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These notes summarize the key points in the second chapter of Differential
Geometry of Curves and Surfaces by Manfredo P. do Carmo. I wrote them to
assure that the terminology and notation in my lecture agrees with that text.

1. Notation. Throughout x : U → R3 is a smooth1 map defined of an open
set U ⊆ R2 in the plane. Usually a typical point of U denoted by q = (u, v) and
the components of the map x are denoted

x(u, v) = (x(u, v), y(u, v), z(u, v)).

The differential of this map at q ∈ R2 is the linear map dxq : R2 → R3

represented by the matrix of partial derivatives

dxq =



∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v


evaluated at the point q = (u, v). See do Carmo page 54. On page 84 he
introduces the notations

xu =
∂x

∂u
=



∂x

∂u

∂y

∂u

∂z

∂u


, xv =

∂x

∂v
=



∂x

∂v

∂y

∂v

∂z

∂v


.

for the columns of dxq. Note the inconsistency of notation: in the expression dxq
the subscript q indicates where the partial derivatives are to be evaluated while
in the expressions xu and xv the subscript indicates which partial derivative is
being computed.

1 For do Carmo the terms smooth, differentiable and infinitely differentiable are synony-
mous. I prefer the term smooth.
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2. Definition. A parameterized surface is a map x : U → R3 as above.
The image x(U) ⊆ R3 is called the trace and the surface is called regular iff
the differential dxq is one-to-one for all q ∈ U . (See do Carmo page 78.)

3. Remarks. The definition is analogous to the definition of regular parame-
terized curve α : I → R3 given on pages 2 and 6 of do Carmo. The condition
that dxq be one-to-one holds if and only if xu ∧ xv 6= 0 and this is the analog
of the regularity condition that α′ 6= 0. As for curves the real object of study
is the trace. The following definitions restrict the trace and also enable us to
define surfaces independently from any particular parameterization.

4. Definition. A subset S ⊆ R3 of R3 is called a regular surface iff for
every point p0 ∈ S there is an open subset V ⊆ R3 and a regular parameterized
surface x : U → R3 such that p0 ∈ S ∩ V , x(U) = S ∩ V , and the map x is a
homeomorphism onto its trace S∩V . The last condition means that the inverse
map x−1 : S ∩ V → U is continuous. The map x : U → S ∩ V ⊆ R3 is called a
local parameterization of S and the functions u, v : S ∩ V → R defined by

x−1(p) = (u(p), v(p)), p ∈ S ∩ V

are called local coordinates on S.

5. Change of Parameters Theorem. Let x : U1 → S ∩ V1 ⊆ R3 and
y : U2 → S ∩ V2 ⊆ R3 be two local parameterizations and define open subsets
U12 and U21 of R2 by

U12 := x−1(S ∩ V1 ∩ V2), U21 := y−1(S ∩ V1 ∩ V2).

Then the map h : U12 → U21 defined by

h(q) = y−1(x(q))

is a diffeomorphism, i.e. both h and h−1 are smooth.

Proof: See do Carmo pages 70-71.

6. Definition. A subset C ⊆ R3 of R3 is called a regular curve iff for every
point p0 ∈ C there is an open subset V ⊆ R3 and a regular parameterized
curve α : I → R3 such that p0 ∈ C ∩ V , x(I) = C ∩ V , and the map α is a
homeomorphism onto its trace C ∩ V . The map α → C ∩ V ⊆ R3 is called a
local parameterization of C. (Recall from Chapter 1 that the condition that
α be a regular parameterized curve is that α′(t) 6= 0 for t ∈ I.)

7. Change of Parameters Theorem for Curves. Let α : I1 → S ∩V1 ⊆ R3

and β : I2 → S ∩ V2 ⊆ R3 be two local parameterizations of a regular curve C
and define open intervals I12 and I21 of R3 by

I12 := α−1(C ∩ V1 ∩ V2), I21 := y−1(C ∩ V1 ∩ V2).

Then the map h : I12 → I21 defined by

h(t) = β−1(α(t)))

is a diffeomorphism, i.e. both h and h−1 are smooth.
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Proof: This is Exercise 2.3-15 on page 82 of Do Carmo.

8. Example. Consider the curve γ : R→ R2 defined by

γ(t) = (cos t, sin 2t).

The derivative γ′ never vanishes and the trace C = γ(R) is a figure eight crossing
itself at the origin. Let I1 = (π/2, 5π/2), I2 = (−π/2, 3π/2) and let α : I1 → R2

and β : I2 → R2 be the restrictions of γ to the indicated intervals. Then
C = α(I1) = β(I2) and the maps α and β are one-to-one. However there do not
exist open intervals I12 about about 3π/2 and I21 about π/2 such that α−1 ◦ β
is a diffeomorphism. The hypothesis of the previous theorem fails. The inverse
map α−1 : C ∩V → I1 is not a homeomorphism onto its image no matter small
is the neighborhood V of the origin in R2

9. Theorem. Let S ⊂ R3 be a regular surface and f : S → R. Then the
following are equivalent.

(i) For every local parameterization x : U → S ∩ V the composition f ◦ x :
U → R is a smooth function.

(ii) For every p0 ∈ S there is a local parameterization x : U → S ∩ V with
p0 ∈ S ∩ V such that the composition f ◦ x smooth.

(iii) For every p ∈ S there is an open set V ⊆ R3 containing p0 and a smooth
function F : V → R such that F (p) = f(p) for p ∈ S ∩ V .

(See do Carmo page 72.) A function satisfying these equivalent properties is
called smooth. A map f : S → Rn is called smooth iff each of its n components
is a smooth function.

10. Regular Values. Let V ⊆ R3 be open subset and F : V → R be a smooth
function. A point p ∈ V is called a regular point of F iff the differential

dFp :=

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
p

is non zero. (Here the subscript p on the right indicates that the partial deriva-
tives are to be evaluated at p.) A real number a ∈ R is called a regular value
of F iff every point p ∈ F−1(a) is a regular point of F .

11. Regular Value Theorem. A subset S ⊆ R3 is a smooth surface if and
only if for every point p ∈ S there is an open set V ⊆ R3 and a smooth function
F : V → R such that p ∈ V , 0 is a regular value of F , and S ∩ V = F−1(0).

Proof. (See do Carmo page 59.) If p is a regular point of F then at least one of
the three partial derivatives is non zero at p. The Implicit Function Theorem2

2 Click if reading online.
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states that the corresponding variable is a function of the other two in a neigh-
borhood of p. This means that there is a regular parameterization of one of the
three forms

x(u, v) = (x(u, v), u, v), y(u, v) = (u, y(u, v), v), z(u, v) = (u, v, z(u, v)).

Coordinates formed this way are called Monge coordinates.

12. Remark. It is a theorem (page 114 of do Carmo) that a surface S ⊆ R3

is of form S = F−1(0) for some smooth F : V → R having 0 is a regular value
if and only if S is orientable. (See Definition 26 below for the definition of
orientable.) This theorem requires that S ⊆ V whereas Theorem 11 above is
local; it only requires S∩V = F−1(0). The point is that every surface is “locally
orientable”, but orientability is a “global condition”.

13. Example. The ellipsoid is the set F−1(0) where

F (x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1.

The only point of R3 which is not a regular point of F is the origin and F does
not vanish at the origin. The ellipsoid can be be covered by six graphs, namely

x±(u, v) = (±x(u, v), u, v), x(u, v) := |a|
√

1− b−2u2 − c−2v2,
y±(u, v) = (u,±y(u, v), v), y(u, v) := |b|

√
1− a−2u2 − c−2v2,

z±(u, v) = (u, v,±z(u, v)), z(u, v) := |c|
√

1− a−2u2 − b−2v2.

In each case the open set U ⊆ R2 is defined by the condition that the quantity
under the square root sign is positive (this the interior of an ellipse) and the
open set V ⊆ R3 is the half space where the corresponding coordinate is either
positive or negative as appropriate.

14. Definition. Let S ⊆ R3 be a regular surface and p ∈ S. The tangent
vector to S at p is a vector α′(0) where α : I → R3 is a smooth curve such
that α(I) ⊆ S, 0 ∈ I, and α(0) = p. The space of all tangent vectors to S at
p is denoted by TpS and called the tangent space to S at p. (See do Carmo
page 83.)

15. Theorem. Let x : U → S∩V ⊆ R3 be a local parameterization of a smooth
surface S, q ∈ U , and p = x(q) ∈ S. Then

TpS = dxq(R2),

i.e. the tangent space is the image of the differential dxq : R2 → R3.

16. Remark. I prefer to call TpS the tangent space and the translate p+TpS
the tangent plane. The tangent space is a vector space; the tangent plane is
not. On page 83 do Carmo writes “the plane dxq(R2) which passes through
p = x(q) . . .”. This is incorrect as usually p /∈ dxq(R2). Of course, the point
p = p+ 0 lies in the tangent plane p+ TpS.
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17. Maps between surfaces. Let S1, S2 ⊆ R3 be regular surfaces, and

ϕ : S1 → S2

be a smooth map, i.e. each of its three components is a smooth function as
in Theorem 9 above. An equivalent condition is that the map ϕ is smooth in
local coordinates, i.e. for every point p ∈ S and every local parameterization
y : U2 → S2 ∩V2 with ϕ(p) ∈ S2 ∩V2 there is a local parameterization x : U1 →
S1 ∩ V1 such that ϕ(U1) ⊆ U2 and the map y−1 ◦ ϕ ◦ x : U1 → U2 is a smooth
map from the open set U1 ⊆ R2 to the open set U2 ⊆ R2. When ϕ : S1 → S2 is
smooth and α : I → S1 is a curve in S1 with α(0) = p, then ϕ ◦ α : I → S2 is a
curve with (ϕ ◦ α)(0) = ϕ(p) so the differential

dϕp : TpS1 → Tϕ(p)S2

is a linear map from the tangent space to S1 at p to the tangent space to S2 at
ϕ(p). A map ϕ : S1 → S2 is called a diffeomorphism iff ϕ is one-to-one and
onto and both maps ϕ and ϕ−1 are smooth.

18. Inverse Function Theorem. The differential dϕp : TpS1 → Tϕ(p)S2 is
an invertible linear map if and only if f is a local diffeomorphism at p, i.e.
if and only if there are open sets S1 ∩ V1 and S2 ∩ V2 such that p ∈ S1 ∩ V1,
ϕ(p) ∈ S2 ∩ V2, ϕ(S1 ∩ V1) = S2 ∩ V2, and the map ϕ : S1 ∩ V1 → S2 ∩ V2 is a
diffeomorphism.

Proof: In other words, for all w2 ∈ TpS2 the equation dϕp(w1) = w2 has a
unique solution w1 ∈ TpS1 if and only if for all p2 ∈ S2 near ϕ(p) the equation
p2 = ϕ(p1) has a unique solution p1 ∈ S1 near p. A special case is where
S1 = U1 and S2 = U2 are open subsets in R2 = R2 × {0} ⊆ R3. The general
case follows easily from the special case. For careful proofs of this and the
other theorems (such as the Implicit Function Theorem and the Existence and
Uniqueness Theorem for ODE) which Do Carmo leaves unproved see the little
book Calculus On Manifolds by Michael Spivak.

19. Definition. Let S ⊆ R3 be a regular surface and p ∈ S. The function
Ip : TpS → R defined by

Ip(w) := 〈w,w〉 = |w|2, w ∈ TpS ⊆ R3

is called the first fundamental form of S at p. (See do Carmo page 92.)

20. Remark. Here do Carmo uses the notation 〈w1, w2〉 for what was denoted
by w1 ·w2 in Chapter I and calls 〈w1, w2〉 the inner product (rather than the
dot product) of the vectors w1, w2 ∈ R3. When w1, w2 ∈ TpS he sometimes
writes 〈w1, w2〉p for 〈w1, w2〉. Following do Carmo I will no longer write vectors
in boldface. Note that do Carmo denotes local parameterizations in bold face,
but x(u, v) should be viewed as a point of R3 not a vector.
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21. The First Fundamental Form in Local Coordinates. Let S ⊆ R3

be a regular surface and x : U → S ∩W be a local parameterization. Define
functions F,E,G : U → R by

E(q) = 〈xu,xu〉p , F (q) = 〈xu,xv〉p , G(q) = 〈xv,xv〉p

for q ∈ U and p = x(q) ∈ S. Then

〈p̂1, p̂2〉p = E(q)û1û2 + F (q)(û1v̂2 + v̂1û2) +G(q)v̂1v̂2

for p̂i = (ûi.v̂i) ∈ R2. In particular, the first fundamental form is given by

Ip(p̂) = E(q)û2 + 2F (q)ûv̂ +G(q)v̂2.

In matrix notation this formula is

Ip(p̂) =
(
û v̂

)( E F
F G

)
q

(
û
v̂

)
.

22. Example (Stereographic Projection). (See do Carmo Exercise 16 page
67.) Let S2 ⊆ R3 denote the unit sphere, i.e.

S2 = {(x, y, z) ∈ R3, x2 + y2 + z2 = 1}.

The point n = (0, 0, 1) ∈ S2 is called the north pole. The map π : S2 \{n} → R2

defined by the condition

π(p) = q ⇐⇒ the three points n, p, (q, 0) are collinear

is called stereographic projection. By similar triangles (see Figure 1) we see
that

π(x, y, z) =

(
x

1− z
,

y

1− z

)
and the inverse map is given by x(u, v) := π−1(u, v) = (x, y, z) where

x =
2u

u2 + v2 + 1
, y =

2v

u2 + v2 + 1
, z =

u2 + v2 − 1

u2 + v2 + 1
.

The partial derivatives are

∂x

∂u
=
−2u2 + 2v2 + 2

(u2 + v2 + 1)2
,

∂y

∂u
=

−4uv

(u2 + v2 + 1)2
,

∂z

∂u
=

−4u2

(u2 + v2 + 1)2
,

∂x

∂v
=

−4uv

(u2 + v2 + 1)2
,

∂y

∂v
=

2u2 − 2v2 + 2

(u2 + v2 + 1)2
,

∂z

∂v
=

−4v2

(u2 + v2 + 1)2
.

Hence

〈xu,xu〉 = 〈xv,xv〉 =
4

u2 + v2 + 1
, 〈xu,xv〉 = 0.
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n

p

q

Figure 1: Stereographic Projection

Therefore for p = (x, y, z) ∈ S2 \ {n} and q = (u, v) = π(p) ∈ R2 we have

〈p̂1, p̂2〉 = µ(q) 〈q̂1, q̂2〉

where

q̂i ∈ R2, p̂i = dxq(q̂i) ∈ TpS2, µ(q) :=
4

u2 + v2 + 1
.

In other words the first fundamental form satisfies E = G and F = 0. This
implies that the linear map dxq : R2 → TpS

2 preserves (cosines of) angles. A
linear map which preserves angles is called conformal.

23. Remark. The book Geometry and the Imagination by David Hilbert and
Stephan Cohn-Vossen (Chelsea Publishing Company, 1952) contains an elemen-
tary proof that stereographic projection is conformal on page 248. (The proof
is elementary in that it doesn’t use calculus.) An elementary proof can also be
found online at http://people.reed.edu/~jerry/311/stereo.pdf. (I put a
copy at http://www.math.wisc.edu/~robbin/Do_Carmo/stereo.pdf.)

24. Area Theorem. Let S ⊆ R3 be a compact3 regular surface. Then there is
a unique function A which assigns a real number A(S ∩V ) to every open subset
S ∩ V of S and satisfies the following two properties.

(i) For every local parameterization x : U → S ∩ V we have

A(S ∩ V ) :=

∫∫
U

|xu ∧ xv| du dv

(ii) If V = V1 ∪ V2 and the sets S ∩ V1 and S ∩ V2 intersect only in their
boundaries, then

A(S ∩ V ) = A(S ∩ V1) +A(S ∩ V2).

3 The term compact means closed and bounded.
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The number A(S) is called the area of S.

Proof: A careful proof of this theorem is best left for another course, but the
geometric idea isn’t so difficult. The key point is the change of variables formula
for a double integral. (See do Carmo at the bottom of page 97.) This formula
says that ∫∫

U1

|xu ∧ xv| du dv =

∫∫
U2

|yu ∧ yv| du dv

if x : U1 → S ∩ V and y : U2 → S ∩ V are two local parameterizations with
the same trace. i.e. x(U1) = y(U2). Then we must show that S can be covered
by open sets which overlap only in their boundaries. (A precise definition of
boundary must be given.) Finally we must prove the addition formula in part (ii).

The formula in part (i) is plausible. Imagine that the set U is broken up into
a large number of very small rectangles. Each rectangle has area du dv. The
image of this rectangle under the map x will be approximately a parallelogram
with edge vectors xu du and, xv dv and the area of this parallelogram is roughly

dA = |xu ∧ xv| du dv.

Now |xu ∧ xv| = | sin θ| |xu| |xv| where θ is the angle from xu to xv. But this is
the area of the tiny parallelogram. Adding up all these tiny areas gives the total
area as an integral. In terms of the first fundamental form the area element in
local coordinates is

dA =
√
EG− F 2 du dv.

This is a consequence of the formulas

〈w1, w2〉 = |w1| |w2| cos θ, |w1 ∧ w2| = |w1| |w2| | sin θ|

for the inner product and wedge product of two vectors w1, w2 ∈ R3.

25. Example. As an example we will prove the formula

A(S2) = 4π

in two different ways. A parameterization of the upper hemisphere is

x(u, v) = (u, v, z(u, v)), z(u, v) :=
√

1− u2 − v2.

The coordinate vectors are

xu =

 1
0
−u√

1− u2 − v2

 , xv =

 0
1
−v√

1− u2 − v2

 ,

so

xu ∧ xv =


v√

1− u2 − v2
−u√

1− u2 − v2
1

 , |xu ∧ xv| =
1√

1− u2 − v2
.
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To evaluate the integral we use the change of variables

(0, 1)× (0, 2π)→ {(u, v), u2 + v2 < 1} : (r, θ) 7→ (u, v) = (r cos θ, r sin θ)

so du dv =
∂(u, v)

∂(r, θ)
dr dθ where

∂(u, v)

∂(r, θ)
= det


∂u

∂r

∂u

∂θ
∂v

∂r

∂v

∂θ

 = r

so ∫
u2+v2<1

|xu ∧ xv| du dv =

∫ 2π

0

∫ 1

0

r dr dθ√
1− r2

= 2π

∫ 1

0

ds

2
√
s

= 2π.

The parameterization (u, v) 7→ (u, v,−z(u, v)) of the lower hemisphere gives the
same answer and the two hemispheres intersect only in their common boundary
(the unit circle in the (x, y)-plane) so the area of S2 is 4π.

A second way to prove A(S2) = 4π is to use spherical coordinates

x(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

Here x : (0, 2π) × (0, π) → S2 ∩ V where V = {(x, y, z) ∈ R3, x 6= 1, z 6= ±1}.
Then

xθ =

 − sin θ cosϕ
cos θ cosϕ

0

 , xϕ =

 − cos θ sinϕ
− sin θ sinϕ

cosϕ

 ,

so

xθ ∧ xϕ =

 cos θ cos2 ϕ
sin θ cos2 ϕ
cosϕ sinϕ

 , |xθ ∧ xϕ| = | cosϕ|.

Now S2 ∩ V intersects itself only in its boundary (which is a semicircle) so

A(S2) =

∫ π

0

∫ 2π

0

| cosϕ| dθ dϕ = 4π.

26. The Unit Normals. For a two dimension vector subspace W ⊆ R3 there
are exactly two unit vectors n ∈ R3 which are perpendicular to every vector in
W , i.e. such that |n| = 1 and 〈n,w〉 = 0 for w ∈ W . If n is one of these two
vectors then −n is the other one. In particular, when W = TpS is the tangent
space at a point p to a regular surface S ⊆ R3 there are exactly two vectors
N(p) such that |N(p)| = 1 and 〈N(p), w〉 = 0 for all w ∈ TpS. If x : U → S ∩V
is a local parameterization of S and p = x(q) ∈ S where q ∈ U , then these two
unit normal vectors are

N(p) = ±
(

xu ∧ xv
|xu ∧ xv|

)
q

.
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27. Definition. A regular surface is said to be orientable iff there is a smooth
map N : S → S2 such that

〈N(p), w〉 = 0, ∀w ∈ TpS.

Such a map determines an orientation on each tangent space: an ordered basis
w1, w2 ∈ TpS is positively oriented iff 〈N(p), w1 ∧ w2〉 > 0. The vector field N
is called the unit normal to the oriented surface S and the map N : S → S2

is called the Gauss map.

28. Remark. It is a difficult theorem that a compact regular surface S is
orientable and the open set R3 \S has two connected components, one bounded
and the other unbounded. In this case one chooses the orientation so that
the normal vector N points into the unbounded component. This N is called
the outward unit normal vector. For example, when S = S2 the bounded
component is the open ball {(x, y, z) ∈ R3, x2 +y2 +z2 < 1} and the unbounded
component is the open set {(x, y, z) ∈ R3, x2 + y2 + z2 > 1}. The outward unit
normal for S2 is N(p) = p so the Gauss map is the identity map.

29. The Möbius Strip. (See do Carmo page 106.) This is the image S of the
map x : R× (−1, 1)→ R3 defined by

x(θ, r) = z(θ)+rn(θ), z(θ) = (2 cos 2θ, 2 sin 2θ, 0), n(θ) = (sin θ, sin θ, cos θ).

The curve z has period π and the curve n has period 2π. Note that the line
segment `(θ) connecting the two points x(θ,±1) lies in S and if 0 < |θ1−θ2| < π
the two line segments `(θ1) and `(θ2) do not intersect. The two line segments
`(θ) and `(θ + π) are equal as sets but they have opposite orientations. Since
xθ = z′(θ) + rn′(θ) and xr = n(θ) we get

(xθ ∧ xr)(θ, 0) = z′(θ) ∧ n(θ)

so x(θ + π, 0) = x(θ, 0) but xθ ∧ xr(θ + π, 0) = −xθ ∧ xr(θ, 0). Hence there is
no continuous unit normal so the Möbius strip is not orientable.

10


