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1. Exercise 2.2-1. The cylinder {(x, y, z), x2 + y2 = 1} is the image of the
map z(θ, z) = (cos θ, sin θ, z). This map is regular as zθ = (− sin θ, cos θ, 0)
and zz = (0, 0, 1) and these two vectors are obviously linearly independent.
Restricting the map z to I ×R where I is any open interval of length less than
2π gives a local parameterization. The cylinder can also be covered by the four
local parameterizations

x±(x, z) = (x,±
√

1− x2, z), y±(y, z) = (±
√

1− y2, y, z).

(Note that a graph map is always regular.)

2. Exercise 2.2-7ab. All three partial derivatives of the function f(x, y, z) =
(x+y+ z−1)2 vanish at (and only at) the points of the plane x+y+ z−1 = 0.
The set f−1(c) is the plane x + y + z − 1=0 if c = 0 and is empty if c < 0. It
is always a regular surface even when c is the only critical value 0. (The empty
set is a regular surface since the definition of regular surface begins with the
phrase For all p ∈ S and every point in the empty set satisfies every property.)

3. Exercise 2.2-8 Two vectors a = (a1, a2, a3) and b = (b1, b2, b3) are linearly
dependent exactly when one is a multiple of the other. Since |a∧b| = |a| |b| | sin θ|
where θ is the angle between the two vectors, this occurs exactly when a∧b = 0.
One can also see this using the formula

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The differential dxq : R2 → R3 (at a point q ∈ U ⊆ R2) is one-to-one if and only
if the vectors xu and xv are linearly independent (i.e. not linearly dependent),
i.e. if and only if xu ∧ xv 6= 0.

4. Exercise 2.2-11 A graph S = {(x, y, z), z = f(x, y)} is always a regular
surface since it has a parameterization

z(x, y) = (x, y, f(x, y))

and the vectors

zx =

(
1, 0,

∂f

∂x

)
, zy =

(
0, 1,

∂f

∂y

)
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are linearly independent. In the example f(x, y) = x2 − y2 the map

x(u, v) = (u+ v, u− v, 4uv)

is a parameterization of the same graph since it is the composition x = z ◦ ϕ
where ϕ : R2 → R2 is the diffeomorphism

ϕ(u, v) = (1
2 (u+ v), 12 (u− v)).

The image of the map

y(u, v) = (u cosh v, u sinh v, u2)

lies in the graph (since cosh2 v − sinh2 v = 1) and the vectors

yu(u, v) = (cosh v, sinh v, 2u), yv(u, v) = (u sinh v, u cosh v, 0)

are linearly independent when u 6= 0. The image of y is the intersection of the
graph with the upper half space z > 0.

5. Exercise 2.2-17ac The definition that do Carmo expects here is given later
on page 75.

A set C ⊆ Rn is a regular curve iff for every point p ∈ C there is
an open set V ⊆ Rn containing p and regular parameterized curve
α : I → V such that α is one-to-one, α(I) = C ∩ V , and the inverse
map α−1 : C ∩ V → I is a homeomorphism.

This is just like the definition of regular surface on page 52 of do Carmo. The
following equivalent definition will be used in the answer to Exercise 2.2-15a
below.

A set C ⊆ Rn is a regular curve iff for every point p ∈ C there is
a open set V ⊆ Rn containing p an open interval I about 0 ∈ R,
an open neighborhood W of 0 ∈ Rn−1, and a diffeomorphism Φ :
I ×W → V such that C ∩ V = Φ(I × {0}).

The proof that the two definitions are the same uses the inverse function theorem
and is just like the argument in do Carmo on page 71. We’ll take n = 3 to
simplify the notation. It is obvious that the second definition implies the first.
To prove the converse choose p ∈ C and let α : I → S ∩ V as in the first
definition. Assume that α(0) = p and choose e1, e2 ∈ R3 so that the three
vectors α(t1), e1, e2 are linearly independent. Define Φ : I × R2 → R3 by
Φ(t, s1, s2) = α(t) + s1e1 + s2e2. Then Φ(t, 0, 0) = α(t). The differential dΦq
is invertible at q = (0, 0, 0) so (shrinking I if necessary) the inverse function
theorem gives us neighborhood W of (0, 0) ∈ R2 such that the restriction of Φ
to I×W is a diffeomorphism onto its image. By continuity we can shrink I×W
to get Φ(I×W ) ⊆ V . By the continuity of α−1 can shrink V so α−1(C∩V ) ⊆ I.
Now replace I by the interval α−1(C ∩ V ) to get C ∩ V = Φ(I × {0}).
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(a) When n = 2 the preimage of a regular value is a regular curve by the
implicit function theorem as follows. If p0 = (x0, y0) ∈ F−1(0) and dFp0 6= 0
then either ∂F/∂x 6= 0 at p0 or ∂F/∂y 6= 0 at p0 (or both). In the former case
the implicit function theorem says that there is an open set V ⊆ R2, an interval
I = (x0 − ε, x0 + ε) and a function f : I → R such that

F−1(0) ∩ V = {(x, y) ∈ R2, x ∈ I, y = f(x)}

In the latter case the same thing happens with the roles of x and y reversed. (A
graph is always a regular curve.) Every point on the hyperbola y2− x2 = 1 is a
regular point but the hyperbola is not connected; it is the union of two disjoint
curves y = ±

√
1 + x2.

(c) The semicubical parabola {(x, y), y3 = x2} is not a regular curve. If it were
regular, then by the implicit function theorem there would either be a smooth
function y = f1(x) defined on an interval −ε < x < ε such that f1(x)3 = x2 or
there would be a smooth function x = f2(y) defined on an interval −ε < y < ε
satisfying x3 = f2(y)2. The semicubical parabola contains points where x < 0 so
there can be no such function f2. The only possible function f1 is f1(x) = x2/3

and this function is not differentiable at x = 0.

6. Exercise 2.3-2. For a regular surface S ⊆ R3 a map f : S → R2 is (by
definition) smooth if and only if the composition f ◦ x : U → R2 is smooth for
every local parameterization x : U → S. But each component of a local param-
eterization is smooth by definition. Applying this principle to the projection
f = π : S → R2 and a local parameterization x(u, v) = (x(u, v), y(u, v), z(u, v))
we see that the composition π ◦ x(u, v) = (x(u, v), y(u, v)) is smooth a fortiori.

7. Exercise 2.3-6. If x : U1 → S ∩ V and y : U2 → S ∩ V are two local
parameterizations with the same image, then the map ϕ : U2 → U1 defined by
y = x ◦ ϕ is a diffeomorphism by change of parameters theorem. Hence if f ◦ x
is smooth so is f ◦ y = (f ◦ x) ◦ ϕ by the chain rule. Since ϕ−1 : U1 → U2 is
also a diffeomorphism, the converse hold as well.

8. Exercise 2.2-15a. If α : I → C ⊆ Rn and β : J → C ⊆ Rn be two regular
parameterizations as in the first definition in Exercise 2.2-17 and let h = α−1 ◦β
so β = α ◦ h. We must show that h : I → J is a diffeomorphism. For this it
is enough to show that h is smooth (the same argument will show that h−1 is
smooth) and for this we need only show that h is smooth in a small interval
about each point.

The following argument is tempting. By the chain rule

β′(t) = h′(t)α′(h(t)).

Now β′(t) 6= 0 so h′(t) 6= 0. Hence h : I → J is a diffeomorphism by the inverse
function theorem. The problem with this argument is that it assumes what we
are trying to prove, namely that h is differentiable. The following argument
addresses this objection. It uses the second definition of regular curve that I
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gave above in my answer to Exercise 2.2-17. With this definition we may assume
that C = I × {(0, 0)} ⊆ I ×W . Then α(t) = (a(t), 0, 0) and β(t) = (b(t), 0, 0)
so α′(t) = (a′(t), 0, 0) and β′(t) = (b′(t), 0, 0) and hence b = a ◦ h. Now h is
smooth by the (one dimensional) inverse function theorem.
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