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Kepler’s third law is

T =
2π√
GM

(
rmin + rmax

2

)3/2

where T is the period of the planet, i.e. the time it takes the planet to
go around the sun one time, rmin is the closest it comes to the sun, rmax

is the farthest it is from the sun, M is the mass of the sun, and G is the
gravitational constant. This is often expressed in words as “the square of
the period varies as the cube of the mean distance”. Milnor pointed out that
calling the quantity

a =
rmin + rmax

2

the mean distance is a misnomer; actually

1

T

∫ T

0

r dt = a

(
1 +

e2

2

)
where e is the eccentricity of the orbit. To prove this we use the fact that in
suitable polar coordinates (with the sun at the origin) the orbit has equation

r =
k

1 + e cos θ

where k = h2/GM and h is the constant in Kepler’s second law r2dθ/dt = h.
Thus dt/dθ = r2/h so the formula for the average value of r is

1

T

∫ T

0

r dt =
1

hT

∫ 2π

0

r3 dθ =
k3

hT

∫ 2π

0

dθ

(1 + e cos θ)3
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The integral on the right is a rational function of the trigonometric functions
and can be done (as in Math 222) via the substitution u = tan(θ/2) but it’s
not pretty. It is easy to check that a = k/(1−e2) and then that the constant
on the right simplifies to

k3

hT
=
a(1− e2)5/2

2π
.

1 Ernesto’s Solution

Our aim is to evaluate the integral

In =

∫ 2π

0

dθ

(1 + e cos θ)n

where n = 1, 2, . . . and 0 < e < 1. This can be written as a line integral

In = −i
∮

dz

z
(
1 + e

2
(z + 1

z
)
)n = −i

∮
zn−1 dz(

z + e
2
(z2 + 1)

)n
where the integral is around the unit circle |z| = 1 in the counter clockwise
direction. We evaluate the integral by residues. The denominator vanishes
for z = p, q where

p =
−1 +

√
1− e2

e
, q =

−1−
√

1− e2

e
.

The point q is outside the unit circle so

In = 2πRes
z=p

zn−1(
z + e

2
(z2 + 1)

)n .
Now

zn−1(
z + e

2
(z2 + 1)

)n =
2nzn−1

en(z − p)n(z − q)n

so

Res
z=p

zn−1(
z + e

2
(z2 + 1)

)n =
2n

en(n− 1)!

(
d

dz

)n−1
zn−1

(z − q)n

∣∣∣∣∣
z=p

.
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Take n = 3. We get

I3 = 2π
8

e32

(
d

dz

)2
z2

(z − q)3

∣∣∣∣∣
z=p

=
8π

e3

(
d

dz

)2
z2

(z − q)3

∣∣∣∣∣
z=p

.

By Maple this is

I3 =
π (2 + e2)

(1− e2)5/2
.

2 Eric’s Solution

I1 thought some more about the Kepler problem integral∫ 2π

0

dθ

(1 + e cos θ)3

and realized that it could be computed in a way that gives

In =

∫ 2π

0

dθ

(1 + e cos θ)n

for n = 1, 2, 3, . . .. Here’s the deal.
Expand (1+e cos θ)−n using the binomial theorem, and interchange sum-

mation and integration. The resulting sum turns out to be a value of the
Gaussian hypergeometric function

2F1

[
a b

c
; z

]
= 1 +

ab

c
z +

a(a+ 1)b(b+ 1)

c(c+ 1)
z2 + · · ·

When the smoke clears we get∫ 2π

0

dθ

(1 + e cos θ)n
= 2π 2F1

[
n+1

2
n
2

1
; e2

]
Now use a transformation law for 2F1, namely,

2F1

[
a b

c
; z

]
= (1− z)−a2F1

[
a c− b

c
;

z

z − 1

]
,

1This section is the email from Eric.
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and take b to be whichever of (n+ 1)/2 and n/2 is even. The resulting series
is finite since c−b is a negative integer, and so In is a power of

√
1− e2 times

a polynomial.
For the first four values of n I got

(n = 1) 2π/(1− e2)1/2

(n = 2) 2π/(1− e2)3/2

(n = 3) 2π/(1− e2)5/2(1 + e2/2)

(n = 4) 2π/(1− e2)7/2(1 + 3e2/2)

A good reference fot 2F1 is Graham/Knuth/Patashnik’s Concrete Math.

3 An elementary solution

For 0 < e < 1 the equation

r =
1

1 + e cos θ

is the polar equation for an ellipse with eccentricity e, major axis along the
x axis, and a focus at the origin. The semimajor axis a = (rmin + rmax)/2
of the ellipse, the semiminor axis b, and the distance 2c between the foci are
given by

a =
1

1− e2
, b =

√
a2 − c2, c = ea.

In rectangular coordinates x = r cos θ and y = r sin θ the equation of the
ellipse is

(x+ c)2

a2
+
y2

b2
= 1

so the ellipse has parametric equations

x = −c+ a cosφ, y = b sinφ, 0 ≤ φ ≤ 2π.

We calculate dθ/dφ. Differentiate the equation

−c+ a cosφ = x = r cos θ =
cos θ

1 + e cos θ

to get

−a sinφ
dφ

dθ
= − sin θ

(1 + e cos θ)2
= −yr.
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substitute y = b sinφ and divide by −a sinφ to get

dφ

dθ
=
br

a

and hence ∫ 2π

0

r3 dθ =

∫ 2π

0

r3 dθ

dφ
dφ =

a

b

∫ 2π

0

r2 dφ.

Using r2 = x2 + y2, a2 = b2 + c2, and c = ea we have

r2 = c2 − 2ac cosφ+ a2 cos2 φ+ b2 sin2 φ

= a2(1− 2e cosφ+ e2 cos2 φ)

= a2

(
1− 2e cosφ+

e2(1− cos 2φ)

2

)
so ∫ 2π

0

r3 dθ =
a

b

∫ 2π

0

r2 dφ =
a32π

b

(
1 +

e2

2

)
=

π(2 + e2)

(1− e2)5/2
.

5


