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Many important problems in geometry can be reduced to a partial differential
equation of the form

µ(x) = 0,

where x ranges over a complexified group orbit in an infinite dimensional
symplectic manifold X and µ : X → g is an associated moment map. Here we
study the finite dimensional version.

Because we want to gain intuition for the infinite dimensional problems, our
treatment avoids the structure theory of compact groups. We also generalize from
projective manifolds (GIT) to Kähler manifolds (µ-GIT).

In GIT you start with (X , J,G) and try to find Y with R(Y ) ≃ R(X )G .

In µ-GIT you start with (X , ω,G) and try to solve µ(x) = 0.

GIT = µ-GIT + rationality.
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Kähler manifolds.

A Kähler manifold (X , ω, J) satisfies

ωx(Jx x̂1, Jx x̂2) = ωx(x̂1, x̂2), |x̂ |2x := ωx(x̂ , Jx x̂) > 0

for x ∈ X , x̂ , x̂1, x̂2 ∈ TxX . Hence

〈x̂1, x̂2〉x := ωx(x̂1, Jx x̂2)

is a Riemannian metric. A function H : X → R has a symplectic gradient
XH ∈ Vect(X ) and a Riemannian gradient ∇H ∈ Vect(X ) characterized by

dH(x)x̂ = ωx(XH , x̂) = 〈∇H , x̂〉x .

They are related by the formula

∇H = JXH .

The symplectic gradient is also called the Hamiltonian vector field.
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Projective manifolds.

Ingredients:

The complex vector space V = CN and the projective space P(V ).

The (frame bundle of the) tautological line bundle π : V \ 0 → P(V ).

Any complex submanifold X ⊆ P(V ), V = CN of projective space is an example
of a Kähler manifold. The symplectic form is the restriction to X of the
Fubini–Study form

π∗ωFS = ∂∂̄K , K (v) = i~ log |v |.

By Chow, a complex submanifold of P(V ) is the same as a projective manifold,
i.e. a smooth projective variety.
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GIT.

In GIT the ingredients are

A compact subgroup G ⊆ UN and its complexification G c ⊆ GLN(C).

A G c invariant closed complex submanifold X ⊆ P(V ).

The homogenous coordinate ring R(X ).

The ring R(X )G of invariants.

Hilbert showed how to construct a projective variety Y with

R(Y ) = R(X )G .

A sequence of generators ϕ0, . . . , ϕn of R(X )G gives an embedding

ϕ : P(U) → P(Cn).

The set U ⊆ V is the complement of the null cone, the set of points in V where
all the invariants vanish. (The embedding ϕ is not defined on this set. If necessary
raise the components to suitable powers so that the map is homogeneous.) The
closure Y of the image of ϕ is an algebraic variety. A syzygy for ϕ gives
equations for Y .
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µ-GIT.

In µ-GIT the ingredients are

A compact symplectic manifold (X , ω).

A Lie algebra g ⊆ uN of G .

The ad(G)-invariant inner product 〈ξ, η〉 = trace(ξ∗η) on g.

A Hamiltonian action g → Vect(X ) : ξ 7→ Xξ.

An equivariant moment map µ : X → g for this action.

The norm squared function f : X → R defined by f (x) = 1
2 |µ(x)|

2.

That µ is a moment map means that the Hamiltonian for Xξ is

Hξ := 〈µ, ξ〉 , dHξ = ω(Xξ, ·).

That µ is equivariant means that µ(ux) = uµ(x)u−1 for x ∈ X , u ∈ G . This
implies

〈µ(x), [ξ, η]〉 = ω(Xξ(x),Xη(x)) =: {Hξ,Hη}

for ξ, η ∈ g.
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Kähler Actions.

A Hamiltonian action g → Vect(X ) : ξ 7→ Xξ on a closed Kähler manifold extends
to an action

gc → Vect(X ) : ξ + iη 7→ Xξ + JXη

by holomorphic vector fields, so the action of G on X extends to a holomorphic
action of G c on X .

Any subgroup of GL(V ) = GLN induces an action on P(V ). When G ⊆ UN and
X ⊆ P(V ) is a complex G -invariant submanifold,1 the moment map is

〈µ(π(v)), ξ〉
g
= 1

2 〈iξv , v〉V , v ∈ S(V ) := S2N−1.

1By Weyl’s unitarian trick G -invariance implies G c -invariance.
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Rationality Theorem.

A Kähler G -manifold is isomorphic to a projective G -manifold if and only if

(A) Integrality of ω. The cohomology class of ω lies in H2(X ; 2π~Z).

(B) Integrality of µ. The action integral

Aµ(x0, u, x̄) := −

∫

D

x̄∗ω +

∫ 1

0

〈
µ(u(t)−1x0), u(t)

−1u̇(t)
〉
dt

is integral in the sense that

Aµ(x0, u, x̄) ∈ 2π~Z

whenever x0 ∈ X , u : R/Z → G , and x̄ : D → X satisfy x̄(e2πit) = u(t)−1x0.

(The inner product on g satisfies

(C) Integrality of g. If ξ, η ∈ g, exp(ξ) = exp(η) = 1, and [ξ, η] = 0, then
〈ξ, η〉 ∈ Z.)
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Moreover

Where Λ := {ξ ∈ g \ {0} | exp(ξ) = 1} (see §24)

(i) The action integral Aµ(x , u, v) is invariant under homotopy.

(ii) There is an N ∈ N such that Nα = 0 for every torsion class α ∈ H1(G ;Z).

(iii) If 〈ω, π2(X )〉 ⊆ 2π~NZ then there is a central element τ ∈ Z (g) such that
the moment map µ− τ satisfies condition (B).

(iv) Assume (A), (B), (C), and let τ ∈ Z (g) be a central element, so µ+ τ is an
equivariant moment map. Then µ+ τ satisfies (B) if and only if τ ∈ 2π~Λ.

Note that if ξ in (iii) is replaced by ξ+ τ where τ ∈ Z (g) then the moment map µ
is replaced by µ+ τ and

Aµ+τ (x0, u, x̄) = Aµ(x0, u, x̄) + 〈τ, ξ〉 .

This is because τ ∈ Λ and ξ ∈ Λ so 〈τ, ξ〉 ∈ 2π~Z by taking η = τ/2π~ in (C).
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The simplest Kähler manifold.

The sphere S2 is a Kähler manifold. The complex structure, symplectic form, and
Riemannian metric are

Jq q̂ = q × q̂, ωq(q̂1, q̂2) = q · (q̂1 × q̂2), 〈q̂1, q̂2〉q = q̂1 · q̂2

for q ∈ S2 and q̂, q̂1, q̂2 ∈ TqS
2. With the identification so3 ≃ (R3,×) the action

is Hamiltonian with

Xξ(q) = ξ × q, 〈ξ, η〉 = ξ · η, Hξ(q) = 〈µ(q), ξ〉 = q · ξ.

(rotation about ξ). The gradient

∇Hξ(q) = −JqXξ(q) = (ξ × q)× q = ξ − (ξ · q)q

of Hξ generates a north pole – south pole flow with poles on the axis of rotation
of ξ.
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The action of C∗ on S2

Let ξ = (0, 0, 1) ∈ R3 ≃ so3 generate rotation about the z-axis. Then Hξ(q) = z

for q = (x , y , z) ∈ S2 and the ODE q̇ = Xξ(q) is

ẋ = −y , ẏ = x . ż = 0.

The gradient vector field is

∇Hξ(q) = ξ − (ξ · q)q

so the equation q̇ = −∇Hξ(q) is

ẋ = zx , ẏ = zy , ż = z2 − 1.

The solution with q(0) = q0 is

x =
2etx0

z0 + 1− (z0 − 1)e2t
, y =

2ety0
z0 + 1− (z0 − 1)e2t

, z =
z0 + 1 + (z0 − 1)e2t

z0 + 1− (z0 − 1)e2t
.
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Another gradient flow on S2.

The moment map squared for the S1 action on S2 is

f (q) = 1
2z

2

for q = (x , y , z) ∈ S2. The gradient is

∇f (q) = ξ − (ξ · q)q

where ξ = (0, 0, z) so the ODE

q̇ = −∇f (q)

is2

ẋ = z2x , ẏ = z2y , ż = z3 − z .

The equator consists of rest points and the orbits run away from the poles along
the meridians towards the equator.

2Check: xẋ + y ẏ + zż = z2x2 + z2y2 + z4 − z2 = z2(x2 + y2 + z2 − 1) = 0.
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The archetypal example.

Let SO3 act diagonally on X = S2 × · · · × S2

︸ ︷︷ ︸

n

with moment map

µ(x) :=

n∑

i=1

qi , x = (q1, . . . , qn) ∈ X .

The preimage µ−1(0) consists of those x with center of mass at the origin. The
moment map squared is

f (x) = 1
2 |µ(x)|

2, df (x)x̂ = 1
2

∑

i 6=j

qi · q̂j

and negative gradient flow of f is

q̇i = −∇f (x) = −
∑

j 6=i

(qj − (qj · qi)qi ).

This example is closely related to the space of binary forms of degree n.

V. Georgoulas, J.W. Robbin, D. A. Salamon () GIT and µ-GIT October 25, 2013 12 / 26



Critical points of f where µ 6= 0.

In the archetypal example we can characterize the critical points using Lagrange
multipliers. Since

f (x) = 1
2 |µ(x)|

2 =
n

2
+
∑

i<j

qi · qj ,

we have that df (x) = 0 if and only if there exist λ1, . . . , λn such that

∑

j 6=i

qj = λiqi

for i = 1, . . . , n and when this holds, λi =
(
∑

j 6=i qj

)

· qi so

df (x) = 0 ⇐⇒ µ(x) = (λi + 1)qi .

Since |qi | = 1, the critical points x of f where µ(x) 6= 0 are the points x of form
x = (q1, . . . , qn) where qi = ±p for i = 1, . . . , n for some p ∈ S2.
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The moment map squared.

In the Kähler case define f : X → R by

f (x) := 1
2 |µ(x)|

2

satisfies f −1(0) = µ−1(0) so any x ∈ µ−1(0) is a critical point of f (as it is an
absolute minimum).

In the projective case for x = π(v), v ∈ V \ 0 the following are equivalent:

v minimizes the distance from the orbit G cv to the origin.

x ∈ µ−1(0).

Proof: Assume w.l.o.g. that |v | = 1. The tangent space to the orbit is

Tv(G
cv) = {ζv , ζ ∈ g

c}, Tv (Gv) = {ξv , ξ ∈ g}.

The derivative of the distance is v̂ 7→ 2 〈v , v̂〉V . It vanishes on Tg (G
cV ) iff

〈v , v̂ 〉V = 〈v , ζv〉V = 0 for all ζ. But for ζ = ξ + iη, ξ, η ∈ g we have

1
2 〈v , iζv〉V = 〈µ(x), iξ − η〉

gc = −〈µ(x), η〉
g
= 0

if x ∈ µ−1(0). For the converse see §20 items (ii) and (iii).
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Convergence Theorem.

Every solution of the negative gradient equation

ẋ = −∇f (x), x(0) = x0

converges, i.e. the limit
x∞ := lim

t→∞
x(t)

exists in X . (Proof: Lojasiewicz.)

The (not quite right) idea is to view f as a G -invariant Morse–Bott function. The
stable manifold of the G -invariant set µ−1(0) is an open dense set in U ⊆ X and
the map

U → µ−1(0) : x0 → x∞

gives an isomorphism U/G c ≃ µ−1(0)/G . (This is like R(Y ) = R(X )G .)
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The homogeneous space G c/G .

Equip G c with the unique left invariant Riemannian metric which agrees with the
inner product

〈ξ1 + iη1, ξ2 + iη2〉gc = 〈ξ1, ξ2〉g + 〈η1, η2〉g

on the tangent space gc to G c at the identity. This Riemannian metric is invariant
under the right G -action. Let

π : G c → G c/G

be the projection onto the right cosets of G . This is a principal G -bundle. The
(orthogonal) splitting

gc = g⊕ ig

extends to a left invariant principal connection on π. Projection from the
horizontal bundle (i.e. the summand corresponding to ig) defines a G c -invariant
Riemannian metric of nonpositive curvature on G c/G .
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The Moment Conjugacy Theorem.

Fix x ∈ X and define a map ψx : G c → G cx ⊆ X by

ψx(g) = g−1x .

Then there is a function Φx : G c → R such that ψx intertwines the two gradient
vector fields ∇Φx ∈ Vect(G c) and ∇f ∈ Vect(X ), i.e.

dψx(g)∇Φx(g) = ∇f (ψx(g)). (♥)

In particular, ∇f is tangent to the G c -orbits.

Definition. The function Φx : G c → R will be called the lifted Kempf–Ness
function based at x . (It is unique if normalized by the condition Φx(1) = 0.) It is
G -invariant and hence descends to a function

Φx : G c/G → R

denoted by the same symbol and called the Kempf–Ness function.
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Proof of the Conjugacy Theorem.

Define a vector field Fx ∈ Vect(G c) and a one form αx on Hc by

Fx(g) := −g iµ(g−1x), αx(g)ĝ = −
〈
µ(g−1x),ℑ(g−1ĝ)

〉

for g ∈ G c , ĝ ∈ TgG
c . Then

Step 1. There is a unique Φx such that Φx(1) = 0 and

dΦx = αx .

Step 2. The map ψx intertwines the vectorfields Fx and ∇f .

dψx(g)Fx(g) = ∇f (ψx(g)).

Step 3. The gradient ∇Φx of Φx is Fx , i.e.

αx(g)ĝ = 〈Fx(g), ĝ〉g

where the inner product on the right is the left-invariant inner Riemannian metric
on G c

The vector field F is is horizontal since µ(x) ∈ g and is right G -equivariant, i.e.

Fx (gu) = Fx(g)u

for g ∈ G c and u ∈ G .
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The Kempf–Ness function for projective manifolds.

The Kempf–Ness function Φx for a projective manifold X ⊆ P(V ) is

Φx(g) =
1
2

(
log |g−1v |V − log |v |V

)
(#)

for g ∈ G c where x = π(v) ∈ X ⊆ P(V ).

Proof: Define Φx by (#). Then Φx(1) = 0 and

dΦx(g)ĝ = −

〈
g−1ĝg−1v , g−1v

〉

V

2|g−1v |2V
.

The moment map µ : X → g is characterized by the formula

〈µ(y), η〉
g
= Hη(y) =

1
2 〈iηw ,w〉V , y = π(w), |w |2V = 1, η ∈ g.

(See §3.) Let ζ = g−1ĝ = ξ + iη where ξ, η ∈ g. Then

dΦx(g)ĝ = −

〈
ζg−1v , g−1v

〉

V

2|g−1v |2V
= −

〈
iµ(g−1x), ζ

〉

gc = −
〈
µ(g−1x), η

〉

gc

and η = ℑ(ζ) = ℑ(g−1ĝ) so dΦx = αx .
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Properties of the Kempf–Ness function.

(i) The Kempf–Ness function Φx : G c/G → R is Morse–Bott (usually Morse).

(ii) The critical set of Φx is a (possibly empty) closed connected submanifold of
G c/G . It is given by

Crit(Φx) =
{
π(g) ∈ G c/G , µ(g−1x) = 0

}
.

(iii) If the critical manifold of Φx is nonempty, then it consists of the absolute
minima of Φx and every negative gradient flow line of Φx converges exponentially
to a critical point.

(iv) Even if the critical manifold of Φx is empty, every negative gradient flow line
γ : R → G c/G of Φx satisfies

lim
t→∞

Φx(γ(t)) = inf
G c/G

Φx .

(The infimum may be minus infinity.)
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Stability in symplectic geometry.

A point x ∈ X is called

(i) µ-unstable (x ∈ X us) iff G cx ∩ µ−1(0) = ∅,

(ii) µ-semistable (x ∈ X ss) iff G cx ∩ µ−1(0) 6= ∅,

(iii) µ-polystable (x ∈ X ps) iff G cx ∩ µ−1(0) 6= ∅,

(iv) µ-stable (x ∈ X s) iff x is µ-polystable and gcx = 0.3

In the archetypal example x ∈ X us ⇐⇒ more than half the qi coincide and
x ∈ X ps ⇐⇒ exactly half the points coincide.

The Moment Limit Theorem. With x0 and x∞ as in §15,

(i) x0 ∈ X us if and only if µ(x∞) 6= 0.

(ii) x0 ∈ X ss if and only if µ(x∞) = 0.

(iii) x0 ∈ X ps if and only if µ(x∞) = 0 and x∞ ∈ G cx0.

(iv) x0 ∈ X s if and only if gx∞ = 0.

Moreover, X ss and X s are open subsets of X .

3i.e. the isotropy subgroup G c
x∞

is discrete.
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Stability in algebraic geometry.

A vector v ∈ V \ 0 is called

(i) unstable (v ∈ V us) iff 0 ∈ G cv ,

(ii) semistable (v ∈ V ss) iff 0 /∈ G cv ,

(iii) polystable (v ∈ V ps) iff G cv = G cv ,

(iv) stable (v ∈ V s) iff G cv = G cv and G c
v is discrete.

In the archetypal example x ∈ V us ⇐⇒ more than half the roots coincide, and
x ∈ V ps ⇐⇒ exactly half the roots coincide.

Kempf–Ness Theorem. The two notions of stability agree for projective space in
the following sense. If x ∈ X ⊆ P(V ), then

(i) x ∈ X us if and only if π−1(x) ⊆ V us.

(ii) x ∈ X ss if and only if π−1(x) ⊆ V ss.

(iii) x ∈ X ps if and only if π−1(x) ⊆ V ps.

(iv) x ∈ X s if and only if π−1(x) ⊆ V s.
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The Kempf–Ness Theorem generalized.

For any Kähler G -manifold (X , ω, J, µ) the Kempf–Ness function Φx characterizes
µ-stability as follows.

(i) x is µ-unstable ⇐⇒ Φx is unbounded below.

(ii) x is µ-semistable ⇐⇒ Φx is bounded below.

(iii) x is µ-polystable ⇐⇒ Φx has a critical point.

(iv) x is µ-stable ⇐⇒ Φx is bounded below and proper.

In the archetypal example take V = Cn+1. A point v ∈ V is a binary form

v(x , y) = v0x
n + v1x

n−1y + · · ·+ vny
n.

The north pole-south pole flow is

(exp(tξ)v)(x , y) = v(etx , e−ty).

The Kempf–Ness function is

Φx(e
t) = log(|v0e

nt|2 + |v1e
(n−2)t |2 + · · ·+ |vne

−nt |2)− log(|v |2).
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Toral elements.

A nonzero element ζ ∈ gc is called toral iff it satisfies the following equivalent
conditions.

ζ is semi-simple and has purely imaginary eigenvalues.

The subset Tζ := {exp(tζ) | t ∈ R} is a torus in G c .

The element ζ is conjugate to an element of g.

Denote the set of toral elements by

T c := ad(G c)(g \ {0})

and also use the abbreviations

Λ := {ξ ∈ g \ {0} | exp(ξ) = 1} , Λc := {ζ ∈ g
c \ {0} | exp(ζ) = 1} .

The set Λ ∪ {0} intersects the Lie algebra t ⊂ g of any maximal torus T ⊆ G

in a spanning lattice.

The generator of any one parameter subgroup C∗ → G c is conjugate to an
element of Λ ∩ t.

V. Georgoulas, J.W. Robbin, D. A. Salamon () GIT and µ-GIT October 25, 2013 24 / 26



µ-weights.

For x ∈ X and ξ ∈ g \ {0} the µ-weight of the pair (x , ξ) is the real number

wµ(x , ξ) := lim
t→∞

〈µ(exp(itξ)x), ξ〉 .

In the projective case the µ-weight is

wµ(x , ξ) = ~max
vi 6=0

λi

for x = π(v) where

λ1 < · · · < λk are the eigenvalues of iξ,

Vi ⊆ V are the corresponding eigenspaces, and

v =
∑k

i=1 vi with vi ∈ Vi .
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The Hilbert–Mumford criterion.

The µ-weight characterizes µ-stability as follows.

(i) x ∈ X us ⇐⇒ there exists a ξ ∈ Λ such that wµ(x , ξ) < 0.

(ii) x ∈ X ss ⇐⇒ wµ(x , ξ) ≥ 0 for all ξ ∈ Λ.

(iii) x ∈ X ps ⇐⇒ x ∈ X ps and limt→∞ exp(itξ)x ∈ G cx if wµ(x , ξ) = 0.

(iv) x ∈ X s ⇐⇒ wµ(x , ξ) > 0 for all ξ ∈ Λ.

The original Hilbert–Mumford criterion is that v ∈ V us ⇐⇒ there exists an
element ξ ∈ Λ such that

lim
t→∞

exp(itξ)v = 0.

In the archetypal example take the north pole at the heavy cluster. The center of
mass will lie on the line through the north pole and the center of mass of the
remaining points.4 The center of mass lies on the polar axis, at the origin in the
polystable case.

4Slogan: The center of mass of the centers of mass is the center of mass.
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