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Chapter 1

Review Of Calculus

1.1 Derivatives

Let X ⊂ Rm and Y ⊂ Rn be open and f : X → Y . Recall that for any
r = 0, 1, 2, . . . ,∞ the map f is called Cr iff all its partials of order ≤ r exist
and are continuous. When f is C1 there is a map

Df : X → R
m×n

which assigns to each x ∈ X its derivative 1 Df(x) defined by

Df(x)v =
d

dt
f(x+ tv)

∣
∣
∣
∣
t=0

.

By the chain rule Df(x) is nothing more than the matrix of partials of f eval-
uated at x:

Df(x) =















∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xm















where f = (f1, f2, . . . , fn) and the partials are evaluated at x = (x1, x2, . . . , xm).
The basic idea of differential calculus is that near x0 ∈ X the map f is well

approximated by the affine map

x 7→ f(x0) +Df(x0)(x − x0).

The precise way of saying this is as follows:

1Sometimes called the Jacobian matrix of f at x
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Proposition 1. If f is C1 and x ∈ X then for every ǫ > 0 there exists δ > 0
such that

|f(x+ v)− f(x)−Df(x)v| ≤ ǫ|v|
whenever |v| < δ.

Remark 2. Conversely, if for every x ∈ X there is a (necessarily unique) matrix
Df(x) satisfying the condition of proposition 1 and if the map Df : X → Rm×n

is continuous then the map f is C1.

Exercise 3. Let GL(n,R) ⊂ Rn×n denote the set of invertible matrices. This is
an open set since it is defined by the condition that a ∈ GL(n,R) ⇐⇒ det(A) 6=
0 and det : Rn×n → R is a continuous function. Let ι : GL(n,R) → GL(n.R)
be the map which assigns to each matrix a its inverse:

ι(a) = a−1.

that
Dι(a)B = −a−1Ba−1

for a ∈ GL(n,R) and B ∈ Rnsn. (Hint: ι(a)a = 1.)

Exercise 4. Show that

D det(a)B = det(a) tr(a−1B)

for a ∈ GL(n,R) and B ∈ Rn×n.

1.2 The Chain Rule

For open subsets X ⊂ Rm and Y ⊂ Rn and r = 0, 1, 2 . . .∞ denote by Cr(X,Y )
the set of Cr maps f : X → Y . These form the morphisms of the category
of open subsets of euclidean space and Cr maps whose objects are open
subsets of some Rn:

For an open subset X ⊂ Rn the identity map

idX : X → X : x 7→ idX(x) = x

is Cr;

For open subsets X ⊂ R
m, Y ⊂ R

n, and Z ⊂ R
p, and Cr maps f : X → Y

and g : Y → Z the composition g ◦ f : X → Z is a Cr map.

The isomorphisms of this category are called Cr-diffeomorphisms: thus a map

f : X → Y

is a Cr-diffeomorphism iff it is bijective and both it and its inverse

f−1 : Y → X

are Cr . (Thus a C0-diffeomorphism is a homeomorphism.)
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Theorem 5 (The Chain Rule). If r ≥ 1 the derivative of the composition g ◦ f
is given by

D(g ◦ f)(x) = Dg(f(x))Df(x)

for x ∈ X.

Remark 6. For each open X ⊂ Rm define

TX = X × R
m

and for each Cr+1 map
f : X ⊂ R

m → Y ⊂ R
n

of open sets define a Cr map

Tf : TX → TY : (x, v) 7→ Tf(x, v) = (f(x), Df(x)v).

Then the chain rule can be written in the compact form

T (g ◦ f) = (Tg) ◦ (Tf).
We also have the formula

T idX = idTX .

Taken together these formulas say that the operation T is a functor from the
Cr+1-category to the Cr-category. It is called the tangent functor.

Since the derivative of the identity map is the identity matrix it follows that
if

f : X ⊂ R
n → Y ⊂ R

m

is a Cr-diffeomorphism (r ≥ 1) then the linear map

Df(x) : Rm → R
n

is a linear isomorphism for each x ∈ X and hence that m = n. Thus Cr-
diffeomorphic open sets have the same dimeansion. This is also true for r = 0
(Brouwer’s invariance of domain theorem) but is harder to prove.

1.3 The Lipschitz Category

Definition 7. Let X and Y be metric spaces with metrics dX and dY respec-
tively and let f : X → Y . Then the Lipschitz constant of f is the constant
lip(f) ∈ [0,∞] given by

lip(f) = sup
dY (f(x1), f(x2))

dX(x1, x2)

where the supremum is over all x1, x2 ∈ X with x1 6= x2. The map f is called
Lipschitz iff lip(f) < ∞ and locally Lipschitz iff every point of X has a
neighborhood U such that f |U is Lipschitz. The map f is a lipeomorphism iff
it is bijective and both f and f−1 are Lipschitz; f is a local lipeomorphism
at a point x0 ∈ X iff there are neighborhoods U of x0 in X and V of T (x0) in
Y such that f |U is a lipeomorphism from U onto V .
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Example 8. A map T : Rm → Rn of form

T (x) = y0 +A(x− x0)

where y0 ∈ Rn, x0 ∈ Rm, and A ∈ Rn×m is Lipschitz with

lip(T ) = |A| = sup
|v|=1

|Av|.

If the matrix A is invertible (so that m = n), then T is a lipeomorhiphism with

T−1(y) = x0 +A−1(y − y0).

Remark 9. The Lipschitz maps form a category: the identity map idX : X →
X is Lipschitz with lip(idX) = 1 and a composition g ◦ f of Lipschitz maps is
Lipschitz with

lip(g ◦ f) ≤ lip(g) lip(f).

The lipeomorphisms are the isomorphisms of this category.

Definition 10. Call a map Γ : X → X from a metric space X to itself a
contraction iff lip(Γ) < 1; i.e. iff there exists λ < 1 such that

d(Γ(x1),Γ(x2)) ≤ λd(x1, x2)

for all x1, x2 ∈ X . An attractive fixed point for Γ : X → X is a (necessarily
unique) point x ∈ X such that

lim
n→∞

Γn(x0) = x

for all x0 ∈ X . Here Γn(x0) is the n-th iterate of Γ on x0 defined inductively by

Γ0(x0) = x0

and

Γn+1(x0) = Γ(Γn(x0)).

Lemma 11 (Banach’s Contraction Principle). A contraction map Γ : X →
X on a complete metric space has a unique fixed point. This fixed point is
attractive.

Proof. If Γ(x) = x and Γ(y) = y then the inequality d(x, y) = d(Γ(x),Γ(y)) ≤
λd(x, y) implies d(x, y) = 0 which gives uniqueness. For existence choose x0 ∈ X
arbitrarily and let

xn = Γn(x0)

denote the n-th iterate of Γ on x0. Then by induction on k

d(xk+1, xk) ≤ λkd(x1, x0)
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for n ≥ m:

d(xn, xm) ≤
n−1∑

k=m

d(xk+1, xk)

≤
∞∑

k=m

λkd(x1, x0)

=
λm

1− λd(x1, x0)

so that limm,n→∞ d(xn, xm) = 0, i. e. the sequence xn is Cauchy. If

x = lim
n→∞

xn

then

Γ(x) = Γ( lim
n→∞

xn)

= lim
n→∞

Γ(xn)

= lim
n→∞

xn+1

= x

so that x is an attractive fixed point of Γ as required.

Theorem 12 (Lipschitz inverse function theorem). Let T : Rm → Rm be a
lipeomorphism, X ⊂ Rm be open, x0 ∈ X, and R : X → Rm satisfy

lip(T−1) lip(R) < 1

and

R(x0) = 0.

Then the map f : X → Rm given by

f(x) = T (x) +R(x)

is a local lipeomorphism at x0. In fact, there are neighborhoods U of x0 in X
and V of y0 = f(x0) in Rm and a map g : V → U such that for x ∈ U and
y ∈ V we have

y = f(x) ⇐⇒ x = g(y)

and

lip(f) ≤ lip(T ) + lip(R)

lip(g) ≤ lip(T−1)

1− lip(T−1) lip(R)
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Proof. We shall find positive real numbers a and b and define U and V by

V = {y ∈ R
m : |y − y0| < b}

U = {x ∈ X ∩ f−1(V ) : |x− x0| < a}
and y0 = f(x0). First choose a > 0 so small that x ∈ X for |x − x0| < a and
then choose b > 0 so small that a1 < a where

a1 = lip(T−1)b+ lip(T−1) lip(R)a

Now for y ∈ Rm and x ∈ X we have y = f(x) if and only if x = Γy(x) where

Γy(x) = T−1(y −R(x)).

Let
B = {x ∈ R

m : |x− x0| < a}
and

B1 = {x ∈ R
m : |x− x0| ≤ a1};

Then the hypothesis on R gives

lip(Γy) < 1

and the inequality a1 < a gives

Γy(B) ⊂ B1 ⊂ B.

Thus for y ∈ V the Banach contraction principle gives a unique x ∈ B with
y = f(x); since U = B∩f−1(V ) this point x lies in U . Thus we define g : V → U
by

x = g(y) ⇐⇒ x = Γy(x)

and g is the inverse to the bijection f |U : U → V . To compute lip(g) choose
y1, y2 ∈ V and put x1 = g(y1) and x2 = g(y2). Then

|g(y1)− g(y2)| = |x1 − x2|
= |Γy1(x1)− Γy2(x2)|
≤ lip(T−1)(|y1 − y2|+ lip(R)|x1 − x2|)
= lip(T−1)|y1 − y2|+ lip(T−1) lip(R)|g(y1)− g(y2)|)

so that

|g(y1)− g(y2)| ≤
lip(T−1)|y1 − y2|
1− lip(T−1) lip(R)

which establishes the inequality

lip((g)) ≤ lip(T−1)

1− lip(T−1) lip(R)

as required.
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Proposition 13 (Uniform Contraction Principle). Suppose U is a topological
space, X is a complete metric space with metric d, and for each p ∈ U

Γp : X → X

is a map. Assume

(1) The map Γp is a uniform contraction: i.e. there is a number λ < 1 inde-
pendent of p ∈ U such that

d(Γp(x1),Γp(x2)) ≤ λd(x1, x2)

for x1, x2 ∈ X;

(2) The map
U ×X → X : (p, x) 7→ Γp(x)

is continuous.

Then for p ∈ U the equation Γp(x) = x has a unique solution x = xp and the
map

U → X : p 7→ xp

is continuous.

1.4 The Inverse Function Theorem

Now suppose that X ⊂ Rm is open and convex, x0 ∈ X , and f : X → Rm is Cr

with r ≥ 1. Then by Taylor’s formula we have

f(x) = T (x) +R(x)

where
T (X) = f(x0) +Df(x0)(x− x0)

and both R and DR vanish at x0. Since

lip(R) = sup
x∈X
|DR(x)|

we may shrink X to achieve lip(R) < ǫ. This proves most of

Theorem 14 (Inverse Function Theorem). If Df(x0) is invertible then there
are neighborhoods U of x0 in X and V of f(x0) in Rm such that f restricts to
a Cr diffeomorphism from U onto V .

Proof. By the Lipschitz Inverse Function Theorem we have U and V so that f
restricts to a lipeomorphism; we will show that f−1 is C1 and that

Df−1(y) = Df(f−1(y))−1
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for y ∈ V . For this we must choose y ∈ V and ǫ > 0 and find δ = δ(ǫ, y) > 0 so
that

|f−1(y + w)− f−1(y)−Df(f−1(y))−1w| ≤ ǫ|w|
whenever |w| < δ. Let x = f−1(y) and v = f−1(y + w) − x so that y = f(x)
and y + w = f(x+ v); we must establish

|v −Df(x)−1(f(x+ v)− f(x))| ≤ ǫ|f(x+ v)− f(x)|.

But since f is differentiable at x we have δ1 > 0 depending on ǫ1 > 0 such that

|f(x+ v)− f(x)−Df(x)v| ≤ ǫ1|v|

whenever |v| < δ1 so

|v −Df(x)−1(f(x+ v)− f(x))| ≤ |Df(x)−1| |Df(x)v − f(x+ v)− f(x)|
≤ ǫ1|Df(x)−1| |v|
≤ ǫ1|Df(x)−1| lip(f−1)|w|

if |v| ≤ δ1. Since
|v| ≤ lip(f−1)|w|

we achieve the desired inequality with

ǫ1 = ǫ
(
|Df(x)−1| lip(f−1)

)−1

and
δ = δ1 lip(f

−1)−1.

This establishes the inverse function theorem in case r = 1. The case r > 1
follows immediately from the following

Remark 15. A Cr map which is a C1 diffeomorphism is a Cr diffeomorphism.

Since f◦f−1 = id the chain rule givesDf(f−1(y))Df−1(y) = 1 orDf−1(y) =
Df(f−1(y))−1 This formula (together with the chain rule) shows that Df−1 is
Cr−1 if Df and f−1 are Cr−1 since the map GLn → GLn : a 7→ a−1 is C∞

(each entry of a−1 is a rational function of the entries of a by Cramer’s rule.)
Hence remark 15 follows by induction on r.

Note that remark 15 is false when r = 0: the map R→ R : x 7→ x3 is a C∞

homeomorphism which is not a C1 diffeomorphism.

1.5 The Implicit Function Theorem

Theorem 16 (Implicit Function Theorem). Let W ⊂ Rm+n = Rm × Rn be
open, f :W → Rn be Cr with r ≥ 1, and (x0, y0) ∈W . Assume

f(x0, y0) = 0
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and

D2f(x0, y0)) : R
n → R

n is invertible.

Then there are neighborhoods U of x0 and V of y0 and a Cr function g : U → V
with U × V ⊂W and

Graph(g) = (U × V ) ∩ f−1(0).

Proof. Most texts prove the slightly weaker assertion that there is a Cr function
g satisfying

f(x, g(x)) = 0;

the idea is that the equation f(x, y) = 0 implicitly defines y as a function of x.
Our statement proves a little more, viz. that for x ∈ U and y ∈ V we have

f(x, y) = 0 ⇐⇒ y = g(x).

The reason the theorem is true is that for each x near x0 the mapping fx defined
by fx(y) = f(x, y) is a local diffeomorphism by the inverse function theorem
and so we can take g(x) = f−1

x (0). It is a little tricky to make this idea into
a proof (why is g Cr?) so we resort to the useful trick of adding an auxilliary
variable.

Define F :W → Rm × Rn by

F (x, y) = (x, f(x, y)).

Then

DF (x0, y0) =

[
1m×m 0

D1f(x0, y0) D2f(x0, y0)

]

where 1m×m is the identity map of Rm. This matrix is invertible so F is a local
diffeomorphism by the inverse function theorem; i.e there is are neighborhoods
U1 of x0 and V of y0 such that U1 × V ⊂ W , F (U1 × V ) is a neighborhood of
(0, 0) in R

m × R
n and

F : U1 × V → F (U1 × V )

is a diffeormorphism. (We can always shrink a neighborhood of (x0, y0) to make
it a product neighborhood.) Since pr ◦F = pr where pr(x, y) = x it follows that
pr = pr ◦ F−1 so that F−1 has form

F−1(x, y) = (x, h(x, y))

for a certain map h : F (U1×V )→ V . Let U2 be the neighborhood of x0 defined
by

U2 = {x : (x, 0) ∈ F (U1 × V )}
(x0 ∈ U2 as (x0, 0) = F (x0, y0)) and define g : U2 → V by

g(x) = h(x, 0)
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(note that g(x0) = y0). Now for x ∈ U2 we have (x, 0) ∈ F (U1 × V ) so
(x, g(x)) = F−1(x, 0) ∈ U1 × V so F (x, g(x)) = F (F−1(x, 0)) = (x, 0) showing
that

{(x, g(x)) : x ∈ U2} ⊂ f−1(0) ∩ (U1 × V )}.
(Note that this implies also that U2 ⊂ U1.) Also for x ∈ U1, y ∈ V , and
f(x, y) = 0 we have F (x, y) = (x, 0) ∈ F (U1 × V ) so that x ∈ U2 whence
(x, y) = F−1(x, 0) = (x, g(x)) showing that

f−1(0) ∩ (U1 × V ) ⊂ {(x, g(x)) : x ∈ U2}.

Since we have shown that U2 ⊂ U1 we may take U = U2 to satisfy the require-
ments of the theorem.

The ideas in this proof can be used to choose local coordinates to give a map
a simple form. First let us recall the canonical form for a linear map.

Proposition 17. Let T : Rm → Rn be a linear map of rank r. Then there exist
invertible linear maps a : Rm → Rm and b : Rn → Rn such that

bTa−1(x, y) = (x, 0) ∈ R
r × R

n−r = R
n

for (x, y) ∈ Rr × Rm−r = Rm.

Now we try to come as close as we can to this normal form for a nonlinear
map.

Theorem 18 (The Local Representative Theorem). Let M ⊂ Rm and N ⊂ Rn

be open sets and f : M → N be a Ck map with k ≥ 1. Suppose p ∈M and the
rank of the linear map Df(p) : Rm → Rn is r. Then there exist neighborhoods
U of p in M , V of f(p) in N , X of 0 in R

r, Y of 0 in R
m−r and Z of 0 in

Rn−r, Ck diffeomorphisms α : U → X × Y and β : V → X × Z and a Ck map
g : X × Y → Z such that α(p) = (0, 0) ∈ X × Y , β(f(p)) = (0, 0) ∈ X × Z,

β ◦ f ◦ α−1(x, y) = (x, g(x, y))

for (x, y) ∈ X × Y with g(0, 0) = 0 and Dg(0, 0) = 0.

Proof. The idea is that β ◦ f ◦ α−1 and f are equivalent in the sense that they
differ by a change of co-ordinates; this is indeed an equivalence relation as

β1 ◦ (β2 ◦ f ◦ α−1
2 ) ◦ α−1

1 = (β1 ◦ β2) ◦ f ◦ (α1 ◦ α2)
−1.

This means we may break our problem up into steps, first finding α1, β1 so that
f1 = β1 ◦ f ◦α−1

1 has a nice form, them replacing f by f1 and finding α2, β2 etc.
Hence we first make an affine change of variables so that p = (0, 0) ∈ Rr×Rm−r,
f(p) = (0, 0) ∈ Rr × Rn−r, and Df(p) has the form of proposition 17:

Df(0, 0) =

[
1r×r 0r×(m−r)
0(n−r)×r 0(n−r)×(m−r)

]
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Then
f(x, y) = (p(x, y), q(x, y)) ∈ R

r × R
n−r

for
(x, y) ∈M ⊂ R

r × R
m−r

with p(0, 0) = 0, q(0, 0) = 0, D1p(0, 0) = 1r×r, D2p(0, 0) = 0r×(m−r) and
Dq(0, 0) = 0(n−r)×r. Now introduce the auxiliary map α :M → Rm via

α(x, y) = (p(x, y), y) ∈ R
r × R

m−r

so that Dα(0, 0) = 1m×m. By the inverse function theorem α restricts to a
diffeomorphism α : U → X × Y on a suitable neighborhood U of p (we may
shrink U if necessary to achieve that α(U) is a product) and thus achieve

f ◦ α−1(x, y) = (x, g(x, y))

for (x, y) ∈ X × Y where g = q ◦ α−1. We may shrink X and Y further to
achieve g(x, y) ∈ Z for some small neighborhood Z of 0 in Rn−r and then take
β to be the identity.

Several special cases of this theorem are of interest. 2

Theorem 19 (The Submersion Theorem). Let M ⊂ R
m and N ⊂ R

n be open
sets and f : M → N be a Ck map with k ≥ 1. Suppose p ∈ M and that
the linear map Df(p) : Rm → Rn is surjective (so m ≥ n). Then there exist
neighborhoods U of p in M , V of f(p) in N , X of 0 in R

m, Y of 0 in R
m−n

and Ck diffeomorphisms
α : U → X × Y

and
β : V → X

such that α(p) = (0, 0) ∈ X × Y , β(f(p)) = 0 ∈ X, and

β ◦ f ◦ α−1(x, y) = x

for (x, y) ∈ X × Y .

Proof. This is a special case of the local representative theorem with m = r.

Theorem 20 (The Immersion Theorem). Let M ⊂ Rm and N ⊂ Rn be open
sets and f : M → N be a Ck map with k ≥ 1. Suppose p ∈ M and the
the linear map Df(p) : Rm → Rn is injective (so m ≤ n). Then there exist
neighborhoods U of p in M , V of f(p) in N , X of 0 in Rm, and Z of 0 in
Rm−n, Ck diffeomorphisms

α : U → X

and
β : V → X × Z

2The terms immersion and submersion are explained in 152 and 170
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such that α(p) = 0 ∈ X, β(f(p)) = (0, 0) ∈ X × Z, and

β ◦ f ◦ α−1(x, y) = (x, 0)

for (x, y) ∈ X.

Proof. By the local representative theorem we may assume that f has the form

f(x) = (x, g(x))

for x ∈ X1 where g : X1 → Z1 ⊂ Rn−m. Let β : X1 × Rn−m → X1 × Rn−m be
given by

β(x, z) = (x, z − g(x)).

This map is clearly a diffeomorphism ( β−1(x, z) = (x, z + g(x))) and β ◦ f has
the desired form. Now choose X and Z so that (0, 0) ∈ X × Z ⊂ β(X1 × Z1)
and take V = β−1(X × Z) (and U = X).

Theorem 21 (The Rank Theorem). Let M ⊂ Rm and N ⊂ Rn be open sets
and f : M → N be a Ck map with k ≥ 1. Suppose the rank of the linear map
Df(p) : Rm → R

n is a constant r independent of the choice of p ∈ M . Let
p0 ∈M Then there exist neighborhoods U of p0 in M , V of f(p0) in N , X of 0
in Rr, Y of 0 in Rm−r and Z of 0 in Rn−r, Cr diffeomorphisms

α : U → X × Y

and

β : V → X × Z

such that α(p0) = (0, 0) ∈ X × Y , β(f(p0)) = (0, 0) ∈ X × Z ,

β ◦ f ◦ α−1(x, y) = (x, 0)

for (x, y) ∈ X × Y .

Proof. By the local representative theorem we may assume that f has the form

f(x, y) = (x, g(x, y))

where x ∈ R
r, p0 = (0, 0) ∈ R

r × R
m−r, Dg(0, 0) = 0, etc. Note that

Df(x, y) =

[
1r×r 0r×(m−r)
D1g(x, y) D2g(x, y)

]

so since the rank of Df(x, y) is constant we must have D2g(x, y) = 0 identically
in (x, y). Hence g(x, y) = g(x) is independent of y (at least locally) and we may
argue as in the Immersion Theorem.
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Exercise 22. Here is another argument for achieving the set equality

Graph(g) = f−1(0) ∩ (U × V )

in the implicit function theorem. Once we have constructed g solving (f(x, g(x)) =
0 choose U and V so that g(U) ⊂ V , V is convex and

∫ 1

0

D2f(x, y1 + t(y2 − y1))dt

invertible for y1, y2 ∈ V and x ∈ U . Then as

f(x, y2)− f(x, y1) =
∫ 1

0

D2f(x, y1 + t(y2 − y1))dt(y2 − y1)

it follows that the solution y ∈ V of f(x, y) = 0 is unique for each x ∈ U .
(Supply the details.)

1.6 Manifolds

Definition 23. Let r ≥ 1. A subset M ⊂ Rn is called a Cr-manifold (or
more precisely a Cr-submanifold of Rn) iff for every point p0 ∈M the following
equivalent conditions are satisfied:

(1) There are open sets X ∈ Rm, Y ∈ Rn−m, a neighborhood U of p0 in Rn,
and a diffeomorphism

Φ : U → X × Y
such that Φ(p0) = (x0, y0) ∈ X × Y and

Φ(M ∩ U) = X × {y0}.

(2) There is a neighborhood U of p0 in Rn, a point y0 ∈ Rn−m, and a Cr map

F : U → R
n−m

such that

M ∩ U = F−1(y0)

and the derivative

DF (p) : Rn → R
n−m

has maximal rank (i.e. is surjective) for p ∈ U ;

(3) There is a neighborhood U of p0 in Rn, a point x0 ∈ Rm, a neighborhood
X of x0 in Rm, and an injective Cr map

φ : X → U
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such that φ(x0) = p0,

φ(X) =M ∩ U,

and the derivative

Dφ(x) : Rm → R
n

has maximal rank (i.e. is injective) for x ∈ X .

The diffeomorphism Φ is called a submanifold chart forM at p0; the map
F is called a local defining equation for M at p0; the map φ is called a local
parameterization of M at p0; and the map

φ−1 :M ∩ U → X

is called either a co-ordinate chart or a system of local co-ordinates for
M at p0. WhenM is connected, the integerm is independent of the choice of p0
and is called the dimension ofM ; the number n−m is called the codimension
of M in Rn.

Note the extreme casesM is a point (dimension m = 0) andM ⊂ Rn is open
(codimension n −m = 0). More generally, note that a local defining equation
F (p) = y0 is really a system of n − m equations (as y0 ∈ Rn−m); hence the
principle that

the dimension of a manifold is the dimension of the ambient space
minus the number of equations required to define it locally.

Proof. Proof of (1) =⇒ (2) Assume (1) and write Φ : U → X × Y in the form

Φ(p) = (G(p), F (p))

Then for p ∈ U we have that p ∈ M iff Φ(p) ∈ X × {y0} (by (1) iff F (p) = y0.
Also DF (p) has maximal rank as it results from the invertible matrix DΦ(p)
by eliminating the first m rows. This proves (2).

Proof. Proof of (2) =⇒ (1) Assume (2). Then by the submersion theorem 19
there is a diffeomorphism Φ : U → X × Y such that

F ◦ Φ−1(x, y) = y

for (x, y) ∈ X × Y . (It may be necessary to shrink the neighborhood U of
p0 to attain this.) But for p ∈ U we have p ∈ M iff F (p) = y0 (by (2)) iff
y = F (Φ−1(x, y)) = y0 where (x, y) = Φ−1(p) iff p ∈ Φ−1(X × {y0}). This
proves (1).
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Proof. (1) =⇒ (3) Assume (1) and define φ : X → U by

φ(x) = Φ−1(x, y0)

for x ∈ X . Then φ is injective since it is a restiction of a bijection, Dφ(x) is
of maximal rank since it is obtained from the invertible matrix DΦ−1(x, y0) by
discarding the last n−m columns, and φ(X) =M ∩U since Φ−1(X × {y0}) =
φ(X).

Proof. Proof of (3) =⇒ (1) Assume (3). Then by the Immersion Theorem
there is are diffeomorphisms α : X → X ′ and Φ : U → X ′ × Y such that
Φ(φ(x)) = (α(x), 0) for x ∈ X . (It may be necessary to shrink U and X to
achieve this.) Then φ(X) = Φ−1(X ′ × {0} so that Φ is a submanifold chart as
required.

Remark 24. There is a slightly more general definition of the notion of manifold
which is more intrinsic in that it does not require M to be a subset of Rn. By
contrast, the current definition may be termed extrinsic.

1.7 Maps Between Manifolds

Let M ⊂ Rm+k be a Cr submanifold of dimension m, N ⊂ Rn+l be a Cr

submanifold of dimension n and

f : M → N.

Definition 25. The map f is said to be a Cr-map iff it satisfies the following
equivalent conditions:

(1) There is a a neighborhood W of M in Rm+k and a Cr map F :W → Rn+k

which restricts to f :
f = F |M.

(2) For every p ∈ M and every neighborhood V of f(p) in Rn+l there is a
neighborhood U of p in Rm+k and a Cr map F : U → V such that

F |M ∩ U = f |M ∩ U.

(3) For every p ∈ M , every Cr local parameterization ψ : Y → N of N at
f(p) ∈ N there is a Cr local parameterization φ : X →M of M at p ∈M
such that f(φ(X)) ⊂ ψ(Y ) and the composition

ψ−1 ◦ f ◦ φ : X → Y

is a Cr map from the open subset X ⊂ Rm to the open subset Y ⊂ Rn.

Remark 26. Since an open subset of Rm is a manifold we apparently have two
definitions of what it means for f to be Cr ; however in view of part (1) these
coincide for we can take W =M ,

Remark 27. When M is closed we can take W = Rm+k in part (1) of the
definition.
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1.8 Tangent Bundle

Let M ⊂ Rn be a Cr+1 submanifold of dimension m.

Definition 28. For each point p ∈M define the tangent space TpM to M at
p by

TpM = {ċ(0) : c ∈ C1(R,M), c(0) = p}
where ċ denotes the derivative of c as a map c : R→ R

n:

ċ(t0) =
d

dt
c(t)

∣
∣
∣
∣
t=t0

.

The tangent bundle TM of M is the subset of Rn × Rn defined by

TM = {(p, v) ∈M × R
n : v ∈ TpM}.

Remark 29. When M ⊂ Rm is open (k = 0) the tangent space is the ambient
space: TpM = R

m and hence the tangent bundle is the product TM =M×R
m.

(Compare with remark 6.)

Remark 30. Below we shall use an equality

T (X × Y ) = TX × TY
where X ⊂ Rm and Y ⊂ Rn are open. This is an abuse of notation, since

T (X × Y ) = X × Y × R
m × R

n

and
TX × TY = X × R

m × Y × R
n

are set-theoretically distinct.

Proposition 31. Each tangent space TpM is a vector subspace of Rn of dimen-
sion m. The tangent bundle TM ⊂ Rn ×Rn of the Cr submanifold M ⊂ Rn is
a Cr submanifold of dimension 2m.

This is a corollary of each of the three following:

Proposition 32. Let the Cr+1 diffeomorphism Φ : U → X×Y be a submanifold
chart for M as in part (1) of definition 23:

M ∩ U = Φ−1(X × {y0}).
Then

TpM = DΦ(p)−1 (Rm × {0})
for p ∈M . In fact, the map TΦ : TU → TX × TY defined by

TΦ(p, w) = (Φ(p), DΦ(p)w)

for (p, w) ∈ TU = U × Rn is a submanifold chart for TM ⊂ Rn × Rn: It is a
Cr-diffeomorphism and

TM ∩ TU = TΦ−1 (TX × {(y0, 0)}) .
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Proposition 33. Let F : U → Rn−m define M locally as in part (2) of defini-
tion 23:

M ∩ U = F−1(y0)

and DF (p) is maximal rank for p ∈ U . Then the tangent space to M at p ∈M
is the kernel of DF (p):

TpM = DF (p)−1(0).

In fact, the map TF : TU × Rn → Rn−m × Rn−m defined by

TF (p, w) = (F (p), DF (p)w)

for (p, w) ∈ TU = U × Rn defines TM ⊂ Rn × Rn locally in the same sense:

TM ∩ TU = (TF )−1(y0, 0)

and the matrix D(TF )(p, w) ∈ R2n×2(n−m) defined by

D(TF )(p, w)(p̂, ŵ) = (DF (p)p̂, D2F (p)p̂w +DF (p)ŵ)

for (p̂, ŵ) ∈ Rn × Rn has maximal rank.

Proposition 34. Let φ : X → M ∩ U be a local parameterization of M as in
part (3) of definition 23:

M ∩ U = φ(X).

Then the tangent space to M at p = φ(x) ∈M is the image of Dφ(x):

TpM = Dφ(x)(Rm)

for x ∈ X ⊂ Rm and p = φ(x) ∈M . In fact, the map

Tφ : TX → TM : (x, x̂) 7→ Tφ(x, x̂) = (φ(x), Dφ(x)x̂)

is a Cr local parameterization of TM .

Example 35. The m-sphere Sm is the set of all p ∈ Rm+1 whose distance from
the origin is 1:

Sm = {p ∈ R
m+1 : ‖p‖ = 1}.

The tangent space to Sm at a point p is the set of all vectors v ∈ R
m+1 which

are perpendicular to p:

TpS
m = {v ∈ R

m+1 : 〈p, v〉 = 0}.



20 CHAPTER 1. REVIEW OF CALCULUS

1.9 The Tangent Functor

Let M ⊂ Rm+k be a Cr+1 submanifold of dimension m, N ⊂ Rn+l be a Cr+1

submanifold of dimension n and

f :M → N

be a Cr+1 map.

Definition 36. For each p ∈M the tangent map to f at p is the linear map

Tpf : TpM → Tf(p)N

defined by

(Tpf) v =
d

dt
f(c(t))

∣
∣
∣
∣
t=0

.

for v ∈ TpM where c : R → M is a C1 curve satisfying c(0) = p and ċ(0) = v.
The tangent of f is the map

Tf : TM → TN

defined by

Tf(p, v) = (f(p), Tpfv)

for (p, v) ∈ TM .

Remark 37. In case M ⊂ R
m is open (i.e. k = 0) the map Tf has the form

Tf(p, v) = (f(p), Df(p)v)

so that

Tpfv = Df(p)v

in agreement with remark 6.

Proposition 38. The operation which assigns to each Cr+1 manifold M its
tangent bundle TM and which assigns to each Cr+1 map f : M → N its
tangent map Tf : TM → TB is functorial. In other words,

T idM = idTM

and

T (g ◦ f) = (Tg) ◦ (Tf)

for f :M → N and g : N → P .
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1.10 Monge Co-ordinates

Let A : Rm × Rk → Rk be linear, say

A(x, y) = Bx+ Cy

for x ∈ R
m, y ∈ R

k, where B : Rm → R
k and C : Rk → R

k are linear. Let
H ⊂ Rm × Rk be the kernel of A:

H = {(x, y) ∈ R
m × R

k : A(x, y) = 0}.

Thus H is a vector subspace of Rm × Rk of dimension at least m. Let

π : Rm × R
k → R

m : (x, y) 7→ π(x, y) = x

denote projection onto the first factor. Let

V = {0} × R
k ⊂ R

m × R
k

denote the kernel of π.

Proposition 39. The following are equivalent:

(1) The linear map C : Rk → R
k is invertible.

(2) There is a linear map S : Rm → Rk such that the graph

Graph(S) = {(x, y) ∈ R
m × R

k : y = Sx}.

of S is H;

(3) The subspaces H and V intersect in zero:

H ∩ V = {(0, 0)}.

(4) The subspaces H and V are complementary:

R
m × R

k = H ⊕ V.

(5) π|H maps H isomorphically to Rm.

For each subset I = {i1 < i2 < · · · < im} of {1, 2, . . . , n} let

πI : R
n → R

m

denote the projection defined by

πI(x) = (xi1 , xi2 , . . . , xim)

for x = (x1, x2, . . . , xn) ∈ Rn.
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Lemma 40. For each vector subspace H ⊂ Rn of dimension m there is a subset
I ⊂ {1, 2, . . . , n} such that πI maps H isomorphically to Rm.

Corollary 41. Let M ⊂ Rn be a submanifold of dimension m and fix p0 ∈M .
Then there is a set of indices I ⊂ {1, 2, . . . , n} such that πI |M is a local co-
ordinate system for M near p0.

Coordinates of this form are called Monge co-ordinates. Another way to
look at this situation ias that a manifold is locally a graph in the sense that
some of its rectangular co-ordinates are functions of the others. Here’s the
precise statement:

Proposition 42. Let M ⊂ Rn be as above. Then there is a map f : X → Y
such that near p0 the manifold M is defined by the equations

(∗) xJ = f(xI)

where xJ = πJ (x), xI = πI(x), and

J = {1, 2, . . . , n} \ I

is the complementary set of indices to I. The tangent space TxM to a manifold
M having Monge co-ordinates (∗) is given by

TxM = {x̂ ∈ R
n : x̂J = Df(xI)x̂I}.

Example 43. Monge co-ordinates show that any submanifold of Rn is locally
the graph of a function. For example, the equation

x21 + x22 + · · ·+ x2m+1 = 1

is the defining equation of the m-dimensional sphere Sm. In fact, in a neighbor-
hood of any point where xi 6= 0 the remaining co-ordinates (x1, . . . xi−1, xi+1, . . . xn)
are Monge co-ordinates for the sphere since the defining equation can be written
in the form

xi = ±
√

1− x21 − · · · − x2i−1 − x2i+1 − · · · − x2m+1

near the point in question.



Chapter 2

Ordinary Differential

Equations

2.1 Topological Flows

For any topological space M we denote by Homeo(M) the homoemorphism
group of M ; i. e. the set of all self-homeomorphisms f : M → M . A contin-
uous flow on a topological space M is a group homomorphism

R→ Homeo(M) : f 7→ f t

from the additive group of real numbers to the homeomorphism group of M
such that the evaluation map

R×M →M : (t, p) 7→ f t(p)

is continuous. The study of continuous flows is called topological dynamics.

Remark 44. For topological spaces U and M let C0(U,M) denote the space
of continuous maps from U to M and let I be a set. We shall generally not
distinguish 1 between the map

I → C0(U,M) : t 7→ f t

and the map
I × U →M : (t, p) 7→ f t(p)

and we denote the latter by f :

f(t, p) = f t(p).

1This identification is called Currying (after the logician Haskell Curry) by computer sci-
entists.

23
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In particular, we may make this identification for I = R and U =M and define
a flow to be a continuous map

f : R×M →M

satisfying the identities
f(0, p) = p

and
f(t+ s, p) = f(t, f(s, p))

for p ∈M and t, s ∈ R.

2.2 Smooth Flows

For a Cr manifold denote by Diffr(M) the Cr-diffeomorphism group of
M ; i.e. the set of all self-diffeomorphism f : M → M of class Cr. Thus
Diff0(M) = Homeo(M). When r =∞ the superscript is suppressed:

Diff(M) = Diff∞(M).

Definition 45. A Cr flow on a Cr-manifold M is a group homomorphism

R→ Diffr(M) : f 7→ f t

from the additive group of real numbers to the Cr diffeomorphism group of M
such that the evaluation map

R×M →M : (t, p) 7→ f t(p)

is of class Cr.

2.3 Vector Fields

Let M be a Cr+1 manifold. A vector field on M is a section of the tangent
bundle TM → M ; i. e. a function ξ which assigns to each p ∈ M a vector
ξ(p) ∈ TpM .

The vector field ξ is a Cr vector field or of class Cr iff the map

M → TM : p 7→ (p, ξ(p))

is a Cr map from the manifold M to the manifold TM . We denote by X r(M)
the vector space of Cr vector fields on M . When M is a submanifold of Rn this
is a vector subspace of the vector space of Cr Rn-valued functions on M :

X r(M) = {ξ ∈ Cr(M,Rn) : ξ(p) ∈ TpM ∀p ∈M}

When r =∞ the superscript is suppressed:

X (M) = X∞(M).



2.3. VECTOR FIELDS 25

Remark 46. Note that for an open set M ⊂ Rm the tangent space

TpM = {γ̇(0) | γ : (R, 0)→ (M,p)}

is independent of p ∈M :
TpM = R

m.

Thus the tangent bundle is the product

TM =M × R
m

and a vector field on M is a map of form

M → TM =M × R
m : p 7→ (p, ξ(p))

where ξ : M → R
m. The map ξ :M → R

m is called the principal part of the
vector field and is strictly speaking different from the vector field itself which is
a map M → TM . However, we shall generally not distinguish the two.

Note that for a flow t→ f t on M each p ∈M determines a curve

R→M : t 7→ f t(p)

through f0(p) = p. Thus the tangent vector to this curve (at t = 0) lies in the
tangent space TpM .

Definition 47. The infinitessimal generator of a Cr+1 flow

R→ Diffr+1(M) : t 7→ f t

is the Cr vector field ξ ∈ X r(M) defined by

ξ(p) =
d

dt
f t(p)

∣
∣
∣
∣
t=0

for p ∈M .

Definition 48. A C1 curve c : I →M (where I ⊂ R is an interval) is called an
integral curve of the vector field ξ ∈ X 0(M) iff it satisfies the equation

ċ(t) = ξ(c(t))

for all t ∈ I. An integral curve of ξ through the point p ∈M is an integral
curve c of ξ satisfying c(0) = p.

Proposition 49. Let ξ ∈ X 0(M) be the infinitessimal generator of the C1 flow
R→ Diff1(M) : t 7→ f t. Then for each p ∈M the curve

R→M : t 7→ f t(p)

is an integral curve of ξ.
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Proof. In other words
d

dt
f t(p)

∣
∣
∣
∣
t=t0

= ξ(f t0(p)).

For t = t0 this is the definition of the infinitessimal generator. In general write
t = s+ t0 and use the definition of flow:

f s+t0(p) = f s(f t0(p))

and the obvious identity

d

dt
f t(p)

∣
∣
∣
∣
t=t0

=
d

ds
f s+t0(p)

∣
∣
∣
∣
s=0

.

2.4 Co-ordinates

Let M and N be a C2 manifolds, ξ be a C1 vector field on M , η be a C1 vector
field on N , and f :M → N be a C1 map.

Definition 50. The map f intertwines the vector fields ξ and η iff the fol-
lowing two equivalent conditions hold:

(1) The map f carries integral curves of ξ to integral curves of η;

(2) We have the identity

(Tpf)ξ(p) = η(f(p))

for p ∈M .

Some authors call ξ and η f-related when f interwines ξ and η.

To see the equivalence of the two parts of the definition note that the first
part says that the curve b = f ◦ c solves ḃ = η ◦ b whenever c solves ċ = ξ ◦ c.
By the Existence Theorem (proved below) given p ∈ M we can always find an
integral curve c through p. If we differentiate the equation b(t) = f(c(t)) and set
t = 0 we obtain the equation in the second definition. The converse implication
follows by the chain rule.

If f : M → N is a diffeomorphism, then f interwines ξ and η if and only if
f−1 interwines η and ξ. Given the vector field ξ on M there is a unique f♯ξ on
N such that f interwines ξ and f♯ξ. It is defined by

(f♯ξ)(q) = (Tpf) ξ(p)

for q ∈ N where p ∈M is defined by p = f−1(q).

Proposition 51. Let ξ be the infinitessimal generator of a C1 flow t 7→ f t.
Then for each t ∈ R the time t map f t ∈ Diff1(M) interwines ξ and ξ.
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Now let (α,U) be a Cr+1 co-ordinate chart on M ; i. e. α : U → X is a
Cr+1 diffeomorphism from an open set U ⊂ M to an open set X ⊂ Rm. Then
a vector field ξ on M restricts to a vector field ξ|U on U and hence determines
a vector field ξα = α♯(ξ|U) on X i.e. a function ξα : X → Rm. This vector field
is called the local representative of ξ with respect to α. In particular,

Proposition 52. A curve c : I → X is an integral curve for ξα if and only if
the curve α−1 ◦ c : I →M is an integral curve for ξ.

Of course, if (V, β) is another co-ordinate chart the local representatives are
related by the equation

ξβ(y) = Dφβα(φ
−1
αβ(y))ξα(φ

−1
αβ(y))

for y ∈ β(U ∩V ) where φαβ : α(U ∩V )→ β(U ∩V ) is the diffeomorphism given
by φαβ(x) = β ◦ α−1(x) for x ∈ α(Y ∩ V ) ⊂ X .

Exercise 53. Rewrite the differential equation

ẋ = u(x, y), ẏ = v(x, y),

in polar co-ordinates:

x = r cos θ, y = r sin θ.

Exercise 54. Rewrite the differential equation

ẋ = u(x, y, z), ẏ = v(x, y, z), ż = w(x, y, z),

in spherical co-ordinates:

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

2.5 Linear Flows

The group GL(m,R) of all invertible m × m real matrices can be viewed as
a subgroup of the diffeomorphism group Diff(Rm) of Rm: each matrix a ∈
GL(m,R) determines the linear diffeomorphism Rm → Rm : x 7→ ax. Similarly,
each matrix A ∈ Rm×m determines a vector field Rm → Rm : x 7→ Ax; we call
such a vector field a linear vector field. A flow

R→ GL(m,R) ⊂ Diff(Rm) : t 7→ Φt

is called a linear flow. Some authors call it a one parameter subgroup of
GL(m,R).

Theorem 55. (1) Every continuous linear flow is C∞.

(2) The infinitessimal generator of a linear flow is a linear vector field.
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(3) The mapping which assigns to each linear flow its infinitessimal generator
establishes a bijective correspondence beteween linear flows t 7→ Φt and
matrices A ∈ R

m×m. The inverse correspondence is given by the equation

Φt = exp(tA)

for t ∈ R where exp is the matrix exponential.

Proof. The matrix exponential is defined by the series

exp(A) =

∞∑

n=0

An

n!
.

This defines a C∞ map

exp : Rm×m → GL(m,R).

It satisfies the conditions
exp(0) = e

the identity matrix and

exp(A+B) = exp(A) exp(B) if AB = BA.

This means that each map

R→ GL(m,R) : t 7→ exp(tA)

is a group homomorphism. The derivative of exp at the zero matrix is given by

D exp(0)Â = Â

for Â ∈ Rm×m which shows that (1) the generator of t 7→ exp(tA) is A and
(2) there are neighborhoods U of 0 in Rm×m and V of e in GL(m,R) such that
exp restricts to a diffeomorphism (inverse function theorem). We shrink U if
necessary to achieve tA ∈ U whenever A ∈ U and |t| ≤ 1.

Now let t 7→ Φt be a linear flow and choose ǫ > 0 so that Φt ∈ V for t ≤ ǫ.
There is a unique A ∈ ǫ−1U such that

(∗) exp(tA) = Φt

for t = ǫ: we must show that this holds for all t ∈ R. Since (*) holds for t = nτ
whenever it holds for t = τ and n is an integer it is enough to show that it
holds for all sufficiently small t. In fact, it is enough to show that it holds for
t = τ whenever it holds for t = 2τ , for then it holds for all dyadic multiples of
ǫ and hence for all t by continuity. Hence assume (*) for t = 2τ where 2τ ≤ ǫ.
There is a unique solution B ∈ U of exp(B) = Φτ ; squaring both sides gives
exp(2B) = Φ2τ = exp(2τA) so 2B = 2τA whence B = τA as required.
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Exercise 56. Show that

exp(tJ) =

[
cos t sin t
− sin t cos t

]

where

J =

[
0 1
−1 0

]

Exercise 57. Prove in detail that exp is a C∞ map.

Hint: The series converges uniformly because of the estimate

‖ exp(A)‖ ≤
∞∑

n=0

‖A‖n
n!

= e‖A‖

where A 7→ ‖A‖ is any operator norm on Rm×m; that is, any norm satisfying
‖AB‖ ≤ ‖A‖‖B‖.
Exercise 58. Prove that exp(A+B) = exp(A) exp(B) when A and B commute.

Exercise 59. For A ∈ Rm× define linear maps

λ(A), ρ(A), Ad(A) : Rm×m → R
m×m

by
λ(A)B = AB, ρ(A)B = BA,

and
Ad(A) = AB −BA

for B ∈ Rm×m. Prove the two formulas

D exp(A) = λ(exp(A))

∞∑

n=0

Ad(−A)n
(n+ 1)!

and

D exp(A) = ρ(exp(A))

∞∑

n=0

Ad(A)n

(n+ 1)!

Note the special case D exp(A)B = exp(A)B when AB = BA.

Hint: Note that
Ad(A) = λ(A) − ρ(A)

and that
λ(A)ρ(A) = ρ(A)λ(A).

Now

D exp(A) =

∞∑

n=0

Sn(A)

(n+ 1)!
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where

Sn(A) =
∑

p+q=n

λ(A)pρ(A)q.

Use the binomial theorem to conclude

Sn(A) =

n∑

r=0

(
n+ 1

r + 1

)

λ(A)n−r Ad(−A)r.

Exercise 60. The formula for exp(A) is meaningful whenever A is a linear
endomorphism of a finite dimensional vector space V and then defines a linear
automorphism of V . We may thus define

exp : gl(V )→ GL(V )

for any V where gl(V ) is the vector space of all linear transformationsA : V → V
(endomorphisms of V ) and GL(V ) is the group of all invertible linear transfor-
mations a : V → V (automorphisms of V ). Now Ad(A) is a linear transformation
from V = Rm×m to itself so the formula exp(Ad(A)) is meaninful. Show that

exp(Ad(A)) = ad(exp(A))

for A ∈ R
m× where

ad : GL(m,R)→ GL(Rm×m)

is defined by

ad(b)A = bAb−1

for b ∈ GL(m,R) = GL(Rm) and A ∈ gl(Rm) = Rm×m.

Exercise 61. Prove the formula

D ad(e)A = Ad(A)

where e ∈ GL(Rm) is the identity matrix and A ∈ gl(Rm)

2.6 Existence and Uniqueness

Theorem 62. Let M be a C2 manifold and ξ be a C1 vector field on M . Fix
t0 ∈ R and p0 ∈M . Then:

(Existence) There exists an open interval I ⊂ R about t0 and an integral curve
c : I →M for ξ with c(t0) = p0.

(Uniqueness) Any two integral curves ci : Ii →M (i = 1, 2) of ξ with c1(t0) =
c2(t0) agree on their common domain: c1(t) = c2(t) for t ∈ I1 ∩ I2.
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Proof. The existence theorem is local so we may choose co-ordinates (see propo-
sition 52) and assume without loss of generality that M is an open subset of
R
m. The condition that c be an integral curve of ξ through p0 can be expressed

in the form ċ(t) = ξ(c(t)) and c(t0) = p0 which by the fundamental theorem of
calculus can be expressed in a single integral equation

c(t) = p0 +

∫ t

t0

ξ(c(τ)) dτ.

This in turn is a fixed point equation:

Γ(c) = c

where

Γ(c)(t) = p0 +

∫ t

t0

ξ(c(τ)) dτ.

Choose ρ > 0 so that small that

B̄ρ(p) = {p ∈ R
m : |p− p0| ≤ ρ},

the closed ball of radius ρ centered at p0, is a subset of M and so that the
quantities

K = sup{|ξ(x)‖ : x ∈ B̄ρ(p0)}
and

L = Lip(ξ|B̄ρ(p0))
are finite (the former by the continuity of ξ the latter by the continuity of Dξ
and the mean value theorem) and then choose ǫ > 0 so small that

ǫK < ρ

and

2ǫL < 1.

Let I be the open interval (t0 − ǫ, t0 + ǫ) and let C be the set of all continuous
curves c : I → B̄ρ(p0) with c(0) = p0. The estimate

‖Γ(c)(t)− p0‖ ≤
∫ t

0

‖ξ(c(τ))‖ dτ

≤
∫ t

t0

K dτ

< ρ

for t ∈ I shows that Γ(c) : I → B̄ρ(p0) so that we have a map

Γ : C → C.
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Equip C with the complete metric

‖c1 − c2‖0 = sup{|c1(t)− c2(t)| : t ∈ I}.

The estimate

‖Γ(c1)− Γ(c2)‖0 ≤ sup
t∈I

∫ t

t0

|ξ(c1(τ)) − ξ(c2(τ))| dτ

≤
∫ t0+ǫ

t0−ǫ
L|c1(τ) − c2(τ)| dτ

≤ 2ǫL‖c1 − c2‖0

shows that Γ is a contraction mapping on C and hence has a unique fixed point
by the Banach contraction principle. This proves existence and uniqueness on
I (local uniqueness).

For uniqueness note that the set

J = {t ∈ I1 ∩ I2 : c1(t) = c2(t)}

is a closed subset of I1∩I2 since the curves ci are continuous andM is Hausdorff.
It is non-empty since t0 ∈ J by hypothesis and open by the local uniqueness
(for general t0) just proved. Hence J = I1 ∩ I2 as required.

2.7 Flow Boxes

Definition 63. A flow box for ξ is a map

f : I × U →M

where I ⊂ R is an open interval about 0, U is an open subset of M , and for
each p ∈ U the map I →M : t 7→ f(t, p) is an integral curve through p.

Theorem 64. Let ξ be a Cr vector field (r ≥ 1) on a Cr+1 manifold M . For
every p0 ∈M there is a Cr flow box for ξ with p0 ∈ U .

Proof. We first construct a C0 flow box for ξ. The argument is a slight refine-
ment of the proof of theorem 62. As before assume without loss of generality
that M is an open subset of Rm and choose ρ > 0 so small that the closed ball
B̄ρ(p) is a subset of M . Choose numbers K and L, and a neighborhood U of p0
in Rm such that

|ξ(q)| ≤ K, |ξ(q1)− ξ(q2)| ≤ L|q1 − q2|

for p ∈ U , q, q1, q2 ∈ B̄ρ(p). Now shrink U and choose ǫ > 0 so that

(i) q ∈ B̄ρ(p0) if p ∈ U and |q − p| ≤ ǫK
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and

(ii). ǫL < 1

Let
I = (−ǫ, ǫ)

be the open interval of length 2ǫ centered at 0 ∈ R.
Now let F be the function space

F = C0(I × U, B̄ρ(p0))

of continous maps f : I × U → B̄ρ(p0) with the complete metric d defined by

d(f1, f2) = sup{|f1(t, p)− f2(t, p)| : (t, p) ∈ I × U}

and for f ∈ F defined Γ(f) : I × U → Rm by

Γ(f)(t, p) = p+

∫ t

0

ξ(f(τ, p)) dτ.

Now Γ : F → F by (i) and lip(Γ) ≤ 1 by (ii) so Γ has a fixed point. The
equation Γ(f) = f is the integrated form of the differential equation which says
that each map t 7→ f t(p) = f(t, p) is an integral curve of ξ so the fixed point is
a flow box as required.

Next we show there is a C1 flow box. To get the idea we assume that ξ is
C2. Write the differential equation in the form

(D0)
d

dt
f t = ξ ◦ f t.

If we assume that f is C1 we can apply the tangent functor and get another
differential equation

(D1)
d

dt
F t = (Tξ) ◦ F t, F t = Tf t

of the same form. The method of solution via the Banach contaction principle
will give a sequence of functions F tn which converge to a solution F t of (D1)
and direct calculation shows that F tn = Tf tn (where f tn is the corresponding
sequence of approxinmations for equation (D0)) provided this holds when n = 0.
Thus since F tn = Tf tn is converging uniformly we have that both f tn (the first
component of Tf tn) and DF tn are converging uniformly. Hence the limit f t(p)
is a C1 function of p and Df t(p) is a continuous function of (t, p). But the
differential equation (D0) shows that the partial derivative with respect to t is
also continuous. Hence the partial derivatives of f(t, p) = f t(p) with respect to
both t and p exist and are continuous and so f is C1 as required.

This argument is essentially correct (though a bit sketchy) but assumes
that ξ is C2 rather than C1. It turns out however that if we look at the
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argument a bit more carefully we see that the stronger hypothesis is not needed.
Integrating (D1) and separating components we see that it can be rewritten as
a fixed point equation

Φ(f,A) = (f,A)

where
f : I × U →M ⊂ R

m

as before and
A : I × U → R

m×m.

For the solution it will turn out that A is the derivative of f :

A(t, p) = Df t(p).

The precise equations for Φ are

Φ(f,A) = (Γ(f),Φf (A))

where

Γ(f)(t, p) = p+

∫ t

0

ξ(f(τ.p)) dτ

as before and Φf (A) is obtained from this equation by differentiating Γ(f)(t, p)
with respect to p and substituting A(t, p) for D2f(t, p) = Df t(p):

Φf (A)(t, p) = E +

∫ t

0

Dξ(f(τ, p))A(τ, p) dτ.

(Here E is the identity matrix.)
Now for F = Rm or F = Rm×m (or any other complete normed vector space)

X = I × U (or any other topological space) let C0(X,F) denote the space of
continuous maps from X to F and let BC0(X,F) denote the space of bounded
continuous maps from X to F:

BC0(X,F) = {f ∈ C0(X,F) : ‖f‖0 <∞}

where ‖f‖0 is the sup norm:

‖f‖0 = sup{|f(x)| : x ∈ X}.

Now BC0(X,F) is a Banach space (a complete normed space) since the uniform
limit of continuous functions is continuous and the space

F = {f ∈ C0(I × U,Rm) : f(I × U) ⊂ B̄ρ(p0)}

is a closed subset of BC0(I×U,Rm) and is hence itself a complete metric space.
As before Γ : F → F and lip(Γ) < 1. Put

A = BC0(I × U,Rm×m)
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so that Φf : A → A and note the estimate

lip(Φf ) ≤ ǫ‖Dξ|B̄ρ(p0)‖0.

Hence by making ǫ smaller we may achieve lip(Φf ) ≤ λ < 1 for all f ∈ F . (Note
however that even though lip(Γ) < 1 we do not have that lip(Φ) < 1.) We now
apply

Theorem 65 (The Fiber Contraction Principle). Suppose F and A are com-
plete metric spaces, that

Φ : F ×A → F ×A
is a map of form

Φ(f,A) = (Γ(f),Φf (A))

for f ∈ F and A ∈ A where Γ : F → F . Assume

(1) The map Γ : F → F has an attractive fixed point f∗ ∈ F ; i. e.

lim
n→∞

Γn(f0) = f∗

for every f ∈ F .

(2) Each of the maps Φf : A → A are contractions uniformly in f : i.e. there
exists λ < 1 such that

lip(Φ) ≤ λ < 1

for all f ∈ F .

(3) For each fixed A ∈ A the map

F → A : f 7→ Φf (A)

is continuous.

Then Φ has a (necessarily unique) attractive fixed point (f∗, A∗): i.e.

Φ(f∗, A∗) = (f∗, A∗)

and
lim
n→∞

Φn(f0, A0) = (f∗, A∗)

for all (f0, A0) ∈ F ×A.

Proof. It is clear that Φ has a unique fixed point (f∗, A∗) since Φ(f,A) = (f,A)
implies Γ(f) = f (and hence f = f∗) and Φf∗(A) = A = A∗ the unique fixed
point of the contraction Φf∗ . The problem is to show that the fixed point is
attractive.

Choose (f0, A0) ∈ F × A and defined (fn, An) = Φn(f0, A0) to be the n-th
iterate of Φ applied to (f0, A0):

An+1 = Φfn(An).
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Let dn and ǫn be defined by

dn = d(An, A
∗)

and
ǫn = d(Φfn(A

∗), A∗).

Hypotheses (3) and (1) guarantee that limn→∞ ǫn = 0; we must prove that
limn→∞ dn = 0. The triangle inequality gives

dn+1 ≤ d(Φfn(An),Φfn(A∗)) + d(Φfn(A
∗),Φf∗(A∗))

so hypothesis (2) gives
dn+1 ≤ λdn + ǫn.

Suppose ǫ > 0 is small and ǫn < ǫ for n > N = N(ǫ). Then for n > N(ǫ) we
obtain the inequality

dn ≤ ǫ+ ǫλ+ · · ·+ ǫn−N+1 + λn−NdN

≤ ǫ(1− λ)−1 + λn−NdN .

In particular taking ǫ = supnǫ (< ∞ since ǫn converges) and N = 0 gives
that the dn are bounded say by M so that dn ≤M and hence

dn ≤ ǫ(1− λ)−1 + λn−NM

for n > N = N(ǫ). It follows that dn tends to zero as required.
Now using the fiber contraction principle it is easy to see that the flow box

f must be C1. Indeed choose f0 ∈ F arbitrarily say f0(t, p) = p define fn ∈ F
and An ∈ A by Φn(f0, D2f0) = (fn, An). By induction on n we have An = D2fn
so (as D2fn converges uniformly if follows that D2f exists and is continuous.
The differential equation itself show that D1f is continuous. Hence f is C1 as
required.

Next we construct a Cr flow box by induction on r. Suppose ξ is Cr+1 with
r ≥ 1. Then the vector field

M ×Rm×m → R
m ×Rm×m : (p, a) 7→ (ξ(p), Dξ(p)a)

is Cr. The map

I × U ×Rm×m →M ×Rm×m : (t, p, a) 7→ (f t(p), F t(p, a))

is a Cr flow box for this vector field. Then by the uniqueness Theorem

F t(p, a) = Df t(p)a.

Hence (t, p) 7→ Df t(p) = D2f(t, p) is C
r and the differential equation

d

dt
Df(t, p) = Dξ(f t(p))Df t(p)
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shows that (t, p) 7→ D1f(t, p) is C
r. Hence (t, p) 7→ f t(p) is Cr+1 as required.

To prove the theorem in case r = ∞ requires a bit more argument because
we have not yet excluded the possibility that the domain of definition I × U
of the Cr flow box depends on r. It follows from the work in the next section
that every flow box is Cr: to prove this for r =∞ it suffices to prove it for all
r <∞. (See corollary 68 below.)

2.8 Partial Flows

Let ξ be a Cr vector field on a Cr+1 manifold.

Definition 66. The maximal partial flow generated by ξ is the map

f :W →M

where W ⊂ R×M is the open set defined by

W =
⋃

α

Iα × Uα

with the union being over all domains Iα × Uα of C1 flow boxes

fα : Iα × Uα →M

for ξ and the map f is defined 2 by

fα = f |Iα × Uα.

Lemma 67. Let c : J → M be an integral curve for ξ with 0 ∈ J and choose
t0 ∈ J . Then there is a Cr flow box f : I ×U →M with t0 ∈ I and p0 = c(0) ∈
U .

Corollary 68. The maximal partial flow of a Cr vector field (r ≥ 1) is Cr.

Corollary 69. Let c : J → M be an integral curve for ξ with 0 ∈ J . Then
J × {c(0)} ⊂W where W is the domain of the maximal partial flow of f .

Proof. Proof of lemma 67 We may assume that r <∞ since than the case where
r =∞ follows by applying corollary 68 for every r <∞. Let J̃ be the set of all
t ∈ J for which the theorem is true; that is, for which there is a Cr flow box
I × U → M with (t, p0) ∈ I × U . We must show that J̃ = J . We do this by
‘continuous induction’, that is we show that J̃ is non-empty, open, and closed
in J .

Now 0 ∈ J̃ since there is a flow box at p0 and J̃ is open since the domain of
a flow box is. To see that J̃ is closed in J choose a limit point t̄ ∈ J of J̃ . We
must find a flow box

f : I × U →M

2Well-defined by the uniqueness theorem.
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with (t̄, p0) ∈ I × U . Choose a flow box

f1 : I1 × U1 →M

with c(t̄) ∈ U1. Now choose s̄ ∈ J̃ so close to t̄ that t̄− s̄ ∈ I1. Then (as s̄ ∈ J̃)
choose a flow box f0 : I0 ×U0 →M with (s̄, p0) ∈ I0 ×U0. Now choose U ⊂ U0

with p0 ∈ U and
f0({s̄} × U) ⊂ U1,

let
I = I0 ∪ s̄+ I1

and define f by

f(t, p) = f0(t, p) for t ∈ I0
= f1(t− s̄, f0(s̄, p)) for t ∈ s̄+ I1

where the two formulas agree on the overlap (by the uniqueness theorem). This
gives the desired flow box.

For each p ∈M there is a (necessarily unique) integral curve cp : Ip →M for
ξ through p which is maximal in the sense that if c : I →M is any other integral
curve to ξ through p then I ⊂ Ip (and c = cp|I by the uniqueness theorem).
(For example, one could define Ip to be the union of all intervals I which are
domains of an integral curve through p)

Proposition 70. An integral curve c : I → M for ξ is maximal iff its graph
{(t, c(t)) : t ∈ I} of c is a closed subset of R×M .

Corollary 71. For p ∈ M let α(p) and β(p) be the end points of the interval
Ip, domain of the maximal integral curve of ξ through p. Then the maps

α :M → (0,∞] and β :M → [−∞, 0)

are respectively lower and upper semicontinuous.

Proof. This is because

α(p) = sup{t : (t, p) ∈W}, β(p) = inf{t : (t, p) ∈ W},

and W is open.

Example 72. Let M = R2 \ {(0, 0)}, ξ(x, y) = (1, 0), so that the maximal
partial flow is defined by

f(t, (x, y)) = (x+ t, y)

for (t, (x, y)) ∈ W where (t, (x, y)) ∈ W iff either y 6= 0 or x < 0, y = 0, and
t < −x or x > 0, y = 0, and −x < t. Thus β(x, y) =∞ unless x < 0 and y = 0
in which case β(x, y) = −x and similarly α(x, y) = −∞ unless x > 0 and y = 0
in which case α(x, y) = −x.
Exercise 73. Find the maximal partial flow when M = R and ξ(x) = x2.
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2.9 Complete Vector Fields

Let ξ be a Cr vector field (r ≥ 1) on a Cr+1 manifold M . The domain W of
the maximal partial flow is a neighborhood of {0} ×M in R×M and the map
f :W →M satisfies the identities

f(0, p) = p

and
f(t+ s, p) = f(t, f(s, p)).

(This last identity is by the uniqueness theorem since both both curves t 7→
f(t+ s, p) and t 7→ f(t, f(s, p)) are integral curves to ξ through f s(p).) When
W = R×M we define (for each t ∈ R) a map f t :M →M by

f t(p) = f(t, p).

Each f t is a diffeomorphism (bijective since f−t ◦ f t = f t ◦ f−t = f0 = idM )
and the identities say that the map t 7→ f t is a homomorphism of groups. Thus
when W = R ×M the vectorfield ξ generates a flow. In thus case we call ξ
complete:

Definition 74. The vector field ξ is complete iff it satisfies the three following
equivalent conditions:

(1) There is a flow f : R×M →M having ξ as its infinitessimal generator.

(2) For every p ∈ M there is an integral curve c : R → M for ξ through p
defined on all of R.

(3) There is an open interval I about 0 in R such that for every p ∈ M there
is an integral curve c : R→M for ξ through p defined on all of I.

Proof. Proof that the conditions are equivalent Clearly, (1) implies (2) imples
(3). On the other hand if (3) holds then by corollaries 68 and 69 there is a Cr

flow box of form f : I×M →M . Choose h > 0 so small that I contains a closed
interval of length h and extend the flow box to all of R×M by the formula

f t(p) = f(t− nh, fnh (p))

where fh = f(h, ·) and where the integer n is chosen so that the ‘remainder’
t − nh ∈ I. The integer n is not unique for we can also have t − (n + 1)h ∈ I
but f(t, p) is well defined by the uniqueness theorem:

f(t− (n+ 1)h, fn+1
h (p)) = f(t− nh, fnh (p))

since both sides are integral curves and equality holds for t = (n + 1)h. The
formula shows that (t, p) 7→ f t(p) is Cr and that each curve t 7→ f t(p) is an
integral curve of ξ. Thus t 7→ f t is a flow with infinitessimal generator ξ as
required.
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Corollary 75. Every C1 vector field on a compact C2 manifold is complete.

Proof. For every point p ∈ there is a flow box with domain Up × (−ǫp, ǫp) and
p ∈ Up. By compactness choose a finite collection of these so that the Upi cover
M and let ǫ be the smallest of the corresponding ǫpi . Then

M × (−ǫ, ǫ) ⊂
⋃

i

Upi × (−ǫpi , ǫpi)

so the vector field satisfies part (3) of the definition of completeness.

Exercise 76. Let ξ be a bounded C1 vector field on Rm. Then ξ is complete.

(Hint: Show that the graph of each integral curve is closed in R× Rm.)

Exercise 77. Let ξ be a vector field on Rm with lip(ξ) <∞. Then ξ is complete.

(Hint: Apply the Banach Contraction Princlple to Γp : C0(I,Rn)→ C0(I,Rn)
where the interval I about zero is independent of the initial point p of the desired
integral curve. Conclude that the domain of the maximal partial flow contain
I × Rm.)

Exercise 78. Let ξ be a vectorfield on R2n = Rn × Rn so that the system of
equations ż = ξz takes the form

ẋi = ẏi

ẏi = −∂iV (x)

for z = (x, y) ∈ Rm×Rn and where V Rn → R is a C2 real valued fuction. Then
the vector field ξ is complete if the function V is bounded below: L ≤ V (x) for
some constant L ∈ R and all x ∈ Rn.

In classical mechanics equations of this form arise frequently. The function V
is called the potential energy. Show that that the total energy

H(x, y) = ‖y‖2/2 + V (x)

is constant along integral curves in that

d

dt
H(x(t), y(t)) = 0

whenever z = (x(t), y(t)) is a solution of the system ż = ξ(z). Obtain an
estimate

|x(b)− x(a)| ≤ K|b− a|
where the constantK involves the lower bound L and the energy h = H(x(t), y(t))
of the integral curve. Conclude that the graph of the integral curve I → Rn×Rn
can be closed in R × (Rn × Rn) only if its interval of definition I is the whole
time axis: I = R.
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Exercise 79. Suppose ξ : (0,∞)→ (0,∞) is a C1 function on (0,∞), the open
infinite half interval. Assume φ, ψ : [0,∞)→ (0,∞) satisfy

φ(t) ≤ ξ(φ(t))

ψ(t) = ξ(ψ(t))

and

φ(0) = ψ(0).

Then

φ(t) ≤ ψ(t) for t/ge0.

Exercise 80. [Gronwall’s Inequality] Suppose b ≥ 0 and γ : R → Rn is a C1

map satisfying

| ˙γ(t)| ≤ b|γ(t)|
for t ∈ R. Then

|γ(t)| ≤ |γ(0)|ebt

for t ∈ R.

Exercise 81. Any C1 vector field ξ on Rm which grows at most linearly (mean-
ing that there exist constants a and b such that

|ξ(p)| ≤ a+ b|p|

for all p ∈ R
m) is complete. In particular, a bounded vector field is complete.

Exercise 82. Let ξ be a vector field on Rm with lip(ξ) <∞. Then ξ is complete.

Hint: One can argue that ξ grows at most linearly and apply the previous
exercise. Alternatively, one can show that that the integral curves are defined
on a interval independent of the initial condition. (This argument was sketched
above.) Here is a sketch of a different argument. Construct the flow f : R ×
Rm → Rm is the uniform limit on compact sets of the sequence of maps fn :
R× Rm → Rm defined recursively by f0(t, p) = p and

fn+1(t, p) = p+

∫ t

0

ξ(fn(τ, p)) dτ.

Induct on the estimate

|fn+1(t, p)− fn(t, p)| ≤
∫ t

0

L|fn(τ, p)− fn−1(τ, p)| dτ

where L = lip(ξ) to achieve as a bonus the estimate

|f(t, p)− p| ≤ L−1e|t|L|ξ(p)|.
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2.10 Lie Brackets

Let ξ and η be smooth vector fields on a smooth manifold M and let

Wξ ⊂ R×M →M : (t, p) 7→ f t(p)

Wη ⊂ R×M →M : (t, p) 7→ gt(p)

denote the maximal partial flows of ξ and η respectively.

Definition 83. The Lie brackets of the vector fields ξ and η is the vectorfield
[ξ, η] defined by

[ξ, η](p) =
d

dt

∣
∣
∣
∣
t=0+

f
√
t ◦ g

√
t ◦ f−

√
t ◦ g−

√
t(p).

Theorem 84. In case M ⊂ Rm we have

[ξ, η](p) = Dξ(p)η(p)−Dη(p)ξ(p).

Here we are identifying a vector field with its principal part.

Corollary 85. The Lie brackets of two Cr vector fields is of class Cr−1.

Remark 86. An important special case of the last formula is the formula

AB −BA =
d

dt

∣
∣
∣
∣
t=0+

exp(
√
tA) exp(

√
tB) exp(−

√
tA) exp(−

√
tB)

for square matrices A and B. It can be proved from the first few terms of the
power series expansion

exp(sA) = I + sA+
s2

2
A2 +O(s3).

The formula shows that the Lie brackets of two linear vector fields is a linear
vector field.

Proposition 87. Let f : M → N be a C1 map of C2 manifolds, ξ1, ξ2 be C1

vector fields on M , and η1, η2 be C1 vector fields on N . Suppose that for i = 1, 2
the map f interwines the vector fields ξi and ηi. Then f interwines [ξ1, ξ2] and
[η1, η2].

2.11 Time Dependent Vector Fields

A time-dependent vector field on a manifold M is a map

ξ : R×M → TM

such that
ξ(t, p) ∈ TpM
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for t ∈ R and p ∈M . A diffeotopy of class Cr is a map

R→ Diffr(M) : t 7→ ft

for which the evaluation map

R×M →M : (t, p) 7→ ft(p)

is Cr. The infinitessimal generator of this diffeotopy is the time-dependent
vector field defined by

d

ds
fs(p)

∣
∣
∣
∣
s=t

= ξ(t, ft(p)).

Theorem 88. Suppose that M is compact and of class Cr+1 where r ≥ 1
and that ξ is a time-dependent vector field on M of class Cr. Then there is a
(necessarily unique) Cr diffeotopy on M having ξ as its infinitessimal generator
and satisfying the initial condition

f0 = idM .

Proof. Sketch of Proof Using a trick we reduce the problem to the time-independent
case. Let M̃ = R×M and define a vector field ξ̃ on M̃ by

ξ̃(t, p) = (1, ξ(t, p)) ∈ T(t,p)M̃ = R× TpM.

Then the flow f̃ of ξ̃ is related to the diffeotopy generated by ξ via the formula

f̃ t(0, p) = (t, ft(p)).

Remark 89. Other terminology is sometimes used. A map

R
2 → Diff(M) : (t, s) 7→ f ts

satisfying
f tt = idM , f rt ◦ f ts = f rs

is sometimes called an evolution system. The formula

f̃ t(s, p) = (t+ s, f t+ss (p))

establishes a correspondence between evolution systems on M and flows on
R×M which have generators of form ξ̃.
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Chapter 3

MANIFOLDS

Throughout, E, F, G etc. denote finite dimensional vector spaces.

3.1 Manifolds defined

Definition 90. Let M be a set. A chart on M is a pair (α,U) where U ⊂M ,
α is a bijection from U to an open subset of some finite dimensional vector space
E; i.e. α(U) ⊂ E is open and α : U → α(U) is a bijection. Two charts (α,U)
and (β, V ) are Cr compatible iff α(U ∩ V ) and β(U ∩ V ) are both open (in
their respective ambient spaces) and

β ◦ α−1 : α(U ∩ V )→ β(U ∩ V )

is a Cr diffeomorphism. A Cr atlas on M is a collection A of charts on M any
two of which are Cr compatible and such that the sets U , as (α,U) ranges over
A, cover M (i.e., for every x ∈ M there is a chart (α,U) ∈ A with x ∈ U). A
maximal Cr atlas is an atlas which contains every chart which is Cr compatible
with each of its members. A maximal Cr atlas is also called a Cr structure.

Lemma 91. If A is an Cr atlas, then so is the collection of all charts Cr

compatible with each member of A. In other words, every Cr atlas extends
uniquely to a maximal Cr atlas.

Definition 92. A Cr manifold is a pair consisting of a set M and a maximal
Cr atlas A on M .

Remark 93. In view of lemma 91, a Cr manifold is usually specified by giving
its underlying set M and some Cr atlas on M . Generally, the notation for the
atlas is suppressed and the manifold is denoted simply by M . The members of
the atlas are called admissible Cr charts on M or simply charts on M .

Remark 94. In view of lemma 91, every Cr manifold is a Cq manifold for
q ≤ r.

45
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Definition 95. The manifold topology of a Cr manifold M is the topology
generated by the sets U as (α,U) ranges over the charts of M .

Example 96. The manifold topology need not be Hausdorff.

Example 97. The manifold topology need not be second countable.

Redefinition 98. Henceforth, unless otherwise stated, all manifolds will be
assumed to be Hausdorff and second countable.

Definition 99. Let M and N be Cr manifolds and

f :M → N

be a map. Given (admissible) charts (α,U) on M and (β, V ) on N we define
the local representative

fβα : α(U ∩ f−1(V ))→ β(V )

of f with respect to (α,U) and (β, V ) by

fβα = β ◦ f ◦ α−1|α(U ∩ f−1(V )).

The map f is Cr iff for all Cr charts (β, V ) on N and (α,U) on M the set
U ∩ f−1(V ) is open in M and the local representative fβα is Cr. Note that a
map is Cr if for every x ∈M there exist charts Cr charts (β, V ) and (α,U) with
x ∈ U ∩ f−1(V ), U ∩ f−1(V ) open, and fβα is Cr.

Definition 100. A map f :M → N between Cr-manifolds is a Cr diffeomor-
phism iff f is bijective and both f and f−1 are Cr. Two Cr manifolds M and
N are Cr diffeomorphic iff there exists a Cr diffeomorphism from M onto N .

Proposition 101. The identity map on a Cr manifold is a Cr map. The
composition of Cr maps is Cr.

This proposition says that the Cr manifolds and Cr maps form a category.
The Cr diffeomorphisms are the isomorphisms of this category.

Proposition 102. A Cr map is Cs for s ≤ r. A map between Cr manifolds is
a C0 map if and only if it is continuous. If r ≥ 1 then a Cr map which is a C1

diffeomorphism is a Cr diffeomorphism, but a C∞ homeomorphism need not be
a C1 diffeomorphism.

Definition 103. Let M be a manifold. Then M has dimension m iff the
ambient vector spaces of the open sets α(U) as (α,U) ranges over the charts
of M all have dimension m. Some authors call a manifold of dimension m an
m-manifold.
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Remark 104. Suppose U ⊂ E and V ⊂ F are are Cr diffeomorphic open
subsets of vector spaces. Then E and F have the same dimension. For r ≥ 1 this
is quite easy to see, for if φ : U → V is a diffeomorphism then Dφ(x) : E→ F is
a vector space isomorphism for x ∈ U . For r = 0 (i.e. φ a homeomorphism) this
is Brouwer’s famous invariance of domain theorem. It follows that a connected
manifold has dimension m for some m.

Example 105. Let M1 be the Cr manifold having the real line R as its under-
lying subset and having as a Cr atlas the set consisting of the single chart (α,U)
where U = M1 = R and α(x) = x for x ∈ U and let M2 be the Cr manifold
having the real line R as its underlying subset and having as a Cr atlas the set
consisting of the single chart (β, V ) where V =M2 = R and β(y) = y3 for y ∈ V .
If r = 0, these manifolds are the same (i.e., the corresponding maximal atlas are
set theoretically the same) while if 1 ≤ r ≤ ∞ they are distinct. In any case,
they are Cr diffeomorphic; a diffeomorphism given by f :M2 →M1 : f(z) = z3.

Remark 106. More generally, two Cr manifolds having the same underlying
set are the same (i.e., the corresponding maximal Cr atlas are identical) if and
only if the identity map (considered as a map from the manifold to the other)
is a Cr diffeomorphism. Even if the identity map is not a Cr diffeomorphism
the manifolds may still be diffeomorphic via another map.

Milnor’s famous example shows that two C∞ manifolds can be homeomor-
phic but not C∞ diffeomorphic. On the other hand, for r ≥ 1 Cr manifolds are
Cr diffeomorphic if and only if they are C1 diffeomorphic. (See Munkres for
example.)

Proposition 107. Let R have its usual Cr structure (i.e., R is the manifold
M1 of example 105). Then any Cr manifold which is homeomorphic to R is Cr

diffeomorphic to R.

3.2 Examples

Example 108. An open subset M ⊂ E of a finite-dimensional vector space is
canonically a C∞ manifold; an atlas consists of the single chart (idM ,M). The
notion of Cr map defined in definition 99 agrees with the usual notion of Cr

map for such manifolds.

Example 109. Any open subset V of a Cr manifold M is again a Cr manifold;
the atlas consists of all charts (α|U ∩ V, U ∩ V ) as (α,U) ranges over the charts
ofM . If (α,U) is a Cr chart on M , then α : U → α(U) is a Cr diffeomorphism.

Remark 110. A manifold is locally connected. Thus its connected components
are open subsets and hence connected manifolds. Thus one may view a C0 man-
ifold as a (Hausdorff and second countable) topological space each component
of which is locally homeomorphic to some Rn.
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Example 111. The n-sphere Sn is a C∞ manifold. The underlying set is given
by

Sn = {x ∈ R
n+1 : ‖x‖ = 1}

where ‖ · ‖ denotes the usual norm on Rn. A C∞ atlas is given by the 2n + 2
charts (αiσ , Uiσ) where i = 1, . . . , n+ 1, σ = ± defined by

Ui± = {(x1, . . . , xn+1) ∈ Sn+1 : ±xi > 0}

αi±(x1, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn+1) ∈ R
n.

An atlas consisting of two charts and compatible with the above atlas consists
of (α+, U+), (α−, U−) where

U± = Sn \ {(±1, 0, 0, . . . , 0)}

α±(x) = y ∈ R
n

where (0, y) ∈ R × Rn = Rn+1 is the unique intersection of the hyperplane
0 × Rn ⊂ Rn+1 with the line through (±1, 0, . . . , 0) and x. (Stereographic
projection). Note that the transition map

γ = α− ◦ (α+)
−1 : Rn \ 0→ R

n \ 0

is given by
γ(y) =‖ y ‖−2 y.

The inclusion map Sn → Rn+1 is C∞.

Definition 112. The direct product of two Cr manifold M and N is a Cr

manifold. The atlas is given by the set of all pairs (α × β, U × V ) as (α,U)
range over all Cr charts on M and (β, V ) range over all Cr charts on N . The
projections M × N → M and M × N → N are Cr. (More generally a finite
product of Cr manifolds is a Cr manifold.)

Example 113. The space R2 may be canonically identified with the field of
complex numbers C. Then

S1 = {z ∈ C : zz = 1}.

The map
S1 × S1 → S1 : (z1, z2)→ z1z2

is C∞ and gives S1 the structure of an abelian group. The inverse map

S1 → S1 : z → z−1 = z

is also C∞. The map
e : R→ S1

given by
e(t) = e2πit = cos(2πt) + i sin(2πt)

is a C∞ homomorphism of groups. It is moreover a C∞ covering (see definition
120 below).
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Example 114. The n-dimensional torus T n is the C∞ manifold

T n = (S1)n = S1 × S1 × · · · × S1

︸ ︷︷ ︸

n

.

The group operations on T n are C∞. The map

R
n → T n : (t1, t2, · · · , tn)→ (e(t1), e(t2), · · · , e(tn))

is C∞ and a homomorphism of groups. The inclusion

T n → C
n ≃ R

2n

is C∞.

Example 115. Real n-dimensional projective space is denoted by RPn

or Pn(R) or simply Pn:
RPn = Pn(R) = Pn

It is defined to be the set of all lines through the origin in Rn+1. Equivalently it is
the set of equivalence classes on Rn+1 \{0} under the equivalence relation x ≡ y
iff x = ty for some t ∈ R. For x ∈ Rn+1 let [x] ∈ RPn denoted its equivalence
class. A C∞ atlas for RPn is given by n + 1 charts (α1, U1), . . . , (αn+1, Un+1)
where

Uk = α−1
k (Rn)

and
α−1
k (x1, . . . , xn) = [x1, . . . , xk−1, 1, xk, . . . , xn].

The map Sn → RPn : x → [x] is C∞ double covering. (See definition 120
below.)

Example 116. Complex projective n-space is denoted by CPn or some-
times CPn or Pn(C):

CPn = CPn = Pn(C)

It is a manifold of dimension 2n. 1 It is defined to be the set of complex 1-
dimensional subspaces of the complex vector space C

n+1. (Warning: a vector
space of complex dimension k has real dimension 2k.) Equivalently CPn is the
set of equivalence classes on Cn+1 \ 0 under the equivalence relation u ≡ v iff
u = λv for some λ ∈ C. For v ∈ Cn+1 let [v] denote its equivalence class. A
C∞ atlas for CPn consists of n+ 1 charts (αk, Uk) for k = 1, . . . , n+ 1 where

αk(Uk) = C
n ≃ R

2n

and
α−1
k (z) = [z1, . . . , zk−1, 1, zk, . . . , zm]

1This is an example of a complex manifold, i.e. the overlap maps are holomorphic. Some
authors indicate the real dimension of a manifold as a superscript writing e.g. Mm for a
manifold of dimension m. For a complex manifold it is customary to indicate the complex
dimension as a subscript.
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for z = (z1, . . . , n) ∈ Cn. The map

R
2n+2 \ 0 = C

n+1 \ 0→ CPn : v → [v]

is C∞ as well as the map

S2n+1 → CPn : v → [v]

(Note: S2n+1 ⊂ R2n+2.) This last map is surjective; hence CPn is compact.
The manifold CP 1 is C∞ diffeomorphic to S2 and the special case n = 1 of

the above map
S3 → CP 1 ≃ S2

is called the Hopf Map.

Example 117. The Grassman manifold of unoriented k-planes in Rn is
denoted by Gk,n or 2 sometimes Gk,n(R) or Gk(R

n):

Gk,n = Gk,n(R) = Gk(R
n).

It has as its underlying subset the set of all k-dimensional (vector) subspaces
of Rn) (defined for 0 < k < n). A C∞ atlas for Gk,n consists of all pairs
(α,U) determined as follows: Let E ∈ Gk,n and let F be any (vector space)
complement to E in Rn; i.e., Rn = E⊕F. The pair (E,F) determines α,U) via

U = α−1(L(E,F))

α−1(A) = Graph(A)

for A ∈ L(E,F) where
Graph(A) = {x+Ax : x ∈ E}.

The natural identification G1,n+1 → RPn is a C∞ diffeomorphism (RPn has
the C∞ structure given by definition 115). The map

Gk,n → Gn−k,n : E→ E⊥

(where E⊥ denotes the orthogonal complement to E with respect to the usual
inner product on Rn) is a C∞ diffeomorphism. The map

GL(n,R)→ Gk,n : a→ a(Rk × 0)

is a C∞ surjective map. The fibers of this map (i.e., inverse images of points) are
left cosets a ·GL(n, k;R) where GL(n, k;R) is the subgroup of GL(n,R) consist-
ing of all b ∈ GL(n,R) such that b(Rk × 0) = Rk × 0. Thus we have a canonical
correspondence between Gk,n and the space of left cosets GL(n,R)/Gl(n, k;R):

Gk,n = GL(n,R)/GL(n, k;R).

(Warning: GL(n, k;R) is not a normal subgroup of GL(n,R). Thus Gk,n is not
a group in any natural fashion.)

2More generally, Gk(H) denotes the manifold of k-dimensional subspaces of the vector
space H.
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Example 118. TheGrassman manifold of oriented k-planes in Rn is denoted
by G+

k,n and has as its underlying set the set of all oriented vector spaces (E, o)

where E ∈ Gk,n. An element (E, o) ∈ G+
k,n and a complement F to E in Rn

determine a chart (α,U) by

α(U) = L(E,F)

α−1(A) = (Graph(A), o′)

where o′ is the orientation on Graph(A) such that

o = A
∗
o′

and A : E→ Graph(A) is the linear isomorphism defined by

Ax = x+ Ax

for x ∈ E.
The map

G+
k,n → Gk,n : (E, o)→ E

is a C∞ double covering. G+
k,n is connected and compact. As in example 117,

there is a natural bijective correspondence with the left coset space:

G+
k,n = GL+(n,R)/GL+(n, k;R)

where GL+(h, k;R) is the subgroup of all b ∈ GL+(n,R)∩GL(n, k;R) such that
b|Rk ∈ GL+(k,R).

Example 119. The Grassman manifold of complex k-planes in Cn is de-
noted by Gk,n(C) and has as its underlying set the collection of all complex
k-dimensional subspaces (real dimension 2k) of Cn. The charts are defined ex-
actly as for Gk,n (see example 117) except that all subspaces and maps are
taken to be complex linear. 3 As in example 117 we have a natural bijective
correspondence:

Gk,n(C) = GL(n,C)/GL(n, k;C).

The inclusion
Gk,n(C)→ G2k,2n(R)

is C∞. (Warning: This map is not surjective.)

Definition 120. Let M and N be Cr manifolds and π : M → N . Then π is
a Cr covering iff every y ∈ N has a open neighborhood V such that π maps
each component of π−1(V ) Cr-diffeomorphically onto V . If in addition, π−1(y)
consists of exactly n points, then π is called an n-fold covering. A double
covering is a 2-fold covering.

3More generally, Gk(H,C) denotes the manifold of complex k-dimensional subspaces of
the complex vector space H.
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Example 121. The map Rn → T n of example 114 is a C∞ covering.

Example 122. The maps Sn → RPn of example 115 and G+
k,n → Gk,n of

example 118 are C∞ double coverings.

Definition 123. Let G be a collection of maps from a space M to itself. For
x ∈M the orbit of x by G is the set

Gx = {f(x) : f ∈ G}.

The orbit space of M by G is the set

M/G = {Gx : x ∈M}.

The map

M →M/G : x→ Gx

is called the canonical projection.

Theorem 124. Let M be a Cr manifold and G be a finite group of Cr diffeo-
morphisms from M onto itself. Suppose each f ∈ G distinct from the identity
is fixed point free (i.e., for f ∈ G either f(x) = x for all x ∈ M of f(x) 6= x
for all x ∈ M ). Then there is a unique Cr structure on M/G such that the
canonical projection M →M/G is a Cr covering.

Example 125. Let M = Sn and G = {id, f} where f is the antipodal map
(i.e., f(x) = −x ). Then M/G is projective space RPn.

Example 126. Let M = S1 × R and G = {id, f} where f(z, x) = (−z,−x)
(S1 ⊂ R2). The orbit space M/G is called the Mobius strip. Note that the map
f is orientation reversing: the map S1 → S1 : z 7→ −z preserves orientation and
the map R→ R : x 7→ −x reverses orientation.

Example 127. Let M = T 2 = S1 × S1 and G = {id, f} where f(z1, z2) =
(−z1, z̄2). The orbit space M/G is called the Klein bottle.

Example 128. Let M = S3 = {(v, w) ∈ C2 : vv + ww = 1}. Let p and q be
relatively prime integers and G = {id, f, f2, . . . , fp−1} where

f(v, w) = (e2πi/pv, e2πiq/pw).

The orbit space M/G is denoted by L(p, q) and is called a Lens space.

3.3 The Tangent Space

Throughout M,N are Cr manifolds with r ≥ 1.
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Definition 129. Two C1 curves ci : Ii → M (where Ii ⊂ R is an interval
about zero) are said to be tangent at x ∈ M iff c1(0) = c2(0) = x and (α ◦
c1)

′(0) = (α ◦ c2)′(0) for some chart (α,U) with x ∈ U . This definition is
independent of the choice of the chart (α,U); i.e. if c1(0) = c2(0) = x then
(α ◦ c1)′(0) = (α ◦ c2)′(0) for some chart (α,U) with x ∈ U if and only if this is
true for every chart (α,U) with x ∈ U . Tangency at x is an equivalence relation
on the set of all C1 curves c : I →M such that c(0) = x.

Definition 130. If c : I → M is C1 we denote by ċ(0) the equivalence of c.
The tangent space to M at x ∈ M is denoted by Mx or TxM and defined to
be the set of all equivalence classes ċ(0) with c(0) = x. If c : I → M is C1 we
define ċ(t) ∈ Tc(t)M by

ċ(t) = ċt(0)

for t ∈ I where ct(s) = c(t+ s).

Definition 131. Let f :M → N be C1. For x ∈M the tangent map of f at
x is the map

Txf : TxM → Tf(x)N

defined by

Txf(ċ(0)) =
⌢̇
f ◦c(0),

where c : I → M is any C1-curve in M thru x. One easily checks that Txf is

well defined; i.e. if c1(0) = c2(0) = x and ċ1(0) = ċ2(0) then
⌢̇
f ◦c(0) =

⌢̇
f ◦c(0).

Remark 132. LetM ⊂ E be an open subset of a vector space an x ∈M . Then
TxM and E are in natural correspondence via

v = ċ(0)

for v ∈ E where
c(t) = x+ tv.

We henceforth identify TxM with E. If N ⊂ F is open in a vector space and
f :M → N is C1 then Txf : TxM = E→ Tf(x)N = F is the map defined by

(Txf)v = Df(x)v =
d

dt
f(x+ tv)

∣
∣
∣
∣
t=0

for x ∈M and v ∈ E = TxN .

Definition 133. Let M be any manifold and x ∈ M . We shall give each
tangent space TxM the structure of a vector space. Let (α,U) be a chart at
x. Txα : TxM → Tα(x)U = E is bijective; we introduce the vector space
structure in TxM by defining the vector space operations so that Txα is a linear
isomorphism. This vector space structure is well-defined i.e., independent of the
choice of (α,U). This is because if (β, V ) is another chart at x then the map

(Txβ) ◦ (Txα)−1 = D(β ◦ α−1)(α(x))

is a linear isomorphism.
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Proposition 134. If f : M → N is C1, then Txf : TxM → Tf(x)N is linear
for each x ∈M .

Definition 135. The tangent bundle of the manifold M is the map

τM : TM →M

defined by

TM = {(x, v) : x ∈M, v ∈ TxM}
and

τM (x, v) = x.

Given a C1-map

f :M → N

the tangent map to f is the map

Tf : TM → TN

defined by

Tf(x, v) = (f(x), (Txf)v).

Clearly, τN ◦ Tf = f ◦ τM , i.e. the diagram

TM

?
M

TN

?
N

Tf

f

-

-

τM τN

commutes. When M ⊂ E and N ⊂ F are open subsets of vector spaces the
fomula for

Tf : TM =M ×E→ TN = N × F

is

Tf(x, v) = (f(x), Df(x)v)

for x ∈M and v ∈ E.
The charts (Tα, TU) as (α,U) runs over the charts on M form a Cr−1 atlas

on TM which makes TM a Cr−1 manifold and τM a Cr−1 map. Charts on TM
of form (Tα, TU) where (α,U) is a chart on M are called natural charts on
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TM . The local representative of Tf : TM → TN with repect to natural charts
(Tα, TU) on TM and (Tβ, TV ) on TN is

(Tf)Tβ,Tα = Tfβα

It follows that Tf is Cr−1 if f is Cr.

Proposition 136. The tangent map to the identity map of M is the identity
map of TM :

T idM = idTM .

The tangent map of a composition is the composition of the tangent maps:

T (g ◦ f) = (Tg) ◦ (Tf)

The last formula is nothing more than the chain rule for differentiation. This
proposition says that T defines a functor, called appropriately the tangent
functor, from the category of Cr manifolds to the category of Cr−1 manifolds.
(Compare proposition 101).

3.4 Submanifolds

Definition 137. Let M be a Cr manifold r ≥ 1 and W ⊂ M be a subset.
A submanifold chart for W in M is a chart (α,U) on M such that α(U) =
U1 × U2 (where Ui is an open set in a vector space Ei) and

α(U ∩W ) = U1 × {y2}

for some y2 ∈ U2. The subsetW is a Cr submanifold ofM iff for every x ∈ W
there is a Cr-submanifold chart (α,U) for W in M at x (i.e. x ∈ U). A closed
submanifold of M is a submanifold or M which is a closed subset of M .

Let W ⊂ M be a Cr submanifold of a Cr manifold. Then the collection
of all pairs (α|U ∩W,U ∩W ) as (α,U) ranges over the Cr charts having the
submanifold property for W is a Cr atlas for W . (We have identified U1×{y2}
with the open set U1 ⊂ E.) A Cr submanifold is a Cr manifold; the Cr structure
is the one given by this atlas.

Proposition 138. Let W ⊂M be a Cr submanifold of a Cr manifold. Then

(1) the inclusion ι :W →M is a Cr map;

(2) the manifold topology of W is the topology it inherits as a subset of M;

(3) for each x ∈W , the linear map Txι : TxW → TxM is injective.

Remark 139. It is customary to abuse language and use the linear injection
Txι : TxW → TxM to identify TxW with a vector subspace of TxM : henceforth
4

TxW ⊂ TxM
4This is an abuse since the tangent space was defined as a set of equivalence classes.



56 CHAPTER 3. MANIFOLDS

when W is a submanifold ofM . In caseM ⊂ Rm we combine this identification
with the earlier identification TxR

m = Rm for x ∈ Rm we arrive at the equation

TxW = {c′(0) : c ∈ C1(R,Rm), c(0) = x, c(R) ⊂W}

for W ⊂ Rm a C1 submanifold. Here C1(R,Rm) denotes the space of all C1-
curves in Rm.

Definition 140. A subset W of a topological space M is locally closed iff
every x ∈W has a neighborhood U in M such that U ∩W is closed in U . Note
that W is closed if and only if every x ∈ M has a neighborhood U in M such
that U ∩W is closed in U .

Proposition 141. A submanifold is locally closed (in the ambient manifold)
but not necessarily closed.

Example 142. If F ⊂ E is a vector subspace of a finite dimensional vector
space and U ⊂ E is open, then U ∩ F is a C∞ submanifold of U .

Example 143. Sn is a C∞ submanifold of Rn+1; the C∞ structures on Sn

given by example 137 and example 111 agree.

Example 144. If f :M → N is a Cr map, then

Graph(f) = {(x, y) ∈M ×N : y = f(x)}

is a Cr submanifold of M ×N which is Cr diffeomorphic to M . In particular,
for each y ∈ N , M × {y} is a Cr submanifold of M ×N .

Definition 145. Let f : M → N be Cr(r ≥ 1). A point x ∈ M is a regular
point of f iff Txf : TxM → Tf(x)N is surjective; otherwise x is a critical point
of f . A point y ∈ N is a critical value of f iff f−1(y) contains a critical point;
otherwise it is a regular value.

Definition 146. Let W be a submanifold of a manifold M . Suppose W has
dimension p and M has dimension m. Then the codimension of W in M is
definied to be m− p.
Remark 147. An open subset ofM is a submanifold of codimension zero (often
called an open submanifold of M). The C∞ structures given by example 137
and example 109 agree.

Similarly, a zero-dimensional manifold is a discrete point set. The codimen-
sion of a zero-dimensional submanifold is the dimension of the ambient manifold.

Proposition 148. Let f : M → N be Cr(r ≥ 1) and let y ∈ N be a regular
value. Then f−1(y) is a Cr submanifold of M ; its codimension is the dimension
of N . The tangent space to f−1(y) at a point x ∈ f−1(y) is the kernal of the
linear map Txf : TxM → Tf(x)N :

Txf
−1(y) = {v ∈ TxM : Txfv = 0}.
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Example 149. TakeM = Rn+1, N = R, and f(x) = 〈x, x〉. Then 1 is a regular
value of f so f−1(1) = Sn is a C∞ submanifold of Rn+1.

Example 150. The set of all linear maps A ∈ L(Rn,Rp) of rank k is a C∞

submanifold of L(Rn,Rp).

Example 151. Let O(n) denote orthogonal group in n dimensions, i.e. the
set of all matrices a ∈ GL(n,R) such that 〈ax, ay〉 = 〈x, y〉 for all x, y ∈ Rn.
Define

f : GL(n,R)→ L2
s(R

n,R)

by 5

f(a)xy = 〈ax, ay〉 − 〈x, y〉
for x, y ∈ Rn. Then f is C∞, O(n) = f−1(0), and 0 is a regular value of
f . Hence O(n) is a C∞ submanifold of GL(n,R). The dimension of O(n) is
n(n − 1)/2. The tangent space to O(n) at the identity matrix e is the space
so(n) of skew-symmetric matrices:

so(n) = TeO(n) = {A ∈ gl(n,R) : A+A∗ = 0}.

The manifold O(n) has two components; the identity component (i.e. the com-
ponent containing e) consists of all a ∈ O(n) having determinant 1:

SO(n) = {a ∈ O(n) : det(a) = 1}

(All matrices in a ∈ O(n) have det(a) = ±1.)

3.5 Immersions and embeddings

Definition 152. Let f : W → M be a C1 map of C1 manifolds, and x ∈ W .
We say that f is an immersion at x iff the linear map

Txf : TxW → Tf(x)M

is injective. The map f is an immersion iff f is an immersion at x for every
x ∈W .

Proposition 153. Let f : W →M be a Cr map of Cr manifolds and x ∈ W .
Then f is an immersion at x if and only if there exist Cr charts (α,U) at x in
W and (β, V ) at f(x) in M with f(U) ⊂ V such that

fβα(x1) = (x1, 0)

for all x1 ∈ α(U). Here E1 is the ambient vector space of α(U), E1 ×E2 is the
ambient vector space of β(V ), α(x) = 0, β(f(x)) = (0, 0), and fβα = β ◦f ◦α−1.

5L2
s(R

n,R) is the vector space of all symmetric bilinear forms Rn
× Rn

→ R; it has
dimension n(n+ 1)/2.
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Definition 154. Let W and M be topological spaces and f : W → M be
continuous. Call f is proper iff it satisfies the following equivalent conditions:

(1) for every compact K ⊂M, f−1(K) ⊂W is compact;

(2) every y ∈M has a neighborhood V in M such that f−1(K) is compact for
every compact K ⊂ V .

Call f :W →M is locally proper iff

(3) every y ∈ f(W ) has a neighborhood V in M such that f−1(K) is compact
for every compact K ⊂ V .

Thus f is proper implies f is locally proper but not conversely. Note that if
W is a compact Hausdorff space, any continuous f :W →M is proper.

Lemma 155. Let W and M be Cr manifolds (r ≥ 1) and f : W → M a Cr

bijective immersion. Then f is a Cr diffeomorphism.

Remark 156. Lemma 155 is false if we do not require W to be second count-
able.

Definition 157. Let W and M be Cr manifolds and f : W → M . The
map f is a Cr embedding iff f is a Cr immersion and f : W → f(W ) is a
homeomorphism (where f(W ) has the topology it inherits as a subset of M).
The map f is a Cr closed embedding iff f is a Cr embedding and a closed
map (i.e., maps closed subsets of W to closed subsets of M).

Proposition 158. Let f :W →M be an injective Cr immersion of Cr mani-
folds (r ≤ 1). Then the following are equivalent:

(1) f is a Cr embedding;

(2) f is locally proper;

(3) f(W ) ⊂M is a Cr submanifold.

Also the following are equivalent:

(4) f is a Cr closed embedding;

(5) f is proper;

(6) f(W ) ⊂M is a closed Cr submanifold.

Corollary 159. Let f : W → M be an injective Cr immersion. If W is
compact, then f is a closed embedding.

Example 160. There is an injective C∞ immersion f : R→ T 2 such that f(R)
is dense in T 2.

Example 161. There is an injective C∞ immersion f : R→ R2 such that f(R)
is closed in R2 but f is not an embedding.
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Definition 162. Let fi : Wi → M (i = 1, 2) be injective Cr immersions
(r ≥ 1) of Cr manifolds. The maps f1 and f2 are immersion-equivalent iff
f1(W1) = f2(W2) and f2 ◦ f−1

1 :W1 →W2 is continuous.

Proposition 163. If f1 and f2 are immersion-equivalent Cr injective immer-
sions, then f2 ◦ f−1

1 is a Cr diffeomorphism.

Proposition 164. Let W ⊂M be a Cr submanifold of a Cr manifold (r ≥ 1).
Then

(1) The inclusion W →M is a Cr embedding.

(2) Any Cr injective immersion with image W is immersion-equivalent to the
inclusion.

Corollary 165. Any injective immersion which is immersion-equivalent to
some embedding is itself an embedding.

Example 166. There exists C∞ injective immersions fi : R→ R2 (for i = 1, 2)
such that f1(R) = f2(R) but f1 and f2 are not immersion-equivalent.

Example 167. The map
f : T 2 → R

3

given by

f(eiθ, eiφ) = (cos(θ)(b + a cos(φ)), sin(θ)(b + a cosφ)),+
¯
a sin(φ))

(where 0 < a < b) is a closed embedding.

Example 168. The map

S2 → R
4 : (x, y, z)→ (x2 − y2, xy, xz, yz)

factors through an embedding RP 2 → R4.

Remark 169. This terminology is common but not standard. Some authors
use the term imbedding or embedding for injective immersion and the term regu-
lar embedding or locally proper embedding for embedding (see proposition 158).
These authors also use the term submanifold for the image of an injective immer-
sion. The example in example 166 shows the danger of this latter terminology.

3.6 Submersions and locally trivial maps

Definition 170. Let q : P → M be C1 and z ∈ P . We say that q is a
submersion at z iff z is a regular point of q, that is, iff the linear map

Tzq : TzP → Tf(z)M

is surjective. The map q is called a submersion iff it is a submersion at z for
every z ∈ P .
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Proposition 171. Let q : P → M be Cr (r ≥ 1) and z ∈ P . Then q is a
submersion at z if and only if there exist Cr charts (β, V ) at z in P and (α,U)
at q(z) in M such that

qαβ(x, y) = x

for (x, y) ∈ β(V ). Here β(V ) ⊂ E×F, α(U) ⊂ E, β(z) = (x0, y0), α(q(z)) = x0,
and qαβ = α ◦ q ◦ β−1.

Corollary 172. A submersion is an open mapping (i.e., maps open sets to
open sets). Hence, if q : P →M is a surjective submersion M has the topology
induced from P by q (i.e. U ⊂M is open if and only if q−1(U) ⊂ P is open).

Proposition 173. Let P , M1, and M2 be Cr manifolds (r ≥ 1) and qi : P →
Mi (i = 1, 2) be Cr surjective submersions. Suppose f :M1 →M2 is a bijection
such that f ◦ q1 = q2; i.e. the diagram

P

M1 M2

S
S
S
S
S
S
S
Sw

�
�

�
�

�
�

�
�/

-
f

q1 q2

commutes. Then f is a Cr diffeomorphism.

Remark 174. Proposition 173 says that if P is a Cr manifold, M is a set and
q : P → M is a surjection, then there is at most one Cr structure on M such
that q is a Cr submersion.

Definition 175. Let q : P → M and x ∈ M . The fiber of q over x is the
set q−1(x). It is sometimes denoted by Px or P (x). Often P is called the
total space of q and M is called the base space of q. A section of q is a
map ξ : M → P such that q ◦ ξ = idM . A local section of q is a section of
q|q−1(U) : q−1(U)→ U where U ⊂M is open.

Proposition 176. The fibers of a Cr submersion (r ≥ 1) are closed Cr sub-
manifolds of its total space.

Proposition 177. A Cr section of a Cr submersion is a closed embedding.

Definition 178. Let Pi, Mi (for i = 1, 2) be Cr manifolds and qi : Pi → Mi.
The maps q1 and q2 are Cr equivalent iff there exist Cr diffeomorphisms
f : P1 → P2 and f0 :M1 →M2 such that
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P1

?
M1

P2

?
M2

f

f0

-

-

q1 q2

Definition 179. Let P and M be Cr manifolds and q : P → M . q is Cr

trivial iff there exists a (nonempty) Cr manifold F such that q : P →M is Cr

equivalent to the map

M × F →M : (x, v)→ x.

q is Cr locally trivial iff every x ∈M has an open neighborhood U in M such
that q−1 | q−1(U) : q−1(U)→ U is trivial.

Remark 180. Some authors call a projection M × F → M trivial and a map
equivalent to it trivializable. A locally trivial map is sometimes called a fiber
bundle but usually this term is used in a more restrictive sense.

Proposition 181. A trivial map is locally trivial.

Proposition 182. A Cr locally trivial map is a Cr surjective submersion.

Proposition 183. If q : P →M is Cr locally trivial and M is connected, then
any two fibers of q are Cr diffeomorphic.

Example 184. Let P = {(x, y) ∈ R2 :| y |> x},M = R, and q : P → M :
q(x, y) = x. Then q is a C∞ surjective submersion which is not C0 locally
trivial.

Remark 185. A Cr covering (see definition 120) is a Cr locally trivial map
with zero-dimensional fiber.

Proposition 186. If M is a Cr manifold (r ≥ 1), then τM : TM →M is Cr−1

locally trivial.

Remark 187. A C∞ manifold is called parallelizable iff τM : TM → M is
C∞ trivial. It is known that Sn is parallelizable if and only if n = 1, 3, 7.
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Example 188. The map

S2n+1 → CPn

(see example 111 and example 116) is C∞ locally trivial. The fiber is (diffeo-
morphic to) S1.

Example 189. Let E be a vector space. A k-frame in E is a linear injection
from Rk to E; i.e., an element of Linj(R

k,E). If k = dim(E) a k-frame is called
a frame. Linj(R

k,Rn) is open in L(Rk,Rn) and the map

Linj(R
k,Rn)→ Gk,n : u 7→ u(Rk)

is C∞ locally trivial. Here Gk,n is the Grassman manifold of k-planes in Rn

(see example 117).

Example 190. An orthonormal k-frame in Rn is a linear map u : Rk → Rn

such that

〈ux, uy〉 = 〈x, y〉
for x, y ∈ Rk (Standard inner product on both Rk and Rn). The set of all
orthonormal k-frames in Rn is usually denoted by Vk(R

n) and is called the
Stiefel variety of (orthonormal) k- frames in Rn. Vk(R

n) is a C∞ submanifold
of Linj(R

k,Rn) and the map

Vk(R
n)→ Gk,n : u 7→ u(Rk)

is C∞ locally trivial. Moreover, the map

Vk(R
n)→ (Sn−1)k : u 7→ (ue1, ue2, . . . , uek)

where for i = 1, 2, . . . , k

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
k

(1 in the i-th position) is a closed embedding. Thus Vk(R
n) is often defined to

be the image of this embedding.

Example 191. Let

Ek,n = {(F, v) ∈ Gk,n × R
n : v ∈ F}.

Then Ek,n is a C∞ submanifold of Gk,n × Rn and the map

Ek,n → Gk,n : (F, v)→ F

is C∞ locally trivial.

Theorem 192. A proper Cr surjective submersion is Cr locally trivial. In
particular, a Cr surjective submersion with a compact total space is Cr locally
trivial.
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3.7 Partitions of Unity

Throughout, M denotes a topological space and Λ is a set of continuous real
valued functions on M . We shall assume that Λ is admissible by which we
mean that it satisfies the following three conditions:

(1) if f1, . . . , fn ∈ Λ and g : Rn → R is C∞, then g ◦ (f1, . . . , fn) ∈ Λ;

(2) if f : M → R is such that for every x ∈M there is a neighborhood U of x
in M and a function g ∈ Λ with f | U = g | U , then f ∈ Λ;

(3) Λ induces the topology of M .

Remark 193. We recall the definition of the topology induced by a set of
functions: Let X be a set and Γ a set of functions f with source X and target
a topological space Yf (i.e., f : X → Yf ). Note that the target may vary. The
topology on X induced by Γ is the topology which has the sets f−1(V ) as f
ranges over Γ and V ranges over open subsets of Yf as a subbasis. It is the
weakest topology (least open sets) in which all the maps f ∈ Γ are continuous.
For example, the Tychonoff topology on a product of topological spaces is the
topology induced by the projections onto the factors.

Lemma 194. . Let Λ be admissible. Then the sets f−1(0,∞) where f ranges
over Λ form a basis for the topology of M .

Proposition 195. If M is a Cr manifold (0 ≤ r ≤ ∞), then Λ = Cr(M,R) is
an admissible set.

Lemma 196. A manifold is normal and Lindelöf.

Definition 197. Let f : M → R. The support of f is denoted by Supp(f)
and defined by

Supp(f) = Clos{x ∈M : f(x) 6= 0}
where for X ⊂M , Clos(X) denotes the closure of X .

Definition 198. A partition of unity onM is a collection {gi}i of continuous
real valued functions on M such that

(1) gi ≥ 0 for each i;

(2) every x ∈M has a neighborhood U such that U ∩ Supp(gi) = φ for all but
finitely many of the gi;

(3) for each x ∈M
∑

i

gi(x) = 1.

Note that by (2), the sum in (3) is finite. If, in addition, each g∈Λ then {gi}i
is called a Λ-partition of unity.
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Definition 199. A partition of unity {gi}i on M is subordinate to an open
cover ofM iff for each gi there is an element U of the cover such that Supp(gi) ⊂
U . The space M admits Λ-partitions of unity iff for every open cover of M
there is a Λ-partition of unity subordinate to the cover.

Remark 200. A Hausdorff space admits continuous partitions of unity if and
only if it is paracompact.

Theorem 201. Let M be normal and Lindelöf, and let Λ be admissible. Then
M admits Λ-partitions of unity.

Proof. Suppose an open cover is given. Choose fn ∈ Λ (1 ≤ n < ∞) so that
fn :M → [0,∞)

Un = {x ∈M : fn(x) > 0}
is a cover and {Un}n refines the given cover. Let

Vn = {x ∈ Un : fk(x) <
1

n
for 1 ≤ k < n}.

Refine {Vn} to {Wn} where

Wn = {x ∈M : hn(x) > 0}

and hn ∈ Λ , hn :M → [0,∞). Let

gn(x) = hn(x)/
∑

k

hk(x).

Then {gn} is the required partition of unity.

Corollary 202. A Cr manifold admits Cr partitions of unity.

Corollary 203. A manifold is paracompact.

Corollary 204 (Cr Urysohn’s Lemma). Let X and Y be disjoint closed subsets
of a Cr manifold M . Then there is a Cr function g : M → R such that
0 ≤ g(x) ≤ 1 for all x ∈M , g(x) = 0 for x ∈ X and g(x) = 1 for x ∈ Y .

Corollary 205. Any closed subset of a Cr manifold is the zero set of a Cr

real-valued function.

3.8 Embeddings

Definition 206. A topological space X has covering dimension at most m
iff every open cover of X has a refinement with the property that each point
of X is contained in at most m+ 1 members of the refinement. The covering
dimension of X is the least m such that X has covering dimension at most m;
it is ∞ if there is no such m.

Theorem 207. An m-dimensional manifold has covering dimension m.



3.8. EMBEDDINGS 65

Proposition 208. Let X be a paracompact space with covering dimension m.
Then every open cover of X has a refinement which is the union of collections
C0, C1, . . . , Cm such that any of the elements of each Ci (i = 0, 1, . . . ,m) are
pairwise disjoint.

Corollary 209. An m-dimensional manifold can be covered by m+ 1 charts.

Theorem 210. Let M be an m-dimensional Cr manifold (r ≥ 0) and let k =
(m+ 1)2. Then there exists a Cr closed embedding f :M → Rk.

Corollary 211. A manifold is metrizable.

Sketch of proof of theorem 210. Let (αi, Ui)(0 < i ≤ m) be a cover of M by
charts. Choose a cover V0, . . . , Vm of M with V i ⊂ Ui and gi : M → R with
0 ≤ gi ≤ 1, gi |M\Ui ≡ 0, gi | V i ≡ 1. Define giαi :M → Rm by

giαi(x) = gi(x)αi(x) for x ∈ Ui
= 0 for x 6∈ Ui.

Define f :M → Rk by

f = (g0, g0α0, g1, g1α1, . . . , gm, gmαm).

f is a closed embedding. For 208 and 209, see Munkres.



66 CHAPTER 3. MANIFOLDS



Chapter 4

TRANSVERSALITY

4.1 Function Space Topologies

Recall that a subbase for a topological space C is a collection S of subsets of C
such that the open subsets of C are precisely those sets expressible as arbitrary
unions of finite intersections of members of S. Every collection S of subsets of
a set C is a subbase for a unique topology on C (viz. that topology whose open
sets are the arbitrary unions of finite intersections of S) but it is often helpful
to know several subbases for a topological space.

For example, letM and N be topological spaces let C(M,N) be the set of all
continuous maps f :M → N . The set C(M,N) has two interesting topologies,
the Whitney topology having as subbase the collection of all sets

{f ∈ C(M,N) : Graph(f) ⊂ Z}

where Z ⊂M ×N is open and the compact open topology having as subbase
the collection of all sets

{f ∈ C(M,N) : f(K) ⊂ V }

where K is a compact subset of M and V is an open subset of N . 1 In this
section we write

C(M,N)wh

is used to denote the space C(M,N) with the Whitney topology and

C(M,N)co

is used to denote the space C(M,N) with the compact open topology. However,
for us the only important topology on C(M,N) is the Whitney topology and
in subsequent sections we shall always assume that C(M,N) has this topology
unless the contrary is stated.

1The Whitney topology is also called the fine topology or the strong topology and the
compact open topology is also called the coarse topology or the weak topology.

67
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Proposition 212. The Whitney topology is stronger than the compact-open
topology; i.e. the identity map

C(M,N)wh → C(M,N)co

is continuous.

Proof. Given K and V we have

f(K) ⊂ V ⇐⇒ Graph(f) ⊂ (M \K)× V
for all f ∈ C(M,N).

Proposition 213. If M is compact and Hausdorff, then the Whitney and
compact-open topologies on C(M,N) are the same; i.e. the identity map

C(M,N)wh → C(M,N)co

is a homeomorphism.

Proof. Given f ∈ C(M,N) and Z ⊂ M × N satisfying Graph(f) ⊂ Z we must
find compact subsets K1,K2, . . .Kl of M and open subsets V1, V2, . . . Vl of N
such that for any g ∈ C(M,N) the conditions g(Ki) ⊂ Vi for i = 1, 2, . . . l imply
that Graph(f) ⊂ Z. For every x ∈ M choose a compact neighborhood Kx of x
in M and Vx of f(x) in N so that

Kx × Vx ⊂ Z
and extract from the open cover {int(Kx)}x∈M a finite subcover. For any
x′ ∈M we have x′ ∈ Kx for some Kx of the finite subcover, whence g(x′) ∈ Vx
if g(Kx) ⊂ Vx, whence (x, g(x)) ⊂ Kx×Vx ⊂ Z. This shows that Graph(g) ⊂ Z
for any g satisfying g(Kx) ⊂ Vx for allKx of the finite subcover (as required).

Proposition 214. If L ⊂ N is closed then the set

{f ∈ C(M,N)wh : f(M) ∩ L = ∅}
is open in C(M,N)wh.

Proof. f(M)∩L = ∅ if and only if Graph(f) ⊂M × (N \L). (It is because this
poroposition fails for C(M,N)co that the compact open topology is of little use
for us.)

In case M is locally compact and N is metrizable we have alternate descrip-
tions of these topologies. Fix a metric d giving the topology of N and given a
collection

P = {(Ki, ǫi) : i ∈ I}
where {Ki}i∈I forms a locally finite collection of compact subsets of M and
each ǫi is a positive real number and given a map f :M → N let

W(f,P) = {g ∈ C(M,N) : d(g(x), f(x)) < ǫi ∀x ∈ Ki ∀i ∈ I}.
Proposition 215. The collection of all sets W(f,P) forms a basis for the
topology C(M,N)wh; the collection of all sets W(f,P) with I finite forms a
basis for the topology C(M,N)co.
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4.2 Jets

Given positive integersm and n and a non-negative integer r denote by Jr(m,n)
the space of all polynomial maps p : Rm → Rn of degree ≤ r; i.e.

p ∈ Jr(m,n) ⇐⇒ p(v) =
∑

|κ|≤r
pκv

κ

for v ∈ Rm where the coefficients pκ lie in Rn and we have used multi-index
notation

vκ = vκ1

1 vκ2

2 . . . vκm

m

|κ| = κ1 + κ2 + . . .+ κm

for an m-tuple
κ = (κ1, κ2, . . . , κm)

of non-negative integers. Clearly Jr(m,n) is a vector space and a clever argu-
ment (due to Paul Ehrenfest) shows that its dimension is given by

dim(Jr(m,n)) = n

(
r +m

r

)

.

We shall often use the identification

Jr(m,n) =

r∏

k=0

Lksym(Rm,Rn).

Here the symbol
∏

denotes Cartesian product and Lksym(R
m,Rn) denotes the

space of symmetric k-linear maps from (Rm)k to R
n. With this identification

the polynomial p above would be written:

p(v) =

r∑

k=0

pkv
k

where
pk ∈ Lksym(Rm,Rn)

and notation pkv
k simply denotes the value of the k-linear map pk for k identical

inputs v. Evidently

pkv
k =

∑

|κ|=k
pκv

κ.

Given open sets U ⊂ Rm and V ⊂ Rn define an open subset Jr(U, V ) ⊂
Rm × Jr(m,n) by

Jr(U, V ) = {(x, p) ∈ U × Jr(m,n) : p0 ∈ V }.

Given a Cr map f : U → V define a continuous map

jrf : U → Jr(U, V )
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by

jrf(x)(v) = (x,
∑

|κ|≤r

∂κf(x)vκ

κ!
)

where the multi-index notation for partial derivatives is given by

∂κ = ∂κ1

1 ∂κ2

2 . . . ∂κm

m

and the factorial notation is defined by

κ! = κ1!κ2! . . . κm!.

Thus first co-ordinate of jrf(x) is x and the second is the Taylor polynomial of
f of order r evaluated at x. In the alternate notation

jrf(x) = (x, f(x), Df(x),
1

2
D2f(x), . . . ,

1

r!
Drf(x)).

The set Jr(U, V ) is called the space of r-jets from U to V , the point jrf(x)
is called the r-jet of f at x, and the map jrf is called the r-jet extension
of f . Since a map with prescribed derivatives at a single point can easily be
constructed, we have that every point (x, p) ∈ Jr(U, V ) has form (x, p) = jrf(x)
for some f ∈ C∞(U, V ).

Proposition 216. Given open sets U ⊂ Rm, V ⊂ Rn, and W ⊂ Rk there is a
unique polynomial map

Er : Jr(U, V,W )→ Jr(U,W )

such that

jr(g ◦ f)(x) = Er(jrg(y), jrf(x))
for any f ∈ Cr(U, V ) and g ∈ Cr(V,W ). Here the set Jr(U, V,W ) is defined by

Jr(U, V,W ) = {((y, q), (x, p) ∈ Jr(V,W )× Jr(U, V ) : p0 = y}

Proof. This is nothing more than the chain rule (for higher order derivatives).
The exact formula for Er is called Faa di Bruno’s formula. When r = 1 it is
given by

E1((y, z, B), (x, y, A)) = (x, z, BA)

for x ∈ U , y ∈ V , z ∈ W , A ∈ L(Rm,Rn), and B ∈ L(Rn,Rk).

Corollary 217. (Change of variables formaula) Let U1, U2 ⊂ Rm and
V1, V2 ⊂ R

n be open and let

φ : U1 → U2

and

ψ : V1 → V2
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be Cs diffeomorphisms. Then for r ≤ s there is a unique map

jrψφ : Jr(U1, V1)→ Jr(U2, V2)

such that
jrψφ(j

rg1(x1)) = jrg2(x2)

whenever xi ∈ Ui and gi ∈ Cr(Ui, Vi) satisfy

x2 = φ(x1)

and
g2 = ψ ◦ g1 ◦ φ−1;

the map jrψφ is in fact a Cs−r diffeomorphism.

Remark 218. In the special case r = 1 the map

j1ψφ : J1(U1, V1)→ J1(U2, V2)

has form
j1ψφ(x, y, A) = (φ−1(x), ψ(y), Dψ(y)ADφ−1(x))

where we have made the identification

J1(U, V ) = U × V × L(Rm,Rn).

Now letM andN be Cs manifolds with s ≥ r and call two pairs (x1, f1), (x2, f2) ∈
M×Cr(M,N) equivalent iff x1 = x2, f1(x1) = f2(x2) and for some charts (α,U)
on M at x1 = x2 and (β, V ) on N at f1(x1) = f2(x2) we have

jr(β ◦ f1 ◦ α−1)(x1) = jr(β ◦ f2 ◦ α−1)(x2).

This is indeed an equivalence relation and by the change of variables formula it
is independent of the choice of charts. We denote the equivalence class of the
pair (x, f) by jrf(x) and the set of all equivalence classes by Jr(M,N). As
before jrf(x) is called the r-jet of f at x, Jr(M,N) is called the space of r-jets
from M to N , and for f ∈ Cr(M,N) the map jrf ∈ C0(M,Jr(M,N)) is called
the r-jet extension of f .

Given charts (α,U) on M and (β, V ) on N we have the natural inclusion
Jr(U, V ) ⊂ Jr(M,N) and a bijection

jrβα : Jr(U, V )→ Jr(α(U), β(V ))

given by
jrβα(j

rf(x)) = jr(β ◦ f ◦ α−1)(α(x))

for x ∈ U , f(x) ∈ V . Any two of these charts are Cs−r-compatible (change of
variables formula again) and so constitute a Cs−r atlas on Jr(M,N). Hence-
forth we denote by Jr(M,N) the Cs−r manifold determined by this atlas.
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For x ∈M denote by Jr(M,N)x the set of all r=jets based at x:

Jr(M,N)x = {jrf(x) : f ∈ Cr(M,N)}

and for (x, y) ∈M ×N denote by Jr(M,N)(x,y) the set of all r-jets based at x
with target y:

Jr(M,N)(x,y) = {jrf(x) : f ∈ Cr(M,N), f(x) = y}.

There is a natural bijection

J1(M,N)(x,y) ←→ L(TxM,TyN)

determined by
j1f(x)←→ Txf

for f :M → N with y = f(x). (See remark 218.)
For s ≥ r there is a unique map called the natural projection

πrs : Js(M,N)→ Jr(M,N)

such that
(πrs) ◦ (jsf) = jrf

for every f : M → N . Of course in local co-ordinates the map (πrs) is nothing
more then the projection which discards terms of order > r. However, there
is no natural way to define an inclusion of Jr(M,N) into Js(M,N). In local
coordinates we can of course simply extend by 0 – i. e. put the coeficients
pα = 0 for r < |α| ≤ s but this operation does not commute with changes of
variables.

4.3 The C
r Whitney Topology

Let M and N be Cr manifolds and note that the r-jet extension

jr : Cr(M,N)→ C0(M,Jr(M,N))

is injective. (It is never surjective; e.g. in local coordinates with r = 1 a map
F (x) = (F1(x), F2(x), F3(x)) ∈ U ×V ×L(Rm,Rn) satisfies F = j1f for some f
iff F1(x) = x, and F3(x) = DF2(x).) for all x.) The image jr(Cr(M,N)) of this
map is a closed subset of C0(M,Jr(M,N)) because if a sequence of functions
together with their derivatives of order ≤ r converge uniformly on compact
subsets then the limit function is of class Cr and the limit of the derivatives is
the derivative of the limit.

Definition 219. For 0 ≤ r <∞ the Cr topology 2 on Cr(M,N) is the topology
induced from the (Whitney) topology on C0(M,Jr(M,N) by r-jet extension.
The C∞ topology on C∞(M,N) is the union of the Cr topologies for r <∞.

2More precisely, the Cr Whitney topology
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Hence by definition the map

jr : Cr(M,N)→ C0(M,Jr(M,N))

is a closed embedding.
An alternate description of the Whitney topology of proposition 215 has an

analog here which is useful for reducing arguments to local coordinates. Fix
f ∈ Cr(M,N) and let

P = {(αi, Ui), (βi, Vi),Ki, ǫi}i∈I (4.1)

denote a system consisting of a collection {(βi, Vi)}i∈I of charts on N ; a collec-
tion {(αi, Ui)}i∈I of charts on on M satisfying f(Ui) ⊂ Vi for i ∈ I; a locally
finite collection {Ki}i∈I of compact compact subsets of M satisfying Ki ⊂ Ui
for i ∈ I; a collection {ǫi}i∈I of positive real numbers. For this map f and
system P define a subset Wr(f,P) ⊂ Cr(M,N) by

g ∈ Wr(f,P) ⇐⇒
{
g(Ki) ⊂ Vi, |Dkgi(x) −Dkfi(x)| < ǫi

∀k ≤ r, i ∈ I, x ∈ αi(Ki).

Here gi and fi denote the local representatives of f and g:

fi(x) = βi ◦ f ◦ α−1
i (x)

gi(x) = βi ◦ g ◦ α−1
i (x)

for x ∈ α(Ki). Note that when M is compact the index set I must be finite
since the collection {Ki}i∈I is locally finite.

Proposition 220. The setsWr(f,PCr(M,N) form a basis for the Cr topology
Cr(M,N).

Recall that a subset of a topological space is called residual 3 iff it is a
countable intersection of open dense sets (archetypal example: irrational num-
bers are a residual subset of the real numbers) and a topological space is called
a Baire space if every residual set is dense. According to the Baire Category
Theorem a complete metric space is a Baire space.

Proposition 221. The space Cr(M,N) is a Baire space.

The idea is that (in Baire spaces at least) residual sets are very large. One
often uses the terminology “for generic f in C the property P (f) holds” to mean
“the set of f in C for which the property P (f) holds is a residual subset of C”.
Another way of saying a set is large (at least a subset of Euclidean space) is
to say that its complement has measure zero. These two notions are not the
same 4 but at least a closed set of measure zero has open dense (hence residual)
complement.

3Second category in older parlance.
4The ultimate counter example is constructed from a Cantor set of nearly full measure.

An increasing union of such sets will have full measure while its complement is residual.
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4.4 Sard’s Theorem

Let M be a Cr manifold of dimension m, N be a Cr manifold of dimension n,
and f :M → N a Cr map with r ≥ 1. A point x ∈M is called a critical point
of f if the derivative

Txf : TxM → Tf(x)N

is not surjective; otherwise it is called a regular point of f . A point y ∈ N is
called a critical value of f iff y = f(x) for some critical point x of f ; otherwise
it is called a regular value of f .

We denote the critical points, regular points, critical values, and regular
values of f by CP(f), RP(f), CV(f) and RV(f) respectively so that for x ∈M
we have

x ∈ CV(f) ⇐⇒ (Txf)(TxM) 6= Tf(x)N

and
RP(f) =M \ CP(f),
CV(f) = f(CP(f)),
RV(f) = N \ CV(f).

Proposition 222. The set CV(f) ⊂ M of critical points of f : M → N is
closed; hence if M is compact then the set CV(f)) of critical values is also
closed. If the dimension m of M is less than the dimension n of N , then every
point is a critical point: CV(f) =M .

Theorem 223 (Sard’s Theorem). Let

ρ(m,n) = max

(

0, 1 +
(m− n)2

2

)

and r > ρ(m,n). Then for any Cr map f : M → N from an m-dimensional
manifold M to an n-dimensional manifold N , the set N \ RV(f)) of regular
values is residual.

Actually, one can improve this result to

ρ(m,n) = max(0,m− n)

but this requires more work. The properties of ρ(m,n) required to make the
proof presented here go through are

q ≤ ρ(m,n) (4.2)

ρ(m− 1, n) ≤ ρ(m,n)− q + 1 (4.3)

ρ(m− 1, n− 1) ≤ ρ(m,n) (4.4)

where 5

q = [m/n] + 1.

5[m/n] is the greatest integer in m/n
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As a corollary of 223 the set of non-values N \ f(M) is residual when m < n
but this is false when r = 0 as there are space filling curves, i.e, surjective
continuous maps f : R → R

2. Whitney (1935) has constructed an example of
a C1 map f : R2 → R and a C0 curve c : R → R2 such that Df(c(t)) = 0
for t ∈ R but t 7→ c(f(t)) is not constant. If c is C1 the chain rule shows that
this cannot happen, but also if f is Cr with r > ρ(2, 1) (and c only C0) Sard’s
theorem 223 shows that this cannot happen. (For if f(c(t)) takes two values
and c : R → CP(f) then CV(f)) ⊂ R contains an interval and therefore cannot
have residual complement – a residual set is dense.)

Proof. Proof of 223 As a countable intersection of residual sets is residual it is
enough to prove for every point x ∈ M there are neighborhoods U of x in M
and V of f(x) in N with f(U) ⊂ V and for which the regular values of f |U
intersect V in a residual subset of V . Indeed, if this local assertion is true we
can find a countable cover {Ki}i∈N ofM by compact sets so that Ki ⊂ Ui ⊂M ,
f(Ui) ⊂ Vi ⊂ N and Vi \ f(CV(f)

⋂
Ui)) is residual (and hence dense) in Vi.

Hence the larger set N \ f(CV(f)∩Ki) is open and dense in N so the countable
intersection

RV(f) = N \ f(CV(f)) =
⋂

i∈N
(N \ f(CV(f) ∩Ki))

is residual. These considerations show that we may use co-ordinate charts to
localize the theorem; i. e. that we may (and will) assume 6 M is an open subset
of Rm and N is an open subset of Rn. We will prove that CV(f) is of measure
zero from which (as it is a countable union of compact sets) it follows that its
complement is residual.

We can write M as a finite union

M = Zq ∪
⋃

1≤|κ|<q

m⋃

i=1

n⋃

j=1

Zκ,i,j ∪
m⋃

i=1

n⋃

j=1

Zi,j

where
Zq = {x ∈M : ∂κfj(x) = 0 (1 ≤ j ≤ n, 1 ≤ |κ| ≤ q)}

Zκ,i,j = {x ∈M : ∂κfj(x) = 0, ∂i∂
κfj(x) 6= 0}

Zi,j = {x ∈M : ∂ifj(x) 6= 0}
Here f1, f2, . . . , fn are the components of f . Note that Zq ⊂ CP(f), that Zκ,i,j
is a submanifold of M of codimension 1 (dimension m− 1) and of class Cr−|κ|

and that Zi,j is an open subset of M .
Our proof will be by induction on m. We divide the proof into three steps:

Step (1) f(Zq) has measure zero.

Step (2) f(CP(f) ∩ Zκ,i,j) has measure zero.

6We will use the localization argument again however.
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Step (3) f(CP(f) ∩ Zi,j) has measure zero.

Proof. Step (1) By our localization argument it is enough to show that f(Im ∩
Zq) has measure zero where

I = [a1, b1]× [a2, b2]× . . .× [am, bm]

is a cube of edge length L; viz. a product of intervals of equal length

L = b1 − a1 = b2 = a2 = . . . = bm − am.

We write I as a union of cubes Il (l = 1, 2, . . . km) of edge L/k so that

f(Zq) ⊂
km⋃

l=1

f(Zq ∩ Il)

If Zq ∩ Il = ∅ then its image f(Zq ∩ Il) is also empty and hence certainly of
measure zero. Hence assume Zq ∩ Il 6= ∅ and choose x0 ∈ Zq ∩ Il 6= ∅. Then by
Taylor’s formula we have an inequality

|f(x)− f(x0)| ≤ C|x− x0|q+1

where
C = sup

x∈I
|Dq+1f(x)|.

The cube Ii is contained in a ball of radius
√
mL/k so our inequality implies

that the set f(Il) is contained in a ball centered at f(x0) and with radius
C(
√
mL/k)q+1 and hence in a cube with edge 2C(

√
mL/k)q+1. This proves

meas(f(Il)) ≤ (2C(
√
mL/k)q+1)n

As f(Zq ∩ Il ⊂ f(Il) and there are at most km cubes Il with Zq ∩ Il non-empty
this gives

meas(f(Zq)) ≤ C′km−(q+1)n

where C′ = (2C(
√
mL)q+1)n. As the exponent m− (q + 1)n is negative by 4.2

we let k →∞ to achieve meas(f(Zq)) = 0.

Proof. Step (2) For any submanifold Z ⊂M we have

f(CP(f) ∩ Z) ⊂ f(CP(f |Z))

for if y ∈ f(CP(f)∩Z) there is an x ∈ CP(f)∩Z with y = f(x) and hence a ŷ ∈
TyN such that the linear equation (Txf)x̂ = ŷ has no solution x̂ ∈ TxM . Hence
the linear equation certainly has no solution x̂ ∈ TxW ⊂ TxM i.e. x ∈ CV(f |Z)
as required. As the manifold Zκ,i,j is of class Cr−|κ| and with |κ| < q it is of
class Cr−q+1. By 4.3 the induction hypothesis applies to f |Zκ,i,j as required.
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Proof. Step (3) Choose x0 ∈ Zi,j and use the inverse function theorem to change
co-ordinates so that

fj(x1, x2, . . . , xm) = xi

for x = (x1, x2, . . . , xm) near x0. Then permute the co-ordinates so i = j = 1
to bring f to the form

f(t, u) = (t, g(t, u))

where t = x1, u = (x2, . . . , xm) and g : M → Rn−1. (We have used the
localization argument to assume without loss of generality that M = Z1,1.) Let

Mt = {u ∈ R
m−1 : (t, u) ∈M}

Nt = {v ∈ R
n−1 : (t, v) ∈ N}

and

gt :Mt → Nt

be given by

gt(u) = g(t, u).

Since

Df(t, u) =

[
1 0
⋆ Dgt(u)

]

we have that

CP(f) = {(t, u) ∈M : u ∈ CP(gt)}
and hence that

CV(f) = {(t, v) ∈ N : v ∈ CV(gt)}
i.e.

f(CV(f)) ∩Nt = gt(CV(gt))
By 4.4 the induction hypothesis applies to each gt so that CV(f) intersects each
slice Nt in a set of measure zero (in Rn−1). Now the proof is complete via
Fubini’s theorem.

Remark 224. There is a generalization of Sard’s theorem to Banach manifolds
(infinite dimensional) due to Smale. It goes as follows. One assumes that
f :M → N is a Fredholm map which means that the dimensions of the kernel
and cokernel or the linear map Txf : TxM → TxN are finite dimensional for
every x ∈M . Then one defines the Fredholm index of f by

index(f) = dim(ker(Txf))− dim(coker(Txf))

(it follows that this index is locally constant). Smale’s theorem is that the
regular values of f form a residual subset of N provided that f is Cr with
r > max(0, index(f)).
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4.5 The Submanifold Theorem

Let M and N be Cr manifolds (r ≥ 1), f : M → N a Cr map, and W ⊂ N a
Cr submanifold.

Definition 225. We say that f is transversal to W at the point x ∈ M
(notation: f ∩| x W ) iff either f(x) /∈ W or else f(x) ∈ W and every vector in
Tf(x)N can be written as the sum of a vector in the image of Txf : TxM →
Tf(x)N and a vector tangent to W . Thus if f(x) ∈W we have

f ∩| x W ⇐⇒ Tf(x)N = (Txf)(TxM) + Tf(x)W.

For a subset K ⊂M we say f is transverse to W on K (notation: f ∩| K W )
iff f is transverse to W at every x ∈ K:

f ∩| K W ⇐⇒ f ∩| x W ∀x ∈ K

Finally we say f is transverse to W (notation: f ∩| W ) iff f is transverse to
W on M :

f ∩| W ⇐⇒ f ∩| M W.

Theorem 226. If f is transverse to W then f−1(W ) is a Cr submanifold of
M . Moreover, the codimension is preserved:

codim(f−1(W ),M) = codim(W,N).

Proof. Choose x0 ∈ f−1(W ) and choose a submanifold chart (β, V ) for W in N
at f(x0). Thus β(V ) = V1 × V2 ⊂ Rn−k × Rk = Rn and β(V ∩W ) = V1 × {0}.
Choose a chart (α,U) at x0 with f(U) ⊂ V . The the local reprsentative fβα =
β ◦ f ◦ α−1 has form

fβα(x) = (f1(x), f2(x))

where fi : α(U)→ Vi for i = 1, 2. Clearly then

α(U ∩W ) = {x ∈ α(U) : f2(x) = 0}

which will give a non-degenerate local defining equation for f−1(W ) if Df2(x) :
Rm → Rk is surjective. But the tangent space to W is given by

Tyβ(V ∩W ) = R
n−k × {0} ⊂ R

n = Tyβ(V )

so the definition of transversality says that (when f2(x) = 0) given any ŷ =
(ŷ1, ŷ2) ∈ Rn−1 × Rk we can solve the equation

ŷ = Df(x)x̂ + (ŵ, 0)

for x̂ ∈ Rm and ŵ ∈ Rn−k. This equation can be written as two equations

ŷ1 = Df1(x)x̂+ ŵ

ŷ2 = Df2(x)x̂

which can (always) be solved iff Df2(x) is surjective as claimed.



4.6. THE OPENNESS THEOREM 79

4.6 The Openness Theorem

Let M and N be Cr manifolds (r ≥ 1), f : M → N a Cr map, and W ⊂ N a
Cr submanifold.

Theorem 227. Assume that W is closed in N . Then the set

∩| r (M,N,W ) = {f ∈ Cr(M,N) : f ∩| W}

is open in Cr(M,N).

Proof. Recall the identification

J1(M,N) = {(x, y, A) : x ∈M, y ∈ N, A ∈ L(TxM,TyN)}

of 4.2. With this identification define

Z = {(x, y, A) : y ∈ W, TyN 6= A(TxM) + TyW}

so that the subset Z ⊂ J1(M,N) has the property that

f ∩| W ⇐⇒ (j1f)(M) ∩ Z = ∅.

Moreover Z is closed in J1(M,N) (since W is and by the next lemma) so
that in the case r = 1 theorem follows from proposition 214. The general
case r > 1 follows trivially since the inclusion map Cr(M,N) → C1(M,N) is
continuous.

Lemma 228. Let E and F be finite dimensional vector spaces and H be a
subspace of F. Then the set of all linear maps A : E→ F such that

F = AE+H

is open in L(E,F).

The theorem fails when W is not closed. For example let M = R, N = R
2,

W = (0,∞) × {0} (the positive x-axis) and f(x) = (x − a, (x − a)2). The f is
transverse to W for a = 0 (as the image of f and W do not intersect) but not
for a > 0. (Exercise: “interchange” the parabola and the ray: let f be given
by f(x) = a + ex and W = {(x, y) : y = x2}. Why doesn’t this contradict the
theorem?) The above proof however does have something to say even when W
is not closed.

Proposition 229. Drop the assumption that W is closed. Let K ⊂M be closed
in M and L ⊂W be closed in N . Then the set

∩| r (M,N,W,K,L) = {f ∈ Cr(M,N) : f ∩| K∩F−1(L) W}

is open in Cr(M,N).
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4.7 The Abstract Density Theorem

Theorem 230. Let A, M , N be Cr manifolds (r ≥ 1), W ⊂ N a Cr subman-
ifold and

f : A×M → N

be Cr. For each a ∈ A define

fa :M → N

by

fa(x) = f(a, x).

Let m be the dimension of M and k be the codimension of W in N . Assume

(1) f ∩| W ;

(2) r > n− k.

Then the set

AW = {a ∈ A : fa ∩| W}
is residual in A.

Proof. We form the submanifold

f−1(W ) ⊂ A×M

and the map

π : f−1(W )→ A : (a, x) 7→ π(a, x) = a

and observe that

RV(π) = AW .

Remark 231. Using Smale’s generalization of Sard’s theorem explained in 224
the proof goes through even whenA is an (infinite dimensional) Banach manifold
(e.g. A = Cr(M,N) when M is compact.)

4.8 The Jet Transversality Theorem

Theorem 232. Let s > r ≥ 0, M and N be C∞ manifolds, W ⊂ Jr(M,N) a
C∞ submanifold. Then the set

T s(M,N,W ) = {f ∈ Cr(M,N) : f ∩| W}

is residual in Cs(M,N).
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Proof. The neatest proof (at least when M is compact) is via the theory of
Banach manifolds. The function space Cs(M,N) is a Banach manifold and the
map

Cs(M,N)×M → Jr(M,N) : (f, x) 7→ jrf(x)

is a Cs−r submersion. (We’ll essentialy prove that the derivative is onto below.)
A submersion is trivially transverse to any submanifold so the transversality
hypothesis of the abstract transversality theorem holds. We will give a proof
which avoids the theory of Banach manifolds.

Choose charts (α,U) onM (β, V ) on N a compact set K ⊂ U and a compact
set L ⊂W ∩ Jr(U, V ). Define an open subset Cs((M,K), (N, V )) of Cs(M,N)
by

Cs((M,K), (N, V )) = {f ∈ Cs(M,N) : f(K) ⊂ V }.
We first show that the set

T sK,V,L = {f ∈ Cs((M,K), (N, V )) : jrf ∩| K∩(jrf)−1(L) W}

is open dense in Cs((M,K), (N, V )).
The set T sK,V,L is open by 227 and the continuity of jr : Cs(M,N) →

C1(M,Jr(M,N)) For density choose f ∈ Cs((M,K), (N, V )); we must approx-
imate f by fa ∈ T sK,V,L. Choose a Cs function h : M → R supported in U and
identically one on a neighborhood U ′ of K:

K ⊂ U ′ ⊂ h−1(1) ⊂ Supp(h) ⊂ U.

Let m and n be the dimensions of M and N respectively and A be a small
neighborhood of 0 in the vector space Jr(m,n). For a ∈ A define fa : M → N
by

β ◦ fa(x) = β ◦ f(x) + h(x)a(α(x))

for x ∈ U and fa(x) = f(x) otherwise. (For the neighborhood A sufficiently
small the right hand side lies in V ). The map

F : A× U ′ → Jr(M,N)

defined by
F (a, x) = jrfa(x)

is a submersion of class Cs−r. (To see this note that in local co-ordinates

F (a, x) = (x, f(x) + a0, Df(x) + a1, . . . , D
rf(x) + ar)

where we have suppressed the notations for α and β. Thus

DF (a, x)(x̂, â) = (x̂,+Df(x)x̂+ â0, . . . , D
r+1f(x)x̂ + âr)

and the equation
DF (a, x)(x̂, â) = (x̂1, â1)
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can be solved for (x̂, â) for any choice of (x̂1, â1).) A submersion is trivially
transverse to every submanifold so that we may apply the abstract transversal-
ity theorem 230 to conclude that for a residual (and hence dense) set of a ∈ A
we have that jrfa ∩| W . Since K ⊂ U ′ and L ⊂W any such fa lies in T sK,V,L a
fortiori. (Note that hyposthesis in that s must be large enough causes no diffi-
culty here; as we already know that T sK,V,L is open in {f ∈ Cs((M,K), (N, V ))
and the C∞ maps are dense.)

Next we show that each f0 ∈ Cs(M,N) has a neighborhood Q in which
T s(M,N,W ) is dense. (This shows that T s(M,N,W ) is dense in Cr(M,N).)
For this choose a (countable) locally finite cover {(αi, Ui)}i∈I of M by charts so
small that there is a family {(βi, Vi}i∈I of charts on N with f0(Ui) ⊂ Vi. Choose
for each index i ∈ I a compact set Ki ⊂ Ui so that the collection {Ki}i∈I covers
M and take

Q = {f ∈ Cr(M,N) : f(Ki) ⊂ Ui, ∀i ∈ I}.
For each i choose a countable cover {Li,n}{n ∈ N} ofW ∩Jr(Ui, Vi) by compact
sets. Then

Q ∩ T s(M,N,W ) =
⋂

i,n

T sKi,Vi,Li,n

is residual in Q and hence dense in Q.
Finally write W as a countable union

W =
⋃

n

Ln

of closed sets. Then each of the sets

T sn = {f ∈ Cr(M,N) : f ∩| f−1(Ln)
Lnf

−1(Ln)}

is open by 229 and dense (in Cr(M,N)) as it contains T s(M,N,W ). Hence the
intersection

T s(M,N,W ) =
⋂

n

T sn

is residual in Cr(M,N) as required.

Corollary 233. Let f : M → N be a Cs map of Cs manifolds s ≥ 1 and
W ⊂ N a Cs submanifold. Then the set

T s(M,N,W ) = {f ∈ Cs(M,N) : f ∩| W}
is residual in Cs(M,N).

Proof. This is essentially a special case (r = 0) of the jet transversality theorem.
We use the identification

J0(M,N) =M ×N, j0f(x) = (x, f(x))

and put
W ′ =M ×W ⊂ J0(M,N).

Then j0f ∩| W ′ ←→ f ∩| W .
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4.9 The Transversality Isoptopy Theorem

Recall that a homotopy of maps from M to N is a map

J → C0(M,N) : t 7→ ft

for which the evaluation map

J ×M → N : (t, x) 7→ ft(x)

is continuous. Here J ⊂ R is an interval, possibly all of R. When M and
N are manifolds we say that the homotopy is smooth or of class Cr whene the
evaluation map is. An isotopy is a homotopy where each ft is a homeomorphism
and a diffeotopy is an isootopy where each ft is a diffeomorphism.

Proposition 234. Let M and N be smooth manifolds. Assume that M is
compact and r ≥ 0. Then Cr(M,N) is locally smoothly path connected. This
means that every f0 ∈ Cr has a neighborhood Q in Cr(M,N) such that for
f1 ∈ Q there is a Cr homotopy

f : R×M → N

with f(0, x) = f0(x), f(1, x) = f0(1), and ft ∈ Q for x ∈ M and t ∈ R (and
where ft(x) = f(t, x).

Theorem 235. Let M and N be smooth manifolds an W ⊂ N a C∞ subman-
ifold. Assume that M is compact and W is closed. Let

f : R×M → N

be a smooth homotopy such that each ft is transverse to W :

ft ∩| W

for all t ∈ R (where ft(x) = f(t, x). Then the various submanifolds f−1
t (W ) ⊂

M are all ambient isotopic. More precisely there is a smooth diffeotopy

R→ Diff(M) : t 7→ φt

such that
φt(f

−1
t (W )) = f−1

0 (W )

for all t ∈ R.


