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1. Exercise 2.2-1. The cylinder {(z,y,2), 2% + y*> = 1} is the image of the
map z(#,z) = (cosh,sinf, z). This map is regular as zg = (—sinb,cosf,0)
and z, = (0,0,1) and these two vectors are obviously linearly independent.
Restricting the map z to I x R where [ is any open interval of length less than
27 gives a local parameterization. The cylinder can also be covered by the four
local parameterizations

xi(m,z):(x,i 1_37272)7 yi(y,z)z ( 1_y27y72>‘
(Note that a graph map is always regular.)

2. Exercise 2.2-Tab. All three partial derivatives of the function f(z,y,z) =
(x+y+2z—1)? vanish at (and only at) the points of the plane x +y+z—1 = 0.
The set f~1(c) is the plane x + y + z — 1=0 if ¢ = 0 and is empty if ¢ < 0. It
is always a regular surface even when c is the only critical value 0. (The empty
set is a regular surface since the definition of regular surface begins with the
phrase For all p € S and every point in the empty set satisfies every property.)

3. Exercise 2.2-8 Two vectors a = (a1, as,a3) and b = (by, by, b3) are linearly
dependent exactly when one is a multiple of the other. Since |aAb| = |a] |b| | sin 8]
where 0 is the angle between the two vectors, this occurs exactly when a Ab = 0.
One can also see this using the formula

alNb= (a2b3 — a3b2, a3b1 — a1b3, albg — agbl).

The differential dx, : R?* — R? (at a point ¢ € U C R?) is one-to-one if and only
if the vectors x,, and x, are linearly independent (i.e. not linearly dependent),
i.e. if and only if x, A x, # 0.

4. Exercise 2.2-11 A graph S = {(z,y,2), z = f(x,y)} is always a regular
surface since it has a parameterization

z(x,y) = (2,y, f(2,y))

_ of _ of
Zy = (1,0, 83:) , Zy = (0, 1, 5‘y)

and the vectors



are linearly independent. In the example f(x,y) = 22 — y* the map
x(u,v) = (u+v,u — v, duv)

is a parameterization of the same graph since it is the composition x = z o ¢
where ¢ : R? — R? is the diffeomorphism

p(u,v) = (5(u+v), 3(u—v)).
The image of the map
y(u,v) = (ucoshv,usinh v, u?)
lies in the graph (since cosh? v — sinh® v = 1) and the vectors
Vu(u,v) = (coshv, sinh v, 2u), Vo (u,v) = (usinh v, u cosh v, 0)

are linearly independent when u # 0. The image of y is the intersection of the
graph with the upper half space z > 0.

5. Exercise 2.2-17ac The definition that do Carmo expects here is given later
on page 75.

A set C C R™ is a regular curve iff for every point p € C there is
an open set V. C R™ containing p and reqular parameterized curve
a: I =V such that o is one-to-one, a(I) = C NV, and the inverse
map a1 : CNV — I is a homeomorphism.

This is just like the definition of regular surface on page 52 of do Carmo. The
following equivalent definition will be used in the answer to Exercise 2.2-15a
below.

A set C C R™ is a regular curve iff for every point p € C there is
a open set V. C R™ containing p an open interval I about 0 € R,
an open neighborhood W of 0 € R"™1, and a diffeomorphism & :
I xW =V such that CNV = ®(I x {0}).

The proof that the two definitions are the same uses the inverse function theorem
and is just like the argument in do Carmo on page 71. We'll take n = 3 to
simplify the notation. It is obvious that the second definition implies the first.
To prove the converse choose p € C' and let a : I — SNV as in the first
definition. Assume that a(0) = p and choose ej,ea € R? so that the three
vectors a(t1),e1, ez are linearly independent. Define ® : I x R? — R? by
D(t, s1,82) = at) + s1e1 + szea. Then ®(¢,0,0) = «(t). The differential d®,,
is invertible at ¢ = (0,0,0) so (shrinking I if necessary) the inverse function
theorem gives us neighborhood W of (0,0) € R? such that the restriction of ®
to I x W is a diffeomorphism onto its image. By continuity we can shrink I x W
to get ®(I x W) C V. By the continuity of a~! can shrink V so a=*(CNV) C I.
Now replace I by the interval a=1(C'NV) to get CNV = (I x {0}). O



(a) When n = 2 the preimage of a regular value is a regular curve by the
implicit function theorem as follows. If py = (zo,y0) € F~1(0) and dF,, # 0
then either OF/0x # 0 at pg or OF /0y # 0 at pg (or both). In the former case
the implicit function theorem says that there is an open set V' C R2, an interval
I = (x9—e€,20+¢) and a function f : I — R such that

F7HO) NV ={(z,y) eR% z eI, y=f(z)}

In the latter case the same thing happens with the roles of z and y reversed. (A
graph is always a regular curve.) Every point on the hyperbola y? — 22 = 1 is a
regular point but the hyperbola is not connected; it is the union of two disjoint

curves y = /1 + z2.

(c) The semicubical parabola {(x,y), ¥ = 2%} is not a regular curve. If it were
regular, then by the implicit function theorem there would either be a smooth
function y = f1(x) defined on an interval —e < z < ¢ such that fi(z)3 = 22 or
there would be a smooth function = f5(y) defined on an interval —e < y < &
satisfying 22 = f»(y)2. The semicubical parabola contains points where < 0 so
there can be no such function f,. The only possible function f is fi(z) = x2/3

and this function is not differentiable at x = 0.

6. Exercise 2.3-2. For a regular surface S C R® a map f : S — R? is (by
definition) smooth if and only if the composition fox : U — R? is smooth for
every local parameterization x : U — S. But each component of a local param-
eterization is smooth by definition. Applying this principle to the projection
f=m:8 — R? and a local parameterization x(u,v) = (x(u,v),y(u,v), 2(u,v))
we see that the composition 7 o x(u,v) = (x(u,v), y(u,v)) is smooth a fortiori.

7. Exercise 2.3-6. If x: Uy —» SNV andy : Uy, — SNV are two local
parameterizations with the same image, then the map ¢ : Uy — U; defined by
y = x o0 ¢ is a diffeomorphism by change of parameters theorem. Hence if f ox
is smooth so is f oy = (f o x) o ¢ by the chain rule. Since p=!: U; — U, is
also a diffeomorphism, the converse hold as well.

8. Exercise 2.2-15a. If a: I - C CR" and §: J — C C R" be two regular
parameterizations as in the first definition in Exercise 2.2-17 and let h = a0
so 8 = o h. We must show that h : I — J is a diffeomorphism. For this it
is enough to show that h is smooth (the same argument will show that A1 is
smooth) and for this we need only show that A is smooth in a small interval
about each point.

The following argument is tempting. By the chain rule

Now B'(t) # 0 so h'(t) # 0. Hence h : I — J is a diffeomorphism by the inverse
function theorem. The problem with this argument is that it assumes what we
are trying to prove, namely that h is differentiable. The following argument
addresses this objection. It uses the second definition of reqular curve that I


http://en.wikipedia.org/wiki/Semicubical_parabola

gave above in my answer to Exercise 2.2-17. With this definition we may assume
that C' =TI x {(0,0)} € I x W. Then «(t) = (a(t),0,0) and (t) = (b(¢),0,0)
so o' (t) = (a'(t),0,0) and B'(t) = (b/'(¢),0,0) and hence b = a o h. Now h is
smooth by the (one dimensional) inverse function theorem.



