27 Lines

JWR

November 5, 2001

This note shows how to use transversality theory to prove that a generic cubic hypersurface in \mathbb{P}^3 contains 27 lines.

1. Let $\mathbb{G}(k,n)$ denote the Grassmann manifold of k-dimensional vector subspaces of \mathbb{C}^n . It has dimension $k(n-k)$. This manifold has an atlas consisting of $\binom{n}{k}$ $\binom{n}{k}$ charts (α_I, U_I) , one for every k element subset I of $N_n = \{1, 2, ..., n\}$. These are defined as follows. Let e_1, e_2, \ldots, e_n be the standard basis for \mathbb{C}^n , \mathbb{C}^I denote the k-dimensional subspace spanned by $\{e_i : i \in I\}, J = N_n \setminus I$, \mathbb{C}^{J} denote the $(n-k)$ -dimensional subspace spanned by $\{e_j : j \in J\}$, and $\mathbb{C}^{J\times I}$ denote the vector space of complex $(n-k)\times k$ matrices viewed as linear maps from \mathbb{C}^{I} to \mathbb{C}^{J} . The graph

$$
\operatorname{Gr}(u) = \{ z \in \mathbb{C}^n : z_J = uz_I \}
$$

of an element $u \in \mathbb{C}^{J \times I}$ is an element of $\mathbb{G}(k,n)$ and the chart $\alpha_I : U_I \to \mathbb{C}^{J \times I}$ is defined by

$$
U_I = \left\{ \lambda \in \mathbb{G}(k, n) : \lambda \cap \mathbb{C}^J = \{0\} \right\}, \qquad u = \alpha_I(\lambda) \iff \lambda = \text{Gr}(u).
$$

2. For any complex vector space V let $S^k(V)$ denote the vector space of homogeneous complex polynomials of degree k on V . The complex dimension is given by

$$
\dim_{\mathbb{C}} (S^k(V)) = \binom{n+k-1}{n}, \qquad n = \dim(V).
$$

3. Let $X = \mathbb{G}(2, 4)$ be the Grassmann manifold of 2-dimensional subspaces of \mathbb{C}^4 , i.e. the space of (projective) lines in $\mathbb{C}P^3$. Let Y be the total space

of the vector bundle $Y \to X$ whose fiber over $\lambda \in X = \mathbb{G}(2, 4)$ is the 4dimensional vector space $Y_{\lambda} = S^3(\lambda)$ and let $W \subset Y$ be the (image of the) zero section of this vector bundle. Each $g \in S^3(\mathbb{C}^4)$ determines a section $F_g: X \to Y$ of $Y \to X$ via restriction: $F_g(\lambda) = g(\lambda)$. Let

$$
\mathcal{A} = \{ g \in S^3(\mathbb{C}^4) : g^{-1}(0) \cap (Dg)^{-1}(0) = \{0\} \}.
$$

By the Homogeneous Resultant Theorem, A is the complement of an algebraic variety and is therefore a connected open subset of the 15-dimensional vector space $S^3(\mathbb{C}^4)$. The image of A in \mathbb{CP}^{14} may be identified with the space of nonsingular cubic hypersurfaces in \mathbb{CP}^3 . Evidently

$$
\lambda \in F_g^{-1}(W) \iff \lambda \subseteq g^{-1}(0),
$$

i.e. the cardinality of the set $F_g^{-1}(W)$ is precisely the number of (projective) lines in the cubic hypersurface $\{g=0\} \subseteq CP^3$.

4. The evaluation map $F : \mathcal{A} \times X \to Y$ given by $F(g, \lambda) = F_g(\lambda)$ is a degree 4 polynomial (linear in g, cubic in λ) when expressed in the above local coordinates. In the local trivialization corresponding to $I = \{1, 2\}$ and $J = \{3, 4\}$ the formula for F is $F(g, u) = (u, f)$ where

$$
f(x_1, x_2) = g(x_1, x_2, u_{31}x_2 + u_{32}x_2, u_{41}x_1 + u_{42}x_2)
$$

so that in multi index notation

$$
g(x_1, x_2, x_3, x_4) = \sum_{p+q+r+s=3} g_{ijrs} x_1^p x_2^q x_3^r x_4^s, \qquad f(x_1, x_2) = \sum_{i+j=3} f_{ij} x_1^i x_2^j,
$$

$$
f_{30} = g_{3000} + g_{2010}u_{31} + g_{2001}u_{41} + g_{1020}u_{31}^{2} + g_{1011}u_{31}u_{41} + g_{1002}u_{41}^{2} + g_{0030}u_{31}^{3} + g_{0021}u_{31}^{2}u_{41} + g_{0012}u_{31}u_{41}^{2} + g_{0003}u_{41}^{3}
$$

etc. It is easy to see that F \Uparrow W: to solve $DF(g, u)(\hat{g}, \hat{u}) + (\hat{w}, 0) = (\hat{v}, \hat{f})$ we take $\hat{u} = \hat{v}$, $\hat{w} = 0$, $\hat{g}_{ij00} = \hat{f}_{ij}$, and $\hat{g}_{pqrs} = 0$ if $(r, s) \neq (0, 0)$. By the Transversal Density Theorem conclude that \mathcal{A}_W dense in \mathcal{A} . By the Transversal Openness Theorem \mathcal{A}_W is an open set. Below we show that \mathcal{A}_W is connected. Hence, by the Transversal Isotopy Theorem, the cardinality of $F_g^{-1}(W)$ is a constant function of $g \in \mathcal{A}_W$.

5. We can reach these same conclusions by arguing as follows. Each $g \in \mathcal{A} \subseteq$ $S^3(\mathbb{C}^4)$ and each two element subset $I \subseteq N_4$ determines a polynomial map $f_I: \mathbb{C}^{2 \times 2} \to S^3(\mathbb{C}^2)$ as above. Define the set

$$
S_I(g) = \{u \in \mathbb{C}^{2 \times 2} : f_I(u) = 0, \det(Df_I(u)) = 0\}.
$$

Then

$$
\mathcal{A}_W = \{ g \in \mathcal{A} : S_I(q) = \emptyset \ \forall I \}.
$$

By the Resultant Theorem the set \mathcal{A}_W is the complement of a closed algebraic set in $S^3(\mathbb{C}^4)$ and is hence open dense and connected provided that it is nonempty.

6. Theorem. The homogeneous polynomial

$$
g(x_1, x_2, x_3, x_4) = x_1^2 + x_2^3 + x_3^3 + x_4^3
$$

is an element of \mathcal{A}_W . The associated section F_q has exactly 27 zeros.

Proof. For each 2 element subset $I \subseteq N_4$ and each pair (μ, ν) of cube roots of -1 we define the 2 plane $\lambda = \lambda(I, \mu, \nu)$ by

$$
\lambda = \{ x \in \mathbb{C}^4 : x_r = \mu x_p, \ x_s = \nu x_q \}
$$

where $I = \{p, q\}, N_4 \setminus I = \{r, s\}.$ There are 27 such lines; each is a zero of F_g since $g|\lambda = 0$.

Now take $I = \{1, 2\}$. In the corresponding coordinate system on $\mathbb{G}(2, 4)$ the map $\lambda \mapsto (\lambda, f)$ is given by

$$
f_{30} = 1 + u_{31}^3 + u_{41}^3, \qquad f_{21} = 3u_{31}^2u_{32} + 3u_{41}^2u_{42},
$$

$$
f_{12} = 3u_{31}u_{32}^2 + 3u_{41}u_{42}^2, \qquad f_{03} = 1 + u_{32}^3 + u_{42}^3.
$$

We first show that $f = 0$ has no solution where all $u_{pq} \neq 0$. Suppose the contrary. From $f_{21} = 0$ and $f_{12} = 0$ we get that $u_{31}/u_{32} = u_{41}/u_{42}$ so that $u_{31} = m u_{41}$ and $u_{32} = m u_{42}$ for some m. From $f_{21} = 0$ we get $(m^3+1)u_{41}^2u_{42} = 0$ so $m^3+1=0$ so $u_{31}^3+u_{41}^3=0$ which contradicts $f_{30}=0$. Hence some $u_{pq} = 0$. If (say) $u_{41} = 0$ then from $f_{30} = 0$ we get $u_{31} \neq 0$ so from $f_{21} = 0$ we get $u_{32} = 0$ and $\lambda = \lambda (I, u_{31}, u_{42})$ as required.

To finish the proof we must show that the 4×4 matrix $\partial f/\partial u$ is invertible. Evaluate at the point

$$
u=\left(\begin{array}{cc}u_{31}&u_{32}\\u_{41}&u_{42}\end{array}\right)=\left(\begin{array}{cc}\mu&0\\0&\nu\end{array}\right).
$$

The result is

$$
\begin{pmatrix} 3u_{31}^2 & 0 & 3u_{41}^2 & 0 \ 6u_{31}u_{32} & 3u_{31}^2 & 6u_{41}u_{42} & 3u_{41}^2 \ 3u_{32}^2 & 6u_{31}u_{32} & 3u_{42}^2 & 6u_{41}u_{42} \ 0 & 3u_{32}^2 & 0 & 3u_{42}^2 \end{pmatrix} = \begin{pmatrix} 3\mu^2 & 0 & 0 & 0 \ 0 & 3\mu^2 & 0 & 0 \ 0 & 0 & 3\nu^2 & 0 \ 0 & 0 & 0 & 3\nu^2 \end{pmatrix}
$$

which is clearly invertible.

 \Box