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Many important problems in geometry can be reduced to a partial differential
equation of the form
M(X) =0,

where x ranges over a complexified group orbit in an infinite dimensional
symplectic manifold X and p : X — g is an associated moment map. Here we
study the finite dimensional version.

Because we want to gain intuition for the infinite dimensional problems, our
treatment avoids the structure theory of compact groups. We also generalize from
projective manifolds (GIT) to Kahler manifolds (u-GIT).

@ In GIT you start with (X, J, G) and try to find Y with R(Y) ~ R(X)°.
@ In u-GIT you start with (X,w, G) and try to solve u(x) = 0.
9 GIT = p-GIT + rationality.
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Kahler manifolds.

A Kahler manifold (X,w, J) satisfies
Wi (he&e, Ika) = wx(f1, %), %2 = wi(%, LX) >0
for x € X, X,%1,% € T, X. Hence
(X1, %), 1= wy(X1, X2)

is a Riemannian metric. A function H : X — R has a symplectic gradient
X € Vect(X) and a Riemannian gradient VH € Vect(X) characterized by

dH(x)X = wx(XH, %) = (VH,X), .
They are related by the formula
VH = JXy.

The symplectic gradient is also called the Hamiltonian vector field.
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Projective manifolds.

Ingredients:
@ The complex vector space V = C" and the projective space P(V).
@ The (frame bundle of the) tautological line bundle 7 : V' \ 0 — P(V).

Any complex submanifold X C P(V), V = CN of projective space is an example
of a Kahler manifold. The symplectic form is the restriction to X of the
Fubini—Study form

T wes = 00K, K(v) =ihlog|v|.

By Chow, a complex submanifold of P(V) is the same as a projective manifold,
i.e. a smooth projective variety.
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In GIT the ingredients are
@ A compact subgroup G C Uy and its complexification G¢ C GLy(C).
@ A G€ invariant closed complex submanifold X C P(V).
@ The homogenous coordinate ring R(X).
@ The ring R(X)C¢ of invariants.

Hilbert showed how to construct a projective variety Y with
R(Y) = R(X)°.

A sequence of generators ¢y, ..., p, of R(X)® gives an embedding

The set U C V is the complement of the null cone, the set of points in V where
all the invariants vanish. (The embedding ¢ is not defined on this set. If necessary
raise the components to suitable powers so that the map is homogeneous.) The
closure Y of the image of ¢ is an algebraic variety. A syzygy for ¢ gives
equations for Y .
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In u-GIT the ingredients are
@ A compact symplectic manifold (X, w).
@ A Lie algebra g C uy of G.
@ The ad(G)-invariant inner product (£,7n) = trace(£*n) on g.
@ A Hamiltonian action g — Vect(X) : £ — Xe.
@ An equivariant moment map p : X — g for this action.
@ The norm squared function f : X — R defined by f(x) = |u(x)[?.

That u is a moment map means that the Hamiltonian for X¢ is

Hﬁ = <M7§> ’ dHﬁ = W(X& )

That y is equivariant means that p(ux) = up(x)u?! for x € X, u € G. This
implies
(1(x), [&:m]) = w(Xe(x), Xy (x)) =: {He, Hy}

for &,m e g.
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Kahler Actions.

A Hamiltonian action g — Vect(X) : £ — X¢ on a closed Kahler manifold extends
to an action
g — Vect(X) : £ +ip = Xe + JX,

by holomorphic vector fields, so the action of G on X extends to a holomorphic
action of G¢ on X.

Any subgroup of GL(V) = GLy induces an action on P(V). When G C Uy and
X C P(V) is a complex G-invariant submanifold,! the moment map is

(u(m(v), &)y =3 (iEv,v)y,  veS(V)=s""1

1By Weyl's unitarian trick G-invariance implies GC-invariance:
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Rationality Theorem.

A Kahler G-manifold is isomorphic to a projective G-manifold if and only if
(A) Integrality of w. The cohomology class of w lies in H?(X; 2whZ).
(B) Integrality of . The action integral

Au(x0, u, X) /x w+/ x0), u(t)~ti(t)) dt

is integral in the sense that
A, (x0, u,X) € 2ThZ

whenever xo € X, u:R/Z — G, and X : D — X satisfy x(e*™t) = u(t) 1xo.
(The inner product on g satisfies

(C) Integrality of g. If £,m € g, exp(€) = exp(n) =1, and [¢, 7] = 0, then
(&m eZ.)
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Moreover

Where A :={€ € g\ {0} | exp(&) = 1} (see §24)
(i) The action integral A, (x, u, v) is invariant under homotopy.
(ii) There is an N € N such that Na = 0 for every torsion class « € H1(G; Z).

(iii) If (w, m2(X)) C 2wrhNZ then there is a central element 7 € Z(g) such that
the moment map u — 7 satisfies condition (B).

(iv) Assume (A), (B), (C), and let 7 € Z(g) be a central element, so p + 7 is an
equivariant moment map. Then p + 7 satisfies (B) if and only if 7 € 2whA.

Note that if £ in (iii) is replaced by £ + 7 where 7 € Z(g) then the moment map u
is replaced by pu + 7 and

AIH'T(XO’ U,)_() = A#(XO) U,)_<) + <T7 §> .

This is because 7 € A and € € A so (7,&) € 2rhZ by taking n = 7/2xh in (C).
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The simplest Kahler manifold.

The sphere 52 is a Kihler manifold. The complex structure, symplectic form, and
Riemannian metric are

JeG =g x g, wq(G1,G2) = g (G1 X §2), (01, @2), = G1- 2

for g € S? and §, 41, G2 € T4S2. With the identification so3 ~ (R3, x) the action
is Hamiltonian with

Xe(@)=&xq,  Emy=&n  H(q)=(u(q),§) =q-¢&
(rotation about &). The gradient
VHe(q) = —JgXe(q) = (€ xq) x g =€ —(£-q)q

of He generates a north pole — south pole flow with poles on the axis of rotation
of &.
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The action of C* on S2

Let £ =(0,0,1) € R® ~ s03 generate rotation about the z-axis. Then H¢(q) = z
for ¢ = (x,y,z) € S? and the ODE g = X¢(q) is

The gradient vector field is

VHe(q) =€~ (£-q)q

so the equation ¢ = —VH¢(q) is

X = zX, y = zy, z=72-1.
The solution with g(0) = qq is

2etxg 2€ty0 zo+ 1+ (Zo — 1)e2t

+1—(20-1e ) " Z+1-—(20-1)e2 ° z+1-—(z- 1)
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r gradient flow on S2.

The moment map squared for the S action on 52 is
f(q) = 32°

for g = (x,y,z) € S%. The gradient is

where £ = (0,0, z) so the ODE

g=-Vf(q)

x = z°x, y =22y, z=2 -2z

The equator consists of rest points and the orbits run away from the poles along
the meridians towards the equator.

2Check: xx +yy +zz =22x2 + 22y + 2% — 22 = 22(xX®> + y2+ 2%+ 1) = 0.
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The archetypal example.

Let SO3 act diagonally on X = 52 x --- x 5% with moment map
—_——

n
n
w(x) ::Zq,-, x=(q1,...,qn) € X.
i=1

The preimage 11~1(0) consists of those x with center of mass at the origin. The
moment map squared is

fF(x) = 3lu(x)?  df()x=3 ai-§
i#j
and negative gradient flow of f is
gi = —Vf(x)=— Z(qj —(q; - 9i)ai)-
J#i

This example is closely related to the space of binary forms of degree n.
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Critical points of f where u # 0.

In the archetypal example we can characterize the critical points using Lagrange
multipliers. Since

n
) = P =2+ ai-as
i<j

we have that df(x) = 0 if and only if there exist Ay, ..., \, such that

Z q; = \igi

J#i
for i=1,...,n and when this holds, \; = (Z#; qj) g so
df(x) =0 <= pu(x) = (A\i+1)g:.

Since |g;| = 1, the critical points x of f where u(x) # 0 are the points x of form
x=(q1,...,q,) where g; = £p for i =1,...,n for some p € S2.
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The moment map squared.

In the Kahler case define f : X — R by

satisfies f 71(0) = p~1(0) so any x € ~1(0) is a critical point of f (as it is an
absolute minimum).

In the projective case for x = 7(v), v € V' \ 0 the following are equivalent:
@ v minimizes the distance from the orbit G°v to the origin.
o x € u~(0).

Proof: Assume w.l.o.g. that |v| = 1. The tangent space to the orbit is

TV(GCV) - {CV7 C S 96}7 TV(GV) = {EV, 5 € g}

The derivative of the distance is 7 + 2 (v, 7). It vanishes on T,(G°V) iff
(v,¥)y = (v,Cv),, =0 forall (. But for { =& +in, £, € g we have

3 (vsiCv)y = (u(x),i€ = m) e = = (u(x),n), =0

if x € 471(0). For the converse see §20 items (i) and (iii). O
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Convergence Theorem.

Every solution of the negative gradient equation
x = =Vf(x), x(0) = xo

converges, i.e. the limit

Xoo 1= t|_|>ngo x(t)

exists in X. (Proof: Lojasiewicz.)

The (not quite right) idea is to view f as a G-invariant Morse-Bott function. The
stable manifold of the G-invariant set 1 ~1(0) is an open dense set in U C X and
the map

U— 1710) 1 x0 — Xoo

gives an isomorphism U/G€¢ ~ 1 ~1(0)/G. (This is like R(Y) = R(X)®.)
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The homogeneous space G¢/G.

Equip G¢ with the unique left invariant Riemannian metric which agrees with the
inner product

<§1 + iT]l,fQ + in2>gf = <€1)€2>g + <n15 n2>g

on the tangent space g° to G at the identity. This Riemannian metric is invariant
under the right G-action. Let

m:G° = G°/G
be the projection onto the right cosets of G. This is a principal G-bundle. The
(orthogonal) splitting
g =gdig
extends to a left invariant principal connection on 7. Projection from the

horizontal bundle (i.e. the summand corresponding to ig) defines a G-invariant
Riemannian metric of nonpositive curvature on G¢/G.
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The Moment Conjugacy Theorem.

Fix x € X and define a map ¢, : G — G°x C X by

Vx(g) = g_lx-

Then there is a function ®, : G° — R such that v, intertwines the two gradient
vector fields V&, € Vect(G¢) and Vf € Vect(X), i.e.

dx(g)VPx(g) = VI(¥x(g))- (@)

In particular, Vf is tangent to the G¢-orbits.

Definition. The function ®, : G° — R will be called the lifted Kempf—Ness
function based at x. (It is unique if normalized by the condition ®,(1) =0.) It is
G-invariant and hence descends to a function

o, :G/G—-R

denoted by the same symbol and called the Kempf—Ness function.
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Proof of the Conjugacy Theorem.

Define a vector field F, € Vect(G¢) and a one form a, on H¢ by
Fug) = —gin(g ),  ax(g)g = —(ulg 'x).3(g"'8))
forg € G, g € T;G°. Then
Step 1. There is a unique ®, such that ®,(1) =0 and
dd, = ay.

Step 2. The map v intertwines the vectorfields F, and Vf.
dipx(g)Fx(g) = VI(¢x(g))-

Step 3. The gradient V&, of &, is F,, i.e.

ax(g)g = <FX(g)v§>g
where the inner product on the right is the left-invariant inner Riemannian metric
on G¢

The vector field F is is horizontal since 1(x) € g and is right G-equivariant, i.e.

Fx(gu) = Fx(g)u
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The Kempf—Ness function for projective manifolds.

The Kempf-Ness function ®, for a projective manifold X C P(V) is

b(g) = 3 (loglg™ vlv — log|v|v) (#)
for g € G where x = 7(v) € X C P(V).
Proof: Define ®, by (#). Then ®,(1) =0 and

(g7 'gg tv,g7tv),

dq)x(g)g = - =
2lg~1v[},

The moment map 1 : X — g is characterized by the formula
(u(y);mg = Hyy) = 3 (ipw,w),,,  y=m(w), [wlt, =1, neg.
(See §3.) Let ¢ = g 'g = £ +in where £, € g. Then

(cg7tv,g7 ),

dq)x(g)g: - 2|g’1V\%/

- <iu(g71X)-,C>gc = - <M(gflx),n>gc

and = S(¢) = J(g18) so do, = a. 0
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Properties of the Kempf—Ness function.

(i) The Kempf—Ness function ®, : G°/G — R is Morse-Bott (usually Morse).

(ii) The critical set of ®, is a (possibly empty) closed connected submanifold of
G¢/G. It is given by

Crit(®x) = {n(g) € G°/G, u(g 'x)=0}.

(iii) If the critical manifold of ®, is nonempty, then it consists of the absolute
minima of ®, and every negative gradient flow line of ®, converges exponentially
to a critical point.

(iv) Even if the critical manifold of ®, is empty, every negative gradient flow line
v:R = G°/G of ®, satisfies

lim @.(+(6) = inf &

(The infimum may be minus infinity.)
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Stability in symplectic geometry.

A point x € X is called

(i)  p-unstable (x € Xu) iff GxNpu~1(0)=
(i) p-semistable (x € X*) iff GexNpu~(0) #
(iii) p-polystable (x € XP*) iff Gxnu~1(0) #0,

(iv) pu-stable (x € X3) iff xis p-polystable and g¢ = 0.3

0,
0,

In the archetypal example x € X"* <= more than half the g; coincide and
x € XP®* <= exactly half the points coincide.

The Moment Limit Theorem. With xy and x as in §15,
(i) xo € X“ if and only if p(xx) # 0.

(ii) xo € X*= if and only if u(xx) = 0.

(i) xo € XP= if and only if p(x) = 0 and xoc € Gxg.

(iv) xo € X® if and only if g, = 0.

Moreover, X*° and X* are open subsets of X.

3

i.e. the isotropy subgroup Gg  is discrete.
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Stability in algebraic geometry.

A vector v € V' \ 0 is called
(i) unstable (ve V") iff 0e Gey,
(i) semistable (ve V=) iff 0¢ Gy,
(iii) polystable (v e VP) iff G°v = G°v,
(iv) stable (veVvs) iff G = G° and G¢ is discrete.

In the archetypal example x € VY <= more than half the roots coincide, and
x € VP <= exactly half the roots coincide.

Kempf-Ness Theorem. The two notions of stability agree for projective space in
the following sense. If x € X C P(V), then

(i) xeX* ifandonlyif 7 (x)C V.
(i) xeX*= ifandonlyif 7 1(x)C Vs
(i) xe€ XP ifandonlyif 7 1(x)C VP

(iv) xeX® ifandonlyif 7 1(x)C Ve
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The Kempf—Ness Theorem generalized.

For any K&hler G-manifold (X,w, J, i) the Kempf-Ness function ®, characterizes
u-stability as follows.

(i)  xis p-unstable = x is unbounded below.

(i)  xis p-semistable <= « is bounded below.

(iii) x is p-polystable <= x has a critical point.

o & © ©

(iv) x is p-stable = « is bounded below and proper.

In the archetypal example take V = C"*1. A point v € V is a binary form
v(x,y) = vox" + vix"ty 4o vy
The north pole-south pole flow is
(exp(t&)v)(x,y) = v(e'x,e""y).
The Kempf-Ness function is

d,(ef) = log(|voe"t|? + [viel™™ 22 4. 4 |v,e ") — log(|v]?).
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Toral elements.

A nonzero element ¢ € g° is called toral iff it satisfies the following equivalent
conditions.

@ ( is semi-simple and has purely imaginary eigenvalues.

@ The subset T := {exp(t)| t € R} is a torus in G°.

@ The element ( is conjugate to an element of g.
Denote the set of toral elements by

T = ad(6%)(g\ {0})

and also use the abbreviations
N:={{eg\{0}[exp(§) =1},  A“:={Ceg\{0}]|exp(C)=1}.

@ The set AU {0} intersects the Lie algebra t C g of any maximal torus T C G
in a spanning lattice.

@ The generator of any one parameter subgroup C* — G€ is conjugate to an
element of AN t.
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For x € X and ¢ € g\ {0} the u-weight of the pair (x, ) is the real number

wu(x, €) := lim {p(exp(ité)x), ) .

In the projective case the p-weight is

w,(x, &) =h T;aéé i

for x = m(v) where
@ \; < .-+ < A are the eigenvalues of i¢,
@ V; C V are the corresponding eigenspaces, and
Qv = Zf;l vi with v; € V;.
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The Hilbert—Mumford criterion.

The p-weight characterizes p-stability as follows.

(i) xeX" <= thereexists a { € A such that w,(x,&) < 0.
(i) xeX® <= wu(x,§)>0forall€eA.
(iii)) xe X <<= xe X and lim¢ o exp(it§)x € Gx if w,(x,£) =0.

(iv) xeX® <= wu(x,§)>0forallgeA.

The original Hilbert—-Mumford criterion is that v € V' <= there exists an
element £ € A such that

t|_|>ngo exp(it€)v = 0.

In the archetypal example take the north pole at the heavy cluster. The center of
mass will lie on the line through the north pole and the center of mass of the
remaining points.* The center of mass lies on the polar axis, at the origin in the
polystable case.

4Slogan: The center of mass of the centers of mass is the center of-mass.
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