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1. Exercise 1.5-12. Let the position of a particle at time t be given by

α(t) = β(σ(t))

where β is parameterized by arclength and σ̇(t) = |α̇(t)| is the speed of the par-
ticle. Denote differentiation with respect to t by an overdot and differentiation
with respect to s by a prime so if g(t) = f(σ(t)) we have ġ(t) = f ′(σ(t))σ̇(t) by
the chain rule. By the Frenet equations

α̇ = σ̇t
α̈ = σ̈t+ σ̇2t′ = σ̈t+ σ̇2κn
...
α =

...
σ t+ σ̈σ̇t′ + (2σ̈σ̇κ+ σ̇3κ′)n+ σ̇3κn′

= (
...
σ − σ̇3κτ)t+ (σ̈σ̇κ+ 2σ̈σ̇κ+ σ̇3κ′)n+ σ̇3κτ b

From the first two equations we get α̇ ∧ α̈ = σ̇3κb and hence |α̇ ∧ α̈| = σ̇2κ.
Represent all three equations in the matrix form





α̇
α̈
...
α



 =





σ̇ 0 0
∗ σ̇2κ 0
∗ ∗ σ̇3κτ









t

n

b





and we get (α̇ ∧ α̈) ·
...
α = σ̇6κ2τ . Combining gives

κ =
|α̇ ∧ α̈|

σ̇3
, τ =

(α̇ ∧ α̈) ·
...
α

|α̇ ∧ α̈|2
.

A plane curve is a special case: take α(t) = (x(t), y(t), 0). But in the case of
a plane curve we can define the unit normal vector by rotation the unit tangent
vector clockwise by a right angle. To maintain the second Frenet equation
t′ = κn we must allow κ to take negative values. The above equation for κ
becomes

κ =
α̇ ∧ α̈

σ̇3
=

ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
(♥)

2. Exercise 1.5-12. Let α : I → R
3 be a curve parameterized by arclength

whose curvature κ and torsion τ do not vanish. If the trace of α lies in a

sphere, then

1

κ2
+

(

κ′

κ2τ

)2

= constant (†)
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The converse holds if the derivative of κ′ of the curvature does not vanish.1

Assume that α(I) lies in the sphere of radius a > 0 centered at p0 ∈ R, i.e.
that

|α(s)− p0|
2 = a.

The curve α − p0 has the same curvature and torsion as α so we may assume
that p0 = 0. Then α · α′ = 0. But α′ = t so

α · t = 0.

Differentiating again gives α′ · t + α · t′ = 0. As α′ = t, |t| = 1, t′ = κn, and
t · n = 0 this gives

α · n = −
1

κ

Differentiating a third time gives α′ ·n+α ·n′ = κ′κ−2. As α′ = t and t ·n = 0
this simplifies to α ·n′ = κ′κ−2. Using the second Frenet equation this becomes
α · (−κt+ τb) = κ′κ−2 and since α · t = 0 we get

α · b =
κ′

κ2τ
.

Now since t,n,b is an orthonormal basis we get

α = (α · t)t+ (α · n)n+ (α · b)b = −
1

κ
n+

κ′

κ2τ
b

and hence

a2 = |α|2 =
1

κ2
+

(

κ′

κ2τ

)2

. (∗)

To prove the converse let

γ := −
1

κ
n+

κ′

κ2τ
b.

denote the right hand side of (∗) and assume that |γ| is constant, i.e. that γ lies
on a sphere centered at the origin. It is enough to show that α′ = γ′ for then
α = γ + p0 for some p0 ∈ R

3 so α lies on a translate of the sphere containing γ.
Differentiate γ to get

γ′ =
κ′

κ2
n−

1

κ
n′ +

(

κ′

κ2τ

)

′

b+
κ′

κ2τ
b′.

By Frenet we have n′ = −κt+ τb and b′ = −τn so

γ′ =
κ′

κ2
n−

1

κ
(−κt+ τb) +

(

κ′

κ2τ

)

′

b−
κ′

κ2τ
τn

= t−
τ

κ
b+

(

κ′

κ2τ

)

′

b

= α′ −

(

τ

κ
−

(

κ′

κ2τ

)

′

)

b.

1 However, the converse does not hold in general. A helix has constant curvature and
torsion so it also satisfies (†).
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so we must prove that the coefficient of b is zero. The assumption that |γ| is
constant is the same as the assumption that the derivative of the right hand
side of (∗) is zero so

0 =

(

1

κ2
+

(

κ′

κ2τ

)2
)

′

=
−2κ′

κ3
+ 2

(

κ′

κ2τ

)(

κ′

κ2τ

)

′

= −
2κ′

κ2τ

(

τ

κ
−

(

κ′

κ2τ

)

′

)

As κ′ 6= 0, the other factor vanishes as required.

3. Exercise 1.6-3. Let α : I → R
3 be a regular curve parameterized by

arclength and p0 = α(s0) be a point on its trace. Assume the curvature κ0 =
κ(s0) of C at p0 is nonzero. Let P0 ⊆ R

3 be the osculating plane to C at p0 and
π : R3 → P0 be the orthogonal projection. We will show that the space curve α
and the plane curve π ◦ α have the same curvature at s0.

On page 17 do Carmo defines the osculating plane as the “plane determined
by the unit tangent and normal vectors α′(s) and n(s)” but in Figure 1-15 on
the same page he draws the osculating plane so that it touches the curve. What
he intends is that the osculating plane is the image of the two dimensional vector
subspace

V0 := {t1t0 + t2n0, t1, t2 ∈ R}, t0 := α′(s0), n0 := n(s0)

under the translation v 7→ p0 + v, i.e.

P0 = p0 + V0.

The point is that V0 is a vector subspace of R3 and thus contains the origin
whereas P0 is a plane which probably does not pass through the origin. The
orthogonal projection π0 : R3 → V0 is defined by

π0(v) = (v · t0)t0 + (v · n0)n0

whereas by the projection on the osculating plane do Carmo means the map
v 7→ π0(v− p0)+ p0. We can use either interpretation in this problem since the
curvature is invariant under translations.

The problem is easy if we use the local canonical form on page 27 of do
Carmo. Here s0 = 0, p0 = 0, and α(s) = (x(s), y(s), z(s)) where

x = s−
κ0s

3

6
+ · · · , y =

κ0s
2

2
+ · · · , z =

κ0τ0
6

s3 + · · · ,

where κ0 and τ0 are the curvature and torsion at s0 = 0 and the dots represent
terms which vanish to order three. Thus t0 = (1, 0, 0), n0 = (0, 1, 0), and the
osculating plane is the (x, y)-plane. The plane curve π0 ◦ α(t) = (x(t), y(t)) has
a Taylor expansion

x = t−
κ0t

3

6
+ · · · , y =

κ0t
2

2
+ · · · ,

and the curvature at s = 0 of this plane curve π ◦ α is κ0 by Equation (♥) in
Exercise 1.5-12 above.
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4. Theorem. Let α : I → R
2 be a plane curve parameterized by arclength,

s0 ∈ I, p0 = α(s0), and t0 = α′(s0) be the unit tangent vector at s0. Assume

that the curvature κ0 of α at s0 is not zero. Then there is a unique circle

β(s) = (x0 + r0 cos θ, y0 + r0 sin θ), θ =
s

r0

which has second order contact with α at s0, i.e.

β(s0) = α(s0), β′(s0) = α′(s0), β′′(s0) = α′′(s0).

The curve α and the circle β have the same curvature κ0 = 1/r0 at s0 and the

center q0 = (x0, y0) of the circle β is given by

q0 = p0 + r0n0

where n0 = κ−1

0
α′′(s0) is the unit normal vector.

5. Definition. In the notation of the theorem the circle β is called the oscu-

lating circle to the curve α at s0, its center q0 = (x0, y0) is called the center

of curvature, and its radius r0 = 1/κ0 is called radius of curvature. The
fact that the curvature of a circle is the reciprocal of its radius is an immediate
consequence of Equation (♥) in Exercise 1.5-12 above.

6. Remark. In Exercise 1.6-2 on page 30 do Carmo defines the osculating

circle at a point p0 = α(s0) of a space curve α : I → R
3. The curves α and

π0 ◦ α (see Problem 1.6-3 above) have the same osculating circle. Do Carmo
doesn’t give a precise definition for what it means for a parameterized family
of circles to converge. An adequate definition is that the centers, the radii, and
the unit normal vectors of the ambient planes all converge.

7. Exercise 1.7-3. By Equation (♥) in Exercise 1.5-12 above the curvature of
the ellipse α(θ) = (a cos θ, b cos θ) is

κ =
α̇ ∧ α̈

σ̇3
=

ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
=

2ab sin θ cos θ

(a2 cos2 θ + b2 sin2 θ)3/2

which vanishes at the four points θ = 0, π/2, π, 3π/2 so the vertices are (±a, 0),
(0,±b). (The Four Vertex Theorem (see do Carmo pages 37 and 40) says that
every simple closed plane curve has at least four vertices.)

8. Remark. The locus of centers of curvature of a plane curve is called its
evolute2 By Equation (♥) in Exercise 1.5-12 above the evolute of a parame-
terized curve α(t) = (x(t), y(t)) has parameterized equations β(t) = (ξ(t), η(t))
where

β = (−mẏ,mẋ), m =
ẋ2 + ẏ2

ẋÿ − ẏẍ

The evolute of an ellipse is called an asteroid. Figure ?? shows this curve
together with the normal lines to the ellipse. It is easy to prove that the normal

2Click if reading online.
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Figure 1: The evolute of an ellipse

lines to a plane curve are tangent to the evolute of that curve and that the curve
is traced out by unwinding a string along its evolute. A curve which is obtained
by unwinding a taut string along a given curve is called an involute of the given
curve.

Here is a sage program which will draw Figure 1.

var(’x’,’y’,’t’,’X’,’Y’)

a=2.0; b=1.5

x(t)=a*cos(t); y(t)=b*sin(t)

dx(t)=x.derivative(t); dy(t)=y.derivative(t);

ddx(t)=dx.derivative(t); ddy(t)=dy.derivative(t)

m(t)=(dx(t)*dx(t)+dy(t)*dy(t))/(dx(t)*ddy(t)-dy(t)*ddx(t))

X(t)=x(t)-m(t)*dy(t); Y(t)=y(t)+m(t)*dx(t)

G=Graphics()

G+=parametric_plot((x(t),y(t)), (t,0.0,2*pi),color=’red’)

G+=parametric_plot((X(t),Y(t)), (t,0.0,2*pi),color=’blue’)

for i in range(0,40):

t=2*i*pi/40

G+=line([(x(t),y(t)),(X(t),Y(t))],color=’black’)

G.show(axes=False)
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