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Problem numbers refer to the do Carmo text.

1. 1.2-1 The curve α(s) = (cos(−s), sin(−s)) = (cos(s),− sin(s)) parameterizes
the circle x2 + y2 = 1 in the clockwise orientation.

2. 1.2-2 The distance form the point α(t) ∈ R
n to the origin is f(t) = |α′(t)|. At

a point where this distance assumes its minimum, the derivative of the function
must vanish. But

f ′(t) =
α(t) · α′(t)

|α(t)|
and this vanishes when the vectors α(t)− 0 and α′(t) are orthogonal.

3. 1.2-3 Let α(t) = (x(t), y(t), z(t)). Then α′′(t) = (x′′(t), y′′(t), z′′(t)). If
α′′(t) = 0 for all t, then α′(t) is a constant vector, say α′(t) = v0 and hence (in-
tegrating once more) α(t) = tv0 + p0 for some p0 = (x0, y0, z0). (This argument
works in n dimensions.)

4. 1.3-1 The curve α(t) = (3t, 3t2, 2t3) has velocity vector v(t) = (3, 6t, 6t2).
The vector u = (1, 0, 1) point along the line y = 0, x = z. The cosine of the
angle θ between these two vectors is defined by

cos θ =
3 + 6t2√

9 + 36t2 + 36t4
√
2
= cos(π/4)

where we used the formulas (3 + 6t2)2 = 9 + 36t2 + 36t4 and cos(π/4) = 1/
√
2.

Note: The wording of the problem seems to suggest that all the tangent lines to
the curve α intersect the line y = 0, x = z but this is not correct. The tangent
line to the curve α at the point α(t) has the parametric equations

(x, y, z) = α(t) + rα′(t) = (3t+ 3r, 3t2 + 6rt, 2t3 + 6rt2).

(Here the variable r parameterizes the line.) The tangent line intersects the
plane y = 0 when r = −t/2, but 3t + 3r 6= 2t3 + 6rt2 for this value of r.
Evidently, when do Carmo talks about the angle between two lines he means the
angle between two vectors along the lines.
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5. 1.3-5 Let α : (−1,∞) → R
2 be defined by

α(t) =
(

x(t), y(t)
)

=

(

3t

1 + t3
,

3t2

1 + t3

)

=
(

g(t), g(t)t
)

, g(t) :=
3t

1 + t3
.

The derivative α′(t) is given by

α′(t) =
(

g′(t), g′(t)t+ g(t)
)

, g′(t) =
3(1 + t3)− 9t3

(1 + t3)2
=

3(1− 2t3)

(1 + t3)2
.

Now g(0) = 0 and g′(0) = 3 so α′(0) = (3, 0) which shows that the trace C of α
is tangent to the x-axis at the point α(0). Now it is easy to see that

lim
t→∞

α(t) = lim
t→∞

α′(t) = (0, 0)

because in every fraction that appears, the degree of the numerator is smaller
than the degree of the denominator.

Before discussing part (c) I’ll make a preliminary remark. Every line in the
plane has an equation of form

a0x+ b0y + c0 = 0

where either a0 6= 0 or b0 6= 0 (or both). Multiplying the vector (a0, b0, c0) by
a nonzero constant does not change the line, so the line does not determine the
vector (a0, b0, c0) uniquely. The vector (−b0, a0) is perpendicular to the line at
each point so there are only two equations for the line with a unit normal vector,
namely ±(a0x + b0y + c0) = 0 where a20 + b20 = 1. The definition for what it
means for a parameterized family

L(t) = {(x, y) : a(t)x+ b(t)y + c(t) = 0}

of lines to “approach” a line

L0 = {(x, y, ) : a0x+ b0y + c0 = 0}

as t → t0 is that there is a choice of signs µ(t) = ±1 such that

lim
t→t0

µ(t)
(a(t), b(t), c(t))
√

a(t)2 + b(t)2
= (a0, b0, c0).

(This implies a2
0
+ b2

0
= 1.) If we want to use language carefully, we should

make this explicit before saying something like do Carmo says in part (c) of the
problem.

Now to do part (c) we should compute the limit as t → −1 of the unit
normal vector

n(t) = (a(t), b(t)) :=
(y′(t),−x′(t))

√

y′(t)2 + x′(t)2
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to the curve α(t) = (x(t), y(t)). Now x′(t) = g′(t) and y′(t) = g′(t)t + g(t) so
an explicit formula for n(t) is

n(t) =

(

g(t) + g′(t)t,−g′(t)
)

√

(g(t) + g′(t)t)2 + g′(t)2
=

(h(t) + t,−1)
√

(h(t) + t)2 + 1
, h(t) :=

g(t)

g′(t)
.

(Here we used that g′(t) > 0 for t ∈ (−1, 0).) Now

h(t) =
g(t)

g′(t)
=

(

3t

1 + t3

)/(

3(1− 2t3)

(1 + t3)2

)

=

(

3t

1 + t3

)(

(1 + t3)2

3(1− 2t3)

)

=
t(1 + t3)

1− 2t3

so limt→−1 h(t) = 0 and hence limt→−1 n(t) = (− 1

2
,− 1

2
). The tangent line to

C at α(t) has equation n(t) · (p− α(t)) = 0 where p = (x, y). This expands to
a(t)x+ b(t)y + c(t) = 0 where

a(t) =
h(t) + t

√

(h(t) + t)2 + 1
, b(t) =

t
√

(h(t) + t)2 + 1
,

and

c(t) = −a(t)x(t)− b(t)y(t) = − 3t(h(t) + t)− 3t2
√

(h(t) + t)2 + 1 (1 + t3)

= − 3t2
√

(h(t) + t)2 + 1 (1− 2t3)

so the limiting tangent line as t → −1 has equation − 1√
2
x − 1√

2
y − 1√

2
= 0.

This simplifies to x + y + 1 = 0 as in Figure 1-10 in do Carmo. The dashed
curve in the figure is defined by the same formula with t ∈ (−∞,−1).

6. 1.3-6 The curve α(t) = (e−t cos t, e−t sin t) has velocity vector

α′(t) = e−t(− cos t− sin t,− sin t+ cos t)

and speed |α′(t)| = 2e−t.

7. 1.4-5 A equation for the line through the three points pi = (xi, yi, zi) is
(

(p3 − p1) ∧ (p3 − p2)
)

·
(

p− p3
)

= 0, p = (x, y, z).

This equation is linear, i.e. it can be written as Ax+ By + Cz +D = 0 where
A = (y3z1 − z1y3), B = (y3z2 − z3y2), C = (x3y2 − y3x2), and

D = − det





x1 x2 x3

y1 y2 y3
z1 z2 z3



 .
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The three points pi obviously lie on the surface

(

(p− p1) ∧ (p− p2)
)

·
(

p− p3
)

= 0,

but it appears that this surface is cubic, not linear. However the surface is a
plane. To see this write the triple product as a determinant

(

(p− p1) ∧ (p− p2)
)

·
(

p− p3
)

= det





x− x1 x− x2 x− x3

y − y1 y − y2 y − y3
z − z1 z − z2 z − z3



 .

Subtracting the third column from the first and second gives

(

(p− p1) ∧ (p− p2)
)

·
(

p− p3
)

= det





x3 − x1 x3 − x2 x− x3

y3 − y1 y3 − y2 y − y3
z3 − z1 z3 − z2 z − z3



 .

This is the same as the linear equation above.

8. 1.4-13 Assume that two maps u,v : I → R
3 satisfy a differential equation

u′ = au+ bv, v′ = cu− av

where a, b, c are constants. Then

(u ∧ v)′ = u′ ∧ v + u ∧ v′ = (au+ bv) ∧ v + u ∧ (cu− av) = 0

as v ∧ v = u ∧ u = 0 and the wedge product is distributive.

9. 1.5-1 The helix

α(s) = (a cos θ, a sin θ, bθ) , θ =
s

c
, a2 + b2 = c2

has derivative α′(s) = c−1 (−a sin θ, a cos θ, b) with length |α′(s)| =
√
a2 + b2/|c|

so α is parameterized by arc length. Since α′′(s) = −ac−2(cos θ, sin θ, 0) the
curvature is κ = ac−2, and the Frenet trihedron is

t = c−1( −a sin θ, a cos θ, b),
n = ( cos θ, sin θ, 0),
b = c−1( −b sin θ, b cos θ, −a).

Since b′ = −bc−2(cos θ, sin θ, 0) the torsion is τ = bc−2 by the third Frenet
formula. A point p lies on the osculating plane at α(s) if and only if .

b · (p− α(s)) = 0.

When p = (x, y, z) this expands to

(−b sin θ)(x − a sin θ) + (b cos θ)(y − a cos θ)− a(z − bθ) = 0
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and simplifies to

(−b sin θ)x + (b cos θ)y − az + ab(1 + θ) = 0.

The line through α(s) along the normal n(s) has parametric equation

γ(r) = α(s) + rn(s) =
(

(a+ r) cos θ, (a+ r)a sin θ, bθ
)

and meets the z-axis when r = −a. The cosine of the angle between unit tangent
t and the vector (0, 0, 1) is the constant

t · (0, 0, 1) = c−1(−a sin θ, a cos θ, b) · (0, 0, 1) = a/c.

10. 1.5-4 Suppose that the curve α = α(s) is parameterized by arc length and
all its normal lines pass through the point o ∈ R

3. Then there is a function
r = r(s) such that

α(s) + r(s)n(s) = o.

Differentiating and applying the Frenet formulas we get

t+ r′n+ r(−κt+ τb) = 0.

But the vectors t,n,b are linearly independent so r′ = 0, 1 = rκ, and τ = 0.
Hence r′ is constant, r = 1/κ, τ = 0, b is constant, and the curve lies in the
plane through o perpendicular to b. (The penultimate assertion uses the third
Frenet equation b′ = −τn. The last statement follows from the fact that the
osculating plane has equation b · (p− o) = 0 and the fact that b is constant.)
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The following problem is important (but was not assigned).

11. 1.5-12 Let the position of a particle at time t be given by

α(t) = β(σ(t))

where β is parameterized by arclength and σ̇(t) = |α̇(t)| is the speed of the par-
ticle. Denote differentiation with respect to t by an overdot and differentiation
with respect to s by a prime so if g(t) = f(σ(t)) we have ġ(t) = f ′(σ(t))σ̇(t) by
the chain rule. By the Frenet equations

α̇ = σ̇t
α̈ = σ̈t+ σ̇2t′ = σ̈t+ σ̇2κn
...
α =

...
σ t+ σ̈σ̇t′ + (2σ̈σ̇κ+ σ̇3κ′)n+ σ̇3κn′

= (
...
σ − σ̇3κτ)t+ (σ̈σ̇κ+ 2σ̈σ̇κ+ σ̇3κ′)n+ σ̇3κτ b

From the first two equations we get α̇ ∧ α̈ = σ̇3κb and hence |α̇ ∧ α̈| = σ̇2κ.
Represent all three equations in the matrix form





α̇
α̈
...
α



 =





σ̇ 0 0
∗ σ̇2κ 0
∗ ∗ σ̇3κτ









t
n
b





and we get (α̇ ∧ α̈) · ...α = σ̇6κ2τ . Combining gives

κ =
|α̇ ∧ α̈|
σ̇3

, τ =
(α̇ ∧ α̈) · ...α
|α̇ ∧ α̈|2 .

A plane curve is a special case: take α(t) = (x(t), y(t), 0). But in the case of a
plane curve we can define the unit normal vector by rotation the unit tangent
vector clockwise by a right angle. To maintain the second Frenet equation
t′ = κn we must allow κ to take negative values. The above equation for κ
becomes

κ =
α̇ ∧ α̈

σ̇3
=

ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2

In terms of the velocity vector v = α̇ and the acceleration vector a = α̈ the
above equations for α̇ and α̈ take the form

b = σ̇t, a = σ̈t+ σ̇2κn.

The second equation resolves the acceleration into its tangential and normal
componenets and explains what happens when a car goes around a sharp curve
in the road.

6


