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1. Let C ⊂ R3 be a curve and p ∈ C. Let α : (−ε, ε)→ R3 be a parameterization
of C by arc length centered at p, i.e.

‖α′(s)‖2 = 1, α(0) = p.

The vector α′′(0) is called the curvature vector at p. Differentiating shows
that 〈α′′, α′〉 = 0 so the curvature vector is orthogonal to the tangent vector
α′(0) to the curve at p. Reversing the orientation of the curve (i.e. replacing
s by −s) reverses the direction of the tangent vector but leaves the curvature
vector unchanged.

2. Let S ⊂ R3 be an oriented surface. The Gauss map is the map N : S → S2

which assigns to p ∈ S the unit normal. There are two unit normals (−N is the
other one); the meaning of the word oriented is that we have chosen one. Thus1

‖N(p)‖ = 1, 〈N(p),v〉 = 0 for v ∈ TpS. page 136

The first fundamental form assigns to each p ∈ S the quadratic form Ip :
TpS → R defined by

Ip(v) = 〈v,v〉 = ‖v‖2 page 92

It assigns to each tangent vector v ∈ TpS ⊂ R3 the square of its length. The
second fundamental form is defined by

IIp(v) = 〈N(p), α′′(0)〉 , v = α′(0)

where α : (ε, ε) → S is a curve whose tangent vector at p is v. Equation (†)
below says that IIα(α′) is the normal component of the curvature vector α′′.

3. Lemma. The second fundamental form is independent of the choice of curve
α used to define it.

Proof. Since α(s) ∈ S we have α′(s) ∈ Tα(s)S and hence 〈N(α(s), α′(s)〉 = 0.
Differentiating gives

〈dNp(α′(0), α′(0)〉+ 〈N(p), α′′(0)〉

This shows that
IIp(v) = −〈dNp(v),v〉 for v ∈ TpS page 141

is independent of the second derivative.

1All page references are to the Do Carmo text.
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4. Lemma. The derivative dNp : TpS → TN(p)S
2 of the Gauss map is a map

from a vector space to itself, i.e.

TpS = TN(p)S
2

for p ∈ S.

Proof. TpS = N(p)⊥ and TwS
2 = w⊥ for w ∈ S2.

5. Lemma. The derivative dNp : TpS → TpS is self adjoint, i.e.

〈dNp(u),v〉 = 〈u, dNp(v)〉

for u,v ∈ TpS.

Proof. See Proposition 1 page 140. Choose a parameterization x : U → S with

x(0, 0) = p, xu(0, 0) = u, xv(0, 0) = v.

Here (u, v) are the standard coordinates on the open set U ⊂ R2 and the
subscripts u and v indicate partial differentiation.2 Since N(x) ⊥ TxS and
xu,xv ∈ TxS we have

〈N,xu〉 = 〈N,xv〉 = 0

so
〈Nv,xu〉+ 〈N,xuv〉 = 〈Nu,xv〉+ 〈N,xvu〉 = 0. (∗)

The lemma follows from xuv = xvu.

6. Remark. Let α : (−ε, ε) → S be a curve in S parameterized by arclength.
By the geometric definition of the cross product, the vectors N,α′, N ∧ α′ are
orthonormal at each point α(s). The vector α′ is a unit vector tangent to S (at
α) and N(α) is a unit vector normal to S so N ∧α′ is a unit vector tangent to S
and is orthogonal to both N and α′. Since ‖α′‖ = 1 we also have 〈α′, α′′〉 = 0.
Hence the curvature vector can be written as

α′′ = knN + kg(N ∧ α′), kn := 〈α′′, N〉 , kg := 〈α′′, N ∧ α′〉 (†)

The coefficient kn is called the normal curvature and coefficient kg is called
the geodesic curvature. By definition

IIα(α′) = −〈α′′, N(α)〉 = −kn.

By the Pythagorean theorem

k2 = k2n + k2g .

See page 249. A geodesic in S is a curve whose geodesic curvature is zero, i.e.
whose curvature vector is normal to S.

2However the subscript p in the expression dNp(u) indicates that that the derivative is to
be evaluated at p.
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7. Remark. The curvature vector is the acceleration from classical mechanics
so a particle moving in S and acted on by a force which is perpendicular to to
S (and no other forces) moves along a geodesic.

8. Definition. The eigenvalues k1, k2 of dNp are called the principal curva-
tures and the determinant

K := det(dKp) = k1k2

is called the Gauss curvature. The average value

H :=
k1 + k2

2

of the principal curvatures is the called the mean curvature. Thus λ = k1
and λ = k2 are the two solutions of the characteristic equation

λ2 + 2Hλ+K = 0.

9. Remark. If dA denotes the area of an infinitesimal region on S containing
the point p, then K(p) dA is the area of the image of that infinitesimal region
under the Gauss map. Thus K(p) is the analog for surfaces of the curvature
k = dθ/ds of a plane curve.

10. Let U ⊂ R2 be open and x : U → S be a parameterization. The unit
normal is

N =
xu ∧ xv
‖xu ∧ xv‖

. page 135

A curve α : (−ε, ε)→ S can be written

α(t) = x(u(t), v(t))

where (u(t), v(t)) ∈ U . In these coordinates the fundamental forms are given by

Iα(α′) = E(u′)2 + 2Fu′v′ +G(v′)2, page 92

IIα(α′) = e(u′)2 + 2fu′v′ + g(v′)2 page 154

where

E = 〈xu,xu〉 , F = 〈xu,xv〉 , G = 〈xv,xv〉 ,
e = −〈Nu,xu〉 , f = −〈Nu,xv〉 , g = −〈Nv,xv〉 .

are functions on U . The subscript on N means partial differentiation so

Nu = dNx(xu), Nv = dNx(xv).

By (∗) f can be written four ways.
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11. Weingarten Equations.

Nu = a11xu + a12xv. Nv = a21xu + a22xv page 154

where

a11 =
fF − eG
EG− F 2

, a12 =
gF − fG
EG− F 2

,

a21 =
eF − fE
EG− F 2

, a22 =
fF − gE
EG− F 2

.

page 155

12. Corollary. The Gauss curvature is given by

K =
eg − f2

EG− F 2

and the mean curvature is given by

H =
1

2

eG− 2fF + gE

EG− F 2
.

13. Suppose that the surface S is a graph, i.e. it is defined by an equation

z = h(x, y).

The tangent space at p = (x, y, z) ∈ S is the graph of dh i.e. the set of all
vectors (x′, y′, z′) such that

z′ = hx(x, y)x′ + hy(x, y)y′.

The vector

N =
(−hx,−hy, 1)

‖N‖
, ‖N‖ =

√
h2x + h2y + 1

is one of the two unit normal vectors to S. There is an obvious parameterization
x(u, v) = (x, y, z) where

x = u, y = v, z = h(u, v). (#)

For this parameterization

xu = (1, 0, hx), xv = (0, 1, hy)

so
E = 1 + h2x, F = hxhy, G = 1 + h2y,

e =
hxx
‖N‖

, f =
hxy
‖N‖

, g =
hyy
‖N‖

,

K =
hxxhyy − h2xy
‖N‖2

,

2H =
(1 + h2x)hyy − 2hxhyhxy + (1 + h2y)hxx

‖N‖3/2
.
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14. Theorem. If K(p) > 0, then S lies to one side of p + TpS near p. If
K(p) < 0, then S intersects p+ TpS.

Proof. Choose coordinates on R3 so that p = (0, 0, 0), TpS = the xy-plane.
Then S is a graph near p with equation z = h(x, y) and h(0, 0) = hx(0, 0) =
hy(0, 0) = 0 and d2h(0, 0) is the second fundamental form. Rotate the (x, y)
plane so that (1, 0) and (0, 1) are eigenvectors of Hessian matrix

d2h(0, 0) =

(
hxx(0, 0) hxy(0, 0)
hyx(0, 0) hyy(0, 0)

)
.

Then xxy(0, 0) = hyx(0, 0) = 0 so the principle curvatures are k1 = hxx(0, 0)
and k2 = hyy(0, 0). The second fundamental form is k1x

2 + k2y
2. Then

h(x, y) = k1x
2 + k2y

2 + higher order terms.

See Proposition 3 in section 2-2 on page 63 and problem 26 on page 91.

15. Remark. The Implicit Function Theorem says that if N(p) does not lie
in the xy-plane then p lies in the image of a local parameterization as in equa-
tion (#). This is Proposition 3 in section 2-2 on page 63. Since N(p) cannot
lie in all three coordinate planes it is always possible to choose two of the three
coordinates x, y, z to parameterize the surface (near p) as a graph. For example,
the unit sphere is covered by six parameterizations

z =
√

1− x2 − y2, y =
√

1− x2 − z2, x =
√

1− y2 − z2,
z = −

√
1− x2 − y2, y = −

√
1− x2 − z2, x = −

√
1− y2 − z2.

Other local parameterizations of the unit sphere are by cylindrical coordinates

x = r cos θ, y = r sin θ, z =
√

1− r2

(this parameterizes the northern hemisphere), by spherical coordinates

x = cos θ sinϕ, y = sin θ sinϕ. z = cosϕ

(this parameterizes everything but the north and south poles) and stereographic
projection

x =
2u

1 + u2 + v2
, y =

2v

1 + u2 + v2
, z =

1− u2 − v2

1 + u2 + v2

(this parameterizes everything but the south pole (0, 0,−1). See exercise 16
page 67.) The Gauss curvature of the unit sphere is (obviously) identically
equal to one as the Gauss map is the identity map.

16. The point (cos(u±ν), sin(u±ν),±1) lies in the plane z = ±1. When ν = 0
these points lie on the same vertical line but for ν > 0 the upper one has been
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rotated clockwise and the lower one has been rotate counter clockwise. The line
connecting these two points has parametric equations

x = x0 + vξ, y = y0 + vη, z = v

where (x0, y0, 0) is the midpoint of the line segment connecting them and (2ξ, 2η, 2)
is the vector from the lower point to the upper, i.e.

x0 = 1
2 (cos(u+ ν) + cos(u− ν)) = cosu cos ν,

y0 = 1
2 (sin(u+ ν) + sin(u− ν)) = sinu cos ν

and
ξ = 1

2 (cos(u+ ν)− cos(u− ν)) = − sinu sin ν,

η = 1
2 (sin(u+ ν)− sin(u− b)) = cosu sin ν.

Since x0ξ + y0η = 0 we get

x2 + y2 = cos2 ν + v2 sin2 ν = a2 + b2z2

where a = cos ν and b = sin ν. This is the equation of a hyperboloid of one
sheet. Replacing ν by −ν gives the same equation so the hyperboloid of one
sheet contains two lines though every point. The tangent plane at any point
intersects the hyperboloid in these two lines so the hyperboloid has negative
Gauss curvature.

17. The equation x2 + y2 = z2 + 1 defines a hyperboloid of one sheet, and the
equation x2 + y2 = z2 − 1 defines a hyperboloid of two sheets. The latter has
positive Gauss curvature and therefore contains no lines.

18. Stereographic projection R2 → S2 is defined by the condition that the three
points

s = (0, 0,−1), p = (x, y, z), w = (u, v, 0), x2 + y2 + z2 = 1

are collinear. It covers the entire sphere except for the south pole s = (0, 0,−1)
in a one-one way. The analogous condition that the three points

s = (0, 0,−1), p = (x, y, z), w = (u, v, 0), x2 + y2 − z2 = −1

be collinear be used to parameterize the upper sheet of the hyperboloid of one
sheet by the unit disk u2 + v2 < 1. In this example the parameterization covers
the whole upper sheet in a one-one way. (The south pole s = (0, 0,−1) is on
the lower sheet.)
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