Homwework

JWR

Jan 30 2014

Problem numbers refer to the do Carmo text.

1. 1.2-1 The curve $\alpha(s) = (\cos(-s), \sin(-s)) = (\cos(s), -\sin(s))$ parameterizes the circle $x^2 + y^2 = 1$ in the clockwise orientation.

2. 1.2-2 The distance form the point $\alpha(t) \in \mathbb{R}^n$ to the origin is $f(t) = |\alpha'(t)|$. At a point where this distance assumes its minimum, the derivative of the function must vanish. But

$$
f'(t) = \frac{\alpha(t) \cdot \alpha'(t)}{|\alpha(t)|}
$$

and this vanishes when the vectors $\alpha(t) - 0$ and $\alpha'(t)$ are orthogonal.

3. 1.2-3 Let $\alpha(t) = (x(t), y(t), z(t))$. Then $\alpha''(t) = (x''(t), y''(t), z''(t))$. If $\alpha''(t) = 0$ for all t, then $\alpha'(t)$ is a constant vector, say $\alpha'(t) = \mathbf{v}_0$ and hence (integrating once more) $\alpha(t) = t\mathbf{v}_0 + p_0$ for some $p_0 = (x_0, y_0, z_0)$. (This argument works in n dimensions.)

4. 1.3-1 The curve $\alpha(t) = (3t, 3t^2, 2t^3)$ has velocity vector $\mathbf{v}(t) = (3, 6t, 6t^2)$. The vector $\mathbf{u} = (1, 0, 1)$ point along the line $y = 0$, $x = z$. The cosine of the angle θ between these two vectors is defined by

$$
\cos\theta = \frac{3+6t^2}{\sqrt{9+36t^2+36t^4}\sqrt{2}} = \cos(\pi/4)
$$

where we used the formulas $(3 + 6t^2)^2 = 9 + 36t^2 + 36t^4$ and $\cos(\pi/4) = 1/\sqrt{2}$. *Note: The wording of the problem seems to suggest that all the tangent lines to the curve* α *intersect the line* $y = 0$, $x = z$ *but this is not correct. The tangent line to the curve* α *at the point* $\alpha(t)$ *has the parametric equations*

$$
(x, y, z) = \alpha(t) + r\alpha'(t) = (3t + 3r, 3t^2 + 6rt, 2t^3 + 6rt^2).
$$

(Here the variable r *parameterizes the line.) The tangent line intersects the plane* $y = 0$ when $r = -t/2$, but $3t + 3r \neq 2t^3 + 6rt^2$ for this value of r. *Evidently, when do Carmo talks about the angle between two lines he means the angle between two vectors along the lines.*

5. 1.3-5 Let $\alpha: (-1, \infty) \to \mathbb{R}^2$ be defined by

$$
\alpha(t) = (x(t), y(t)) = \left(\frac{3t}{1+t^3}, \frac{3t^2}{1+t^3}\right) = (g(t), g(t)t), \qquad g(t) := \frac{3t}{1+t^3}.
$$

The derivative $\alpha'(t)$ is given by

$$
\alpha'(t) = (g'(t), g'(t)t + g(t)), \qquad g'(t) = \frac{3(1+t^3) - 9t^3}{(1+t^3)^2} = \frac{3(1-2t^3)}{(1+t^3)^2}.
$$

Now $g(0) = 0$ and $g'(0) = 3$ so $\alpha'(0) = (3, 0)$ which shows that the trace C of α is tangent to the x-axis at the point $\alpha(0)$. Now it is easy to see that

$$
\lim_{t \to \infty} \alpha(t) = \lim_{t \to \infty} \alpha'(t) = (0, 0)
$$

because in every fraction that appears, the degree of the numerator is smaller than the degree of the denominator.

Before discussing part (c) I'll make a preliminary remark. *Every line in the plane has an equation of form*

$$
a_0x + b_0y + c_0 = 0
$$

where either $a_0 \neq 0$ *or* $b_0 \neq 0$ *(or both). Multiplying the vector* (a_0, b_0, c_0) *by a nonzero constant does not change the line, so the line does not determine the vector* (a_0, b_0, c_0) *uniquely. The vector* $(-b_0, a_0)$ *is perpendicular to the line at each point so there are only two equations for the line with a unit normal vector,* $namely \pm (a_0x + b_0y + c_0) = 0$ where $a_0^2 + b_0^2 = 1$. The definition for what it *means for a parameterized family*

$$
L(t) = \{(x, y) : a(t)x + b(t)y + c(t) = 0\}
$$

of lines to "approach" a line

$$
L_0 = \{(x, y,) : a_0x + b_0y + c_0 = 0\}
$$

 $as t \to t_0$ *is that there is a choice of signs* $\mu(t) = \pm 1$ *such that*

$$
\lim_{t \to t_0} \mu(t) \frac{(a(t), b(t), c(t))}{\sqrt{a(t)^2 + b(t)^2}} = (a_0, b_0, c_0).
$$

(This implies $a_0^2 + b_0^2 = 1$.) If we want to use language carefully, we should *make this explicit before saying something like do Carmo says in part* (c) *of the problem.*

Now to do part (c) we should compute the limit as $t \to -1$ of the unit normal vector $\sqrt{10}$

$$
\mathbf{n}(t) = (a(t), b(t)) := \frac{(y'(t), -x'(t))}{\sqrt{y'(t)^2 + x'(t)^2}}
$$

to the curve $\alpha(t) = (x(t), y(t))$. Now $x'(t) = g'(t)$ and $y'(t) = g'(t)t + g(t)$ so an explicit formula for $\mathbf{n}(t)$ is

$$
\mathbf{n}(t) = \frac{\left(g(t) + g'(t)t, -g'(t)\right)}{\sqrt{\left(g(t) + g'(t)t\right)^2 + g'(t)^2}} = \frac{(h(t) + t, -1)}{\sqrt{(h(t) + t)^2 + 1}}, \qquad h(t) := \frac{g(t)}{g'(t)}.
$$

(Here we used that $g'(t) > 0$ for $t \in (-1,0)$.) Now

$$
h(t) = \frac{g(t)}{g'(t)} = \left(\frac{3t}{1+t^3}\right) / \left(\frac{3(1-2t^3)}{(1+t^3)^2}\right)
$$

$$
= \left(\frac{3t}{1+t^3}\right) \left(\frac{(1+t^3)^2}{3(1-2t^3)}\right)
$$

$$
= \frac{t(1+t^3)}{1-2t^3}
$$

so $\lim_{t\to -1} h(t) = 0$ and hence $\lim_{t\to -1} \mathbf{n}(t) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$. The tangent line to C at $\alpha(t)$ has equation $\mathbf{n}(t) \cdot (p - \alpha(t)) = 0$ where $p = (x, y)$. This expands to $a(t)x + b(t)y + c(t) = 0$ where

$$
a(t) = \frac{h(t) + t}{\sqrt{(h(t) + t)^2 + 1}}, \qquad b(t) = \frac{t}{\sqrt{(h(t) + t)^2 + 1}},
$$

and

$$
c(t) = -a(t)x(t) - b(t)y(t) = -\frac{3t(h(t) + t) - 3t^2}{\sqrt{(h(t) + t)^2 + 1} (1 + t^3)}
$$

$$
= -\frac{3t^2}{\sqrt{(h(t) + t)^2 + 1} (1 - 2t^3)}
$$

so the limiting tangent line as $t \to -1$ has equation $-\frac{1}{\sqrt{2}}$ $\frac{1}{2}x-\frac{1}{\sqrt{2}}$ $\frac{1}{2}y-\frac{1}{\sqrt{2}}$ $\frac{1}{2} = 0.$ This simplifies to $x + y + 1 = 0$ as in Figure 1-10 in do Carmo. The dashed curve in the figure is defined by the same formula with $t \in (-\infty, -1)$.

6. 1.3-6 The curve $\alpha(t) = (e^{-t}\cos t, e^{-t}\sin t)$ has velocity vector

$$
\alpha'(t) = e^{-t}(-\cos t - \sin t, -\sin t + \cos t)
$$

and speed $|\alpha'(t)| = 2e^{-t}$.

7. 1.4-5 A equation for the line through the three points $p_i = (x_i, y_i, z_i)$ is

$$
((p_3 - p_1) \wedge (p_3 - p_2)) \cdot (p - p_3) = 0, \qquad p = (x, y, z).
$$

This equation is linear, i.e. it can be written as $Ax + By + Cz + D = 0$ where $A = (y_3z_1 - z_1y_3), B = (y_3z_2 - z_3y_2), C = (x_3y_2 - y_3x_2),$ and

$$
D = -\det\left(\begin{array}{ccc} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{array}\right).
$$

The three points p_i obviously lie on the surface

$$
((p-p_1) \wedge (p-p_2)) \cdot (p-p_3) = 0,
$$

but it appears that this surface is cubic, not linear. However the surface *is* a plane. To see this write the triple product as a determinant

$$
((p-p_1) \wedge (p-p_2)) \cdot (p-p_3) = \det \begin{pmatrix} x - x_1 & x - x_2 & x - x_3 \\ y - y_1 & y - y_2 & y - y_3 \\ z - z_1 & z - z_2 & z - z_3 \end{pmatrix}.
$$

Subtracting the third column from the first and second gives

$$
((p-p_1) \wedge (p-p_2)) \cdot (p-p_3) = \det \begin{pmatrix} x_3 - x_1 & x_3 - x_2 & x - x_3 \\ y_3 - y_1 & y_3 - y_2 & y - y_3 \\ z_3 - z_1 & z_3 - z_2 & z - z_3 \end{pmatrix}.
$$

This is the same as the linear equation above.

8. 1.4-13 Assume that two maps $\mathbf{u}, \mathbf{v}: I \to \mathbb{R}^3$ satisfy a differential equation

$$
\mathbf{u}' = a\mathbf{u} + b\mathbf{v}, \qquad \mathbf{v}' = c\mathbf{u} - a\mathbf{v}
$$

where a, b, c are constants. Then

$$
(\mathbf{u} \wedge \mathbf{v})' = \mathbf{u}' \wedge \mathbf{v} + \mathbf{u} \wedge \mathbf{v}' = (a\mathbf{u} + b\mathbf{v}) \wedge \mathbf{v} + \mathbf{u} \wedge (c\mathbf{u} - a\mathbf{v}) = 0
$$

as $\mathbf{v} \wedge \mathbf{v} = \mathbf{u} \wedge \mathbf{u} = 0$ and the wedge product is distributive.

9. 1.5-1 The helix

$$
\alpha(s) = (a \cos \theta, a \sin \theta, b\theta), \qquad \theta = \frac{s}{c}, \qquad a^2 + b^2 = c^2
$$

has derivative $\alpha'(s) = c^{-1}(-a\sin\theta, a\cos\theta, b)$ with length $|\alpha'(s)| = \sqrt{a^2 + b^2}/|c|$ so α is parameterized by arc length. Since $\alpha''(s) = -ac^{-2}(\cos\theta, \sin\theta, 0)$ the curvature is $\kappa = ac^{-2}$, and the Frenet trihedron is

$$
\begin{array}{rcl}\n\mathbf{t} & = & c^{-1}(\quad -a\sin\theta, \quad a\cos\theta, \quad b), \\
\mathbf{n} & = & (\quad -\cos\theta, \quad \sin\theta, \quad 0), \\
\mathbf{b} & = & c^{-1}(\quad -b\sin\theta, \quad b\cos\theta, \quad -a).\n\end{array}
$$

Since $\mathbf{b}' = -bc^{-2}(\cos\theta, \sin\theta, 0)$ the torsion is $\tau = bc^{-2}$ by the third Frenet formula. A point p lies on the osculating plane at $\alpha(s)$ if and only if.

$$
\mathbf{b} \cdot (p - \alpha(s)) = 0.
$$

When $p = (x, y, z)$ this expands to

$$
(-b\sin\theta)(x - a\sin\theta) + (b\cos\theta)(y - a\cos\theta) - a(z - b\theta) = 0
$$

and simplifies to

$$
(-b\sin\theta)x + (b\cos\theta)y - az + ab(1+\theta) = 0.
$$

The line through $\alpha(s)$ along the normal $\mathbf{n}(s)$ has parametric equation

$$
\gamma(r) = \alpha(s) + r\mathbf{n}(s) = ((a+r)\cos\theta, (a+r)a\sin\theta, b\theta)
$$

and meets the z-axis when $r = -a$. The cosine of the angle between unit tangent **t** and the vector $(0, 0, 1)$ is the constant

$$
\mathbf{t} \cdot (0,0,1) = c^{-1}(-a\sin\theta, a\cos\theta, b) \cdot (0,0,1) = a/c.
$$

10. 1.5-4 Suppose that the curve $\alpha = \alpha(s)$ is parameterized by arc length and all its normal lines pass through the point $o \in \mathbb{R}^3$. Then there is a function $r = r(s)$ such that

$$
\alpha(s) + r(s)\mathbf{n}(s) = o.
$$

Differentiating and applying the Frenet formulas we get

$$
\mathbf{t} + r'\mathbf{n} + r(-\kappa \mathbf{t} + \tau \mathbf{b}) = 0.
$$

But the vectors **t**, **n**, **b** are linearly independent so $r' = 0$, $1 = r\kappa$, and $\tau = 0$. Hence r' is constant, $r = 1/\kappa$, $\tau = 0$, **b** is constant, and the curve lies in the plane through o perpendicular to **b**. (The penultimate assertion uses the third Frenet equation $\mathbf{b}' = -\tau \mathbf{n}$. The last statement follows from the fact that the osculating plane has equation $\mathbf{b} \cdot (p - o) = 0$ and the fact that **b** is constant.)

THE FOLLOWING PROBLEM IS IMPORTANT (BUT WAS NOT ASSIGNED).

11. 1.5-12 Let the position of a particle at time t be given by

$$
\alpha(t) = \beta(\sigma(t))
$$

where β is parameterized by arclength and $\dot{\sigma}(t) = |\dot{\alpha}(t)|$ is the speed of the particle. Denote differentiation with respect to t by an overdot and differentiation with respect to s by a prime so if $g(t) = f(\sigma(t))$ we have $\dot{g}(t) = f'(\sigma(t))\dot{\sigma}(t)$ by the chain rule. By the Frenet equations

$$
\dot{\alpha} = \dot{\sigma} \mathbf{t} \n\ddot{\alpha} = \ddot{\sigma} \mathbf{t} + \dot{\sigma}^2 \mathbf{t}' = \ddot{\sigma} \mathbf{t} + \dot{\sigma}^2 \kappa \mathbf{n} \n\dddot{\alpha} = \ddot{\sigma} \mathbf{t} + \ddot{\sigma} \dot{\sigma} \mathbf{t}' + (2 \ddot{\sigma} \dot{\sigma} \kappa + \dot{\sigma}^3 \kappa') \mathbf{n} + \dot{\sigma}^3 \kappa \mathbf{n}' \n= (\ddot{\sigma} - \dot{\sigma}^3 \kappa \tau) \mathbf{t} + (\ddot{\sigma} \dot{\sigma} \kappa + 2 \ddot{\sigma} \dot{\sigma} \kappa + \dot{\sigma}^3 \kappa') \mathbf{n} + \dot{\sigma}^3 \kappa \tau \mathbf{b}
$$

From the first two equations we get $\alpha \wedge \ddot{\alpha} = \dot{\sigma}^3 \kappa \mathbf{b}$ and hence $|\dot{\alpha} \wedge \ddot{\alpha}| = \dot{\sigma}^2 \kappa$. Represent all three equations in the matrix form

$$
\begin{pmatrix}\n\dot{\alpha} \\
\ddot{\alpha} \\
\dddot{\alpha}\n\end{pmatrix} = \begin{pmatrix}\n\dot{\sigma} & 0 & 0 \\
\ast & \dot{\sigma}^2 \kappa & 0 \\
\ast & \ast & \dot{\sigma}^3 \kappa \tau\n\end{pmatrix} \begin{pmatrix} \mathbf{t} \\
\mathbf{n} \\
 \mathbf{b}\n\end{pmatrix}
$$

and we get $(\dot{\alpha} \wedge \ddot{\alpha}) \cdot \dddot{\alpha} = \dot{\sigma}^6 \kappa^2 \tau$. Combining gives

$$
\kappa = \frac{|\dot{\alpha} \wedge \ddot{\alpha}|}{\dot{\sigma}^3}, \qquad \tau = \frac{(\dot{\alpha} \wedge \ddot{\alpha}) \cdot \dddot{\alpha}}{|\dot{\alpha} \wedge \ddot{\alpha}|^2}.
$$

A plane curve is a special case: take $\alpha(t) = (x(t), y(t), 0)$. But in the case of a plane curve we can define the unit normal vector by rotation the unit tangent vector clockwise by a right angle. To maintain the second Frenet equation $\mathbf{t}' = \kappa \mathbf{n}$ we must allow κ to take negative values. The above equation for κ becomes

$$
\kappa = \frac{\dot{\alpha} \wedge \ddot{\alpha}}{\dot{\sigma}^3} = \frac{\dot{x} \ddot{y} - \dot{y} \ddot{x}}{(\dot{x}^2 + \dot{y}^2)^{3/2}}
$$

In terms of the velocity vector $\mathbf{v} = \dot{\alpha}$ and the acceleration vector $\mathbf{a} = \ddot{\alpha}$ the above equations for $\dot{\alpha}$ and $\ddot{\alpha}$ take the form

$$
\mathbf{b} = \dot{\sigma} \mathbf{t}, \qquad \mathbf{a} = \ddot{\sigma} \mathbf{t} + \dot{\sigma}^2 \kappa \mathbf{n}.
$$

The second equation resolves the acceleration into its tangential and normal componenets and explains what happens when a car goes around a sharp curve in the road.