n}
$$

where the integral is around the unit circle $|z|=1$ in the counter clockwise direction. We evaluate the integral by residues. The denominator vanishes for $z = p, q$ where

$$
p = \frac{-1 + \sqrt{1 - e^2}}{e}, \qquad q = \frac{-1 - \sqrt{1 - e^2}}{e}.
$$

The point q is outside the unit circle so

$$
I_n = 2\pi \operatorname{Res}_{z=p} \frac{z^{n-1}}{(z + \frac{e}{2}(z^2 + 1))^n}.
$$

Now

$$
\frac{z^{n-1}}{(z+\frac{e}{2}(z^2+1))^n} = \frac{2^nz^{n-1}}{e^n(z-p)^n(z-q)^n}
$$

$$
\operatorname{Res}_{z=p} \frac{z^{n-1}}{(z + \frac{e}{2}(z^2 + 1))^n} = \frac{2^n}{e^n(n-1)!} \left(\frac{d}{dz}\right)^{n-1} \frac{z^{n-1}}{(z-q)^n} \Big|_{z=p}
$$

.

so

Take $n = 3$. We get

$$
I_3 = 2\pi \frac{8}{e^3 2} \left(\frac{d}{dz} \right)^2 \frac{z^2}{(z-q)^3} \Bigg|_{z=p} = \frac{8\pi}{e^3} \left(\frac{d}{dz} \right)^2 \frac{z^2}{(z-q)^3} \Bigg|_{z=p}.
$$

By Maple this is

$$
I_3 = \frac{\pi (2 + e^2)}{(1 - e^2)^{5/2}}.
$$

2 Eric's Solution

I 1 thought some more about the Kepler problem integral

$$
\int_0^{2\pi} \frac{d\theta}{(1 + e \cos \theta)^3}
$$

and realized that it could be computed in a way that gives

$$
I_n = \int_0^{2\pi} \frac{d\theta}{(1 + e \cos \theta)^n}
$$

for $n = 1, 2, 3, \ldots$ Here's the deal.

Expand $(1 + e \cos \theta)^{-n}$ using the binomial theorem, and interchange summation and integration. The resulting sum turns out to be a value of the Gaussian hypergeometric function

$$
_2F_1\left[\begin{array}{c} a & b \\ c & z \end{array}\right] = 1 + \frac{ab}{c}z + \frac{a(a+1)b(b+1)}{c(c+1)}z^2 + \cdots
$$

When the smoke clears we get

$$
\int_0^{2\pi} \frac{d\theta}{(1 + e \cos \theta)^n} = 2\pi \, _2F_1 \left[\frac{n+1}{2} \, \frac{n}{2}; e^2 \right]
$$

Now use a transformation law for ${}_2F_1$, namely,

$$
{}_2F_1\left[\begin{array}{c} a & b \\ c & z \end{array}\right] = (1-z)^{-a} {}_2F_1\left[\begin{array}{c} a & c-b \\ c & z \end{array}\right],
$$

 $\rm ^1This$ section is the email from Eric.

and take b to be whichever of $(n+1)/2$ and $n/2$ is even. The resulting series and take *b* to be whichever of $(n+1)/2$ and $n/2$ is even. The resulting series is finite since $c - b$ is a negative integer, and so I_n is a power of $\sqrt{1 - e^2}$ times a polynomial.

For the first four values of $n \leq x$

$$
(n = 1) \t 2\pi/(1 - e^2)^{1/2}
$$

\n
$$
(n = 2) \t 2\pi/(1 - e^2)^{3/2}
$$

\n
$$
(n = 3) \t 2\pi/(1 - e^2)^{5/2}(1 + e^2/2)
$$

\n
$$
(n = 4) \t 2\pi/(1 - e^2)^{7/2}(1 + 3e^2/2)
$$

A good reference fot ${}_2F_1$ is Graham/Knuth/Patashnik's Concrete Math.

3 An elementary solution

For $0 < e < 1$ the equation

$$
r = \frac{1}{1 + e \cos \theta}
$$

is the polar equation for an ellipse with eccentricity e, major axis along the x axis, and a focus at the origin. The semimajor axis $a = (r_{\min} + r_{\max})/2$ of the ellipse, the semiminor axis b , and the distance $2c$ between the foci are given by √

$$
a = \frac{1}{1 - e^2}
$$
, $b = \sqrt{a^2 - c^2}$, $c = ea$.

In rectangular coordinates $x = r \cos \theta$ and $y = r \sin \theta$ the equation of the ellipse is

$$
\frac{(x+c)^2}{a^2} + \frac{y^2}{b^2} = 1
$$

so the ellipse has parametric equations

$$
x = -c + a\cos\phi, \qquad y = b\sin\phi, \qquad 0 \le \phi \le 2\pi.
$$

We calculate $d\theta/d\phi$. Differentiate the equation

$$
-c + a\cos\phi = x = r\cos\theta = \frac{\cos\theta}{1 + e\cos\theta}
$$

to get

$$
-a\sin\phi\frac{d\phi}{d\theta} = -\frac{\sin\theta}{(1 + e\cos\theta)^2} = -yr.
$$

substitute $y = b \sin \phi$ and divide by $-a \sin \phi$ to get

$$
\frac{d\phi}{d\theta} = \frac{br}{a}
$$

and hence

$$
\int_0^{2\pi} r^3 d\theta = \int_0^{2\pi} r^3 \frac{d\theta}{d\phi} d\phi = \frac{a}{b} \int_0^{2\pi} r^2 d\phi.
$$

Using $r^2 = x^2 + y^2$, $a^2 = b^2 + c^2$, and $c = ea$ we have

$$
r^{2} = c^{2} - 2ac \cos \phi + a^{2} \cos^{2} \phi + b^{2} \sin^{2} \phi
$$

= $a^{2} (1 - 2e \cos \phi + e^{2} \cos^{2} \phi)$
= $a^{2} (1 - 2e \cos \phi + \frac{e^{2} (1 - \cos 2\phi)}{2})$

so

$$
\int_0^{2\pi} r^3 d\theta = \frac{a}{b} \int_0^{2\pi} r^2 d\phi = \frac{a^3 2\pi}{b} \left(1 + \frac{e^2}{2} \right) = \frac{\pi (2 + e^2)}{(1 - e^2)^{5/2}}.
$$