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Preface

These are notes for the lecture course “Differential Geometry I” held by the
second author at ETH Zürich in the fall semester 2010. They are based
on a lecture course held by the first author at the University of Wisconsin–
Madison in the fall semester 1983.

In the present manuscript the sections are roughly in a one-to-one corre-
spondence with the 26 lectures at ETH, each lasting two times 45 minutes.
(Exceptions: Of Section 2.6 only the existence of a Riemannian metric was
covered in one of the earlier lectures; Sections 1.9/1.10 together were two
lectures, as well as 4.4/4.5; some of the material in the longer Sections like
1.6 and 2.4 was left as exercises.)

11 January 2011 Joel W. Robbin and Dietmar A. Salamon
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Chapter 1

Foundations

In very rough terms, the subject of differential topology is to study spaces up
to diffeomorphisms and the subject of differential geometry is to study spaces
up to isometries. Thus in differential geometry our spaces are equipped
with an additional structure, a (Riemannian) metric, and some important
concepts we encounter are distance, geodesics, the Levi-Civita connection,
and curvature. In differential topology important concepts are the degree
of a map, intersection theory, differential forms, and deRham cohomology.
In both subjects the spaces we study are smooth manifolds and the goal
of this first chapter is to introduce the basic definitions and properties of
smooth manifolds. We begin with (extrinsic) manifolds that are embedded
in Euclidean space and their tangent bundles and later examine the more
general (intrinsic) definition of a manifold.

1.1 Manifolds

1.1.1 Some examples

Let k,m, n be positive integers. Throughout we denote by

|x| :=
√
x2

1 + · · ·+ x2
n

the Euclidean norm of a vector x = (x1, . . . , xn) ∈ Rn. The basic example of
a manifold of dimension m is the Euclidean space M = Rm itself. Another
example is the unit sphere in Rm+1:

Sm :=
{
x ∈ Rm+1 | |x| = 1

}
.

1



2 CHAPTER 1. FOUNDATIONS

In particular, for m = 1 we obtain the unit circle

S1 ⊂ R2 ∼= C.

The m-torus is the product

Tm := S1 × · · · × S1 = {z = (z1, . . . , zm) ∈ Cm | |z1| = · · · |zm| = 1} .

A noncompact example is the space

M :=
{
x = (x0, . . . , xm) ∈ Rm+1 |x2

1 + · · ·+ x2
m = 1 + x2

0

}
.

Other examples are the groups

SL(n,R) :=
{
A ∈ Rn×n | det(A) = 1

}
, O(n) :=

{
A ∈ Rn×n |ATA = 1l

}
.

Here 1l denotes the identity matrix and AT denotes the transposed matrix
of A. An example of a manifold that is not (in an obvious way) embedded
in some Euclidean space is the complex Grassmannian

Gk(Cn) := {E ⊂ Cn |E is a complex linear subspace of dimension k}

of k-planes in Cn.

Figure 1.1: The 2-sphere and the 2-torus.

1.1.2 Recollections about smooth maps and derivatives

To define what we mean by a manifold M ⊂ Rk we recall some basic concepts
from analysis [12]. Denote by N0 = N ∪ {0} the set of nonnegative integers.
Let k, ` ∈ N0 and let U ⊂ Rk and V ⊂ R` be open sets. A map f : U → V
is called smooth (or C∞) if all its partial derivatives

∂αf =
∂α1+···+αkf

∂xα1
1 · · · ∂x

αk
k

, α = (α1, . . . , αk) ∈ Nk0,

exist and are continuous. For a smooth map f = (f1, . . . , f`) : U → V and
a point x ∈ U we denote by

df(x) : Rk → R`
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the derivative of f at x defined by

df(x)ξ :=
d

dt

∣∣∣∣
t=0

f(x+ tξ) = lim
t→0

f(x+ tξ)− f(x)

t
, ξ ∈ Rk.

This is a linear map represented by the Jacobi matrix of f at x which will
also be denoted by

df(x) :=


∂f1
∂x1

(x) · · · ∂f1
∂xk

(x)
...

...
∂f`
∂x1

(x) · · · ∂f`
∂xk

(x)

 ∈ R`×k.

The derivative satisfies the chain rule. Namely, if U ⊂ Rk, V ⊂ R`,
W ⊂ Rm are open sets and f : U → V and g : V → W are smooth maps
then g ◦ f : U →W is smooth and

d(g ◦ f)(x) = dg(f(x)) ◦ df(x) : Rk → Rm

for every x ∈ U . Moreover the identity map is always smooth and its differ-
ential at every point is the identity matrix. This implies that, if f : U → V
is a diffeomorphism (i.e. f is bijective and f and f−1 are both smooth)
then k = ` and the Jacobi matrix df(x) ∈ Rk×k is nonsingular for every
x ∈ U . A partial converse is the inverse function theorem which we restate
below. For a proof see [12] or any textbook on first year analysis.

Inverse Function Theorem. Let Ω ⊂ Rk be an open set, f : Ω → Rk
be a smooth map, and x0 ∈ Ω. If det(df(x0)) 6= 0 then there is an open
neighborhood U ⊂ Ω of x0 such that V := f(U) is an open subset of Rk and
f |U : U → V is a diffeomorphism.

Implicit Function Theorem. Let Ω ⊂ Rk × R` be open and f : Ω → R`
be a smooth map. Let (x0, y0) ∈ Ω such that

f(x0, y0) = 0, det

(
∂f

∂y
(x0, y0)

)
6= 0.

(Here ∂f
∂y (x0, y0) ∈ R`×` denotes the Jacobi matrix of the map y 7→ f(x0, y)

at the point y = y0.) Then there are open sets V ⊂ Rk and W ⊂ R` and a
smooth map g : V →W such that (x0, y0) ∈ V ×W ⊂ Ω, g(x0) = y0, and

f(x, y) = 0 ⇐⇒ y = g(x).

for all (x, y) ∈ V ×W .
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Now let X ⊂ Rk and Y ⊂ R` be arbitrary subsets, not necessarily open.
A map f : X → Y is called smooth if for every x0 ∈ X there is an open
neighborhood U ⊂ Rk of x0 and a smooth map F : U → R` that agrees with
f on U ∩X. A map f : X → Y is called a diffeomorphism if f is bijective
and f and f−1 are smooth. If there exists a diffeomorphism f : X → Y
then X and Y are called diffeomorphic.

Exercise 1.1. (i) Let k, `,m ∈ N0 and X ⊂ Rk, Y ⊂ R`, Z ⊂ Rm be
arbitrary subsets. If f : X → Y and g : Y → Z are smooth maps then so is
the composition g ◦ f : X → Z. The identity map id : X → X is smooth.

(ii) Let E ⊂ Rk be an m-dimensional linear subspace and let v1, . . . , vm be
a basis of E. Then the map f : Rm → E defined by f(x) :=

∑m
i=1 xivi is a

diffeomorphism.

We also recall that any subset M ⊂ Rk inherits a topology from Rk,
called the relative topology of M . A subset U0 ⊂M is called relatively
open (or in short M-open) if there is an open set U ⊂ Rk such that
U0 = U ∩M . A subset A0 ⊂ M is called relatively closed (or in short
M-closed) if there is a closed set A ⊂ Rk such that A0 = A ∩M .

Exercise 1.2. Show that the relative topology satisfies the axioms of a
topology (i.e. arbitrary unions and finite intersections of M -open sets are
M -open, and the empty set and M itself are M -open). Show that the
complement of an M -open set in M is M -closed and vice versa.

1.1.3 Submanifolds of Euclidean space

Definition 1.3. Let k,m ∈ N0. A subset M ⊂ Rk is called a smooth
m-dimensional submanifold of Rk (or a smooth m-manifold) if every
point p ∈ M has an open neighborhood U ⊂ Rk such that U ∩M is diffeo-
morphic to an open subset Ω ⊂ Rm. A diffeomorphism φ : U ∩M → Ω is
called a coordinate chart of M and its inverse ψ := φ−1 : Ω→ U ∩M is
called a (smooth) parametrization of U ∩M .

ψ

φMU M Ω

Figure 1.2: A coordinate chart φ : U ∩M → Ω.
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Lemma 1.4. If M ⊂ Rk is a nonempty smooth m-manifold then m ≤ k.

Proof. Let φ : U ∩M → Ω be a coordinate chart of M onto an open subset
Ω ⊂ Rm, denote its inverse by ψ := φ−1 : Ω → U ∩M , and let p ∈ U ∩M .
Shrinking U , if necessary, we may assume that φ extends to a smooth map
Φ : U → Rm. This extension satisfies Φ(ψ(x)) = φ(ψ(x)) = x and, by the
chain rule, we have

dΦ(ψ(x))dψ(x) = id : Rm → Rm

for every x ∈ Ω. Hence dψ(x) : Rm → Rk is injective for x ∈ Ω and, since
Ω 6= ∅, this implies m ≤ k.

Example 1.5. Consider the 2-sphere

M := S2 =
{

(x, y, z) ∈ R3 |x2 + y2 + z2 = 1
}

depicted in Figure 1.1 and let U ⊂ R3 and Ω ⊂ R2 be the open sets

U :=
{

(x, y, z) ∈ R3 | z > 0
}
, Ω :=

{
(x, y) ∈ R2 |x2 + y2 < 1

}
.

The map φ : U ∩M → Ω given by

φ(x, y, z) := (x, y)

is bijective and its inverse ψ := φ−1 : Ω→ U ∩M is given by

ψ(x, y) = (x, y,
√

1− x2 − y2).

Since both φ and ψ are smooth, the map φ is a coordinate chart on S2.
Similarly, we can use the open sets z < 0, y > 0, y < 0, x > 0, x < 0
to cover S2 by six coordinate charts. Hence S2 is a manifold. A similar
argument shows that the unit sphere Sm ⊂ Rm+1 is a manifold for every
integer m ≥ 0.

Example 1.6. Let Ω ⊂ Rm be an open set and h : Ω→ Rk−m be a smooth
map. Then the graph of h is a smooth submanifold of Rm × Rk−m = Rk:

M := graph(h) = {(x, y) |x ∈ Ω, y = h(x)} .

It can be covered by a single coordinate chart φ : U ∩ M → V where
U := Ω× Rk−m, φ is the projection onto Ω, and ψ := φ−1 : Ω→ U is given
by ψ(x) = (x, h(x)).
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Exercise 1.7 (The case m = 0). Show that a subset M ⊂ Rk is a 0-
dimensional submanifold if and only if M is discrete, i.e. for every p ∈ M
there is an open set U ⊂ Rk such that U ∩M = {p}.

Exercise 1.8 (The case m = k). Show that a subset M ⊂ Rm is an
m-dimensional submanifold if and only if M is open.

Exercise 1.9 (Products). If Mi ⊂ Rki is an mi-manifold for i = 1, 2 show
that M1 ×M2 is an (m1 + m2)-dimensional submanifold of Rk1+k2 . Prove
by induction that the n-torus Tn is a smooth submanifold of Cn.

The next theorem characterizes smooth submanifolds of Euclidean space.
In particular condition (iii) will be useful in many cases for verifying the
manifold condition.

Theorem 1.10 (Manifolds). Let m and k be integers with 0 ≤ m ≤ k.
Let M ⊂ Rk be a set and p ∈M . Then the following are equivalent.

(i) There is an M -open neighborhood U0 ⊂ M of p, an open set Ω0 ⊂ Rm,
and a diffeomorphism φ0 : U0 → Ω0.

(ii) There are open sets U,Ω ⊂ Rk and a diffeomorphism φ : U → Ω such
that p ∈ U and

φ(U ∩M) = Ω ∩ (Rm × {0}) .

(iii) There is an open set U ⊂ Rk and a smooth map f : U → Rk−m
such that p ∈ U , the differential df(q) : Rk → Rk−m is surjective for every
q ∈ U ∩M , and

U ∩M = f−1(0) = {q ∈ U | f(q) = 0} .

Moreover, if (i) holds then the diffeomorphism φ : U → Ω in (ii) can be
chosen such that U ∩M ⊂ U0 and φ(p) = (φ0(p), 0) for every p ∈ U ∩M .

Proof. We prove that (i) implies (ii). Let φ0 : U0 → Ω0 be the coordi-
nate chart in (i), let ψ0 := φ−1

0 : Ω0 → U0 be its inverse, and denote
x0 := φ0(p) ∈ Ω0. Then, by Lemma 1.4, the differential dψ0(x0) : Rm → Rk
is injective. Hence there is a matrix B ∈ Rk×(k−m) such that

det(dψ0(x0)B) 6= 0.

Define the map ψ : Ω0 × Rk−m → Rk by

ψ(x, y) := ψ0(x) +By.
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Then the k × k-matrix

dψ(x0, 0) = [dψ0(x0)B] ∈ Rk×k

is nonsingular, by choice of B. Hence, by the inverse function theorem, there
is an open neighborhood Ω̃ ⊂ Ω0 × Rk−m of (x0, 0) such that Ũ := ψ(Ω̃) is
open and ψ|

Ω̃
: Ω̃→ Ũ is a diffeomorphism. In particular, the restriction of

ψ to Ω̃ is injective. Now the set

Ũ0 :=
{
ψ0(x) | (x, 0) ∈ Ω̃

}
=
{
q ∈ U0 | (φ0(q), 0) ∈ Ω̃

}
⊂M

is M -open and contains p. Hence, by the definition of the relative topology,
there is an open set W ⊂ Rk such that Ũ0 = W ∩M. Define

U := Ũ ∩W, Ω := Ω̃ ∩ ψ−1(W ).

Then ψ restricts to a diffeomorphism from Ω to U and, for (x, y) ∈ Ω, we
claim that

ψ(x, y) ∈M ⇐⇒ y = 0. (1.1)

If y = 0 then obviously ψ(x, y) = ψ0(x) ∈M . Conversely, let (x, y) ∈ Ω and
suppose that q := ψ(x, y) ∈M . Then

q ∈ U ∩M = Ũ ∩W ∩M = Ũ0 ⊂ U0

and hence (φ0(q), 0) ∈ Ω̃, by definition of Ũ0. This implies that

ψ(φ0(q), 0) = ψ0(φ0(q)) = q = ψ(x, y).

Since the pairs (x, y) and (φ0(q), 0) both belong to the set Ω̃ and the restric-
tion of ψ to Ω̃ is injective we obtain x = φ0(q) and y = 0. This proves (1.1).
It follows from (1.1) that the map φ := (ψ|Ω)−1 : U → Ω satisfies (ii) and
agrees with the map q 7→ (φ0(q), 0) on U ∩M . Thus we have proved that (i)
implies (ii).

That (ii) implies (iii) is obvious. Just define f : U → Rk−m as the
composition of φ with the projection of Rk onto the last k−m coordinates.

We prove that (iii) implies (i). Let f : U → Rk−m be as in (iii) and
denote

X := ker df(p) ⊂ Rk.

By (iii) this is an m-dimensional linear subspace of Rk and we choose a
(k −m)-dimensional linear subspace Y ⊂ Rk such that

Rk = X ⊕ Y.
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Then the restriction of df(p) to Y is a vector space isomorphism from Y to
Rk−m. Hence, by the implicit function theorem, there are open neighbor-
hoods V ⊂ X and W ⊂ Y of the origin and a smooth map g : V →W such
that

Q := {p+ x+ y |x ∈ V, y ∈W} ⊂ U, g(0) = 0,

and, for all x ∈ V and y ∈W , we have

f(p+ x+ y) = 0 ⇐⇒ y = g(x).

Hence assertion (i) holds with

U0 := Q ∩M = {p+ x+ g(x) |x ∈ V } , Ω0 := V ⊂ X ∼= Rm,

and the diffeomorphism φ0 : U0 → Ω0 given by φ0(p + x + y) := x with
inverse φ−1

0 (x) := p+ x+ g(x). This proves the theorem.

Definition 1.11. Let U ⊂ Rk be an open set and f : U → R` be a smooth
function. An element c ∈ R` is called a regular value of f if, for all p ∈ U ,
we have

f(p) = c =⇒ df(p) : Rk → R` is surjective.

Otherwise c is called a singular value of f . The set of singular values of
f will be denoted by

Sf := {f(p) | p ∈ U, rank df(p) < `} .

and the set of regular values by

Rf := R` \ Sf .

Theorem 1.10 asserts that, if c is a regular value of f the preimage

M := f−1(c) = {p ∈ U | f(p) = c}

is a smooth (k − `)-dimensional submanifold of Rk. Sard’s theorem asserts
that every smooth map f : U → R` has a regular value.

Sard’s theorem. For every smooth map f : U → R`, defined on an open
set U ⊂ Rk, the set Sf of singular values of f has Lebesgue measure zero.

Proof. §3 in Milnor’s book [8].
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Sard’s theorem implies that the set of singular values does not contain
any open set and hence the set R` \Sf of regular values is everywhere dense
in R`. In other words, for every c ∈ R` there is a sequence of regular values
converging to c. In fact, it follows from Sard’s theorem that the set of
regular values is residual in the sense of Baire, i.e. it contains a countable
intersection of open and dense sets. By Baire’s category theorem residual
sets (in a complete metric space) are always dense and, by definition, a
countable intersection of residual sets is still residual. Thus any countable
collection of smooth maps into the same target space R` still has a dense
set of common regular values.

We also emphasize that, if ` > k the differential df(p) : Rk → R` can
never be surjective and so the set of singular values is just the image of f . In
this case Sard’s theorem asserts that the image of f has Lebesgue measure
zero and this remains valid for every continuously differentiable function.
When k ≥ ` Sard’s theorem continues to hold for maps of class Ck−`+1 (see
Abraham–Robbin [1]).

1.1.4 Examples and exercises

Example 1.12. Let A = AT ∈ Rk×k be a nonzero symmetric matrix and
define f : Rk → R by

f(x) := xTAx.

Then df(x)ξ = 2xTAξ for x, ξ ∈ Rk and hence the linear map df(x) : Rk → R
is surjective if and only if Ax 6= 0. Thus c = 0 is the only singular value of f
and, for c ∈ R \ {0}, the set

M := f−1(c) =
{
x ∈ Rk |xTAx = c

}
is a smooth manifold of dimension m = k − 1.

Example 1.13 (The sphere). As a special case of Example 1.12 take
k = m+ 1, A = 1l, and c = 1. Then f(x) = |x|2 and so we have another
proof that the unit sphere

Sm =
{
x ∈ Rm+1 | |x|2 = 1

}
in Rm+1 is a smooth m-manifold. (See Example 1.5.)

Example 1.14. Define the map f : R3 × R3 → R by f(x, y) := |x− y|2 .
This is another special case of Example 1.12 and so, for every r > 0, the set

M :=
{

(x, y) ∈ R3 × R3 | |x− y| = r
}

is a smooth 5-manifold.
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Example 1.15 (The 2-torus). Let 0 < r < 1 and define f : R3 → R by

f(x, y, z) := (x2 + y2 + r2 − z2 − 1)2 − 4(x2 + y2)(r2 − z2).

This map has zero as a regular value and M := f−1(0) is diffeomorphic to
the 2-torus T2 = S1 × S1. An explicit diffeomorphism is given by

(eis, eit) 7→
(
(1 + r cos(s)) cos(t), (1 + r cos(s)) sin(t), r sin(s)

)
.

This example corresponds to the diagram in Figure 1.1.

Exercise: Show that f(x, y, z) = 0 if and only if (
√
x2 + y2 − 1)2 + z2 = r2.

Verify that zero is a regular value of f .

Example 1.16 (The real projective plane). The set

M :=
{

(x2, y2, z2, yz, zx, xy) |x, y, z ∈ R, x2 + y2 + z2 = 1
}

is a smooth 2-manifold in R6. To see this, define an equivalence relation on
the unit sphere S2 ⊂ R3 by p ∼ q iff q = ±p. The quotient space (the set of
equivalence classes) is called the real projective plane and is denoted by

RP2 := S2/{±1}.

It is equipped with the quotient topology, i.e. a subset U ⊂ RP2 is open,
by definition, iff its preimage under the obvious projection S2 → RP2 is an
open subset of S2. Now the map f : S2 → R6 defined by

f(x, y, z) := (x2, y2, z2, yz, zx, xy)

descends to a homeomorphism from RP2 onto M . An atlas on M is given
by the local smooth parametrizations

Ω→M : (x, y) 7→ f(x, y,
√

1− x2 − y2),

Ω→M : (x, z) 7→ f(x,
√

1− x2 − z2, z),

Ω→M : (y, z) 7→ f(
√

1− y2 − z2, y, z),

defined on the open unit disc Ω ⊂ R2. We remark the following.

(a) M is not the preimage of a regular value under a smooth map R6 → R4.

(b) M is not diffeomorphic to a submanifold of R3.

(c) The projection Σ :=
{

(yz, zx, xy) |x, y, z ∈ R, x2 + y2 + z2 = 1
}

of M
onto the last three coordinates is called the Roman surface and was dis-
covered by Jakob Steiner. The Roman surface can also be represented as
the set of solutions (ξ, η, ζ) ∈ R3 of the equation η2ζ2 + ζ2ξ2 + ξ2η2 = ξηζ.
It is not a submanifold of R3.

Exercise: Prove this. Show that M is diffeomorphic to a submanifold of R4.
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Exercise 1.17. Let V : Rn → R be a smooth function and define the
Hamiltonian function H : Rn × Rn → R (kinetic plus potential energy) by

H(x, y) :=
1

2
|y|2 + V (x).

Prove that c is a regular value of H if and only if it is a regular value of V .

Exercise 1.18. Consider the general linear group

GL(n,R) =
{
g ∈ Rn×n | det(g) 6= 0

}
Prove that the derivative of the function f = det : Rn×n → R is given by

df(g)v = det(g) trace(g−1v)

for every g ∈ GL(n,R) and every v ∈ Rn×n. Deduce that the special linear
group

SL(n,R) := {g ∈ GL(n,R) | det(g) = 1}

is a smooth submanifold of Rn×n.

Example 1.19. The orthogonal group

O(n) :=
{
g ∈ Rn×n | gT g = 1l

}
is a smooth submanifold of Rn×n. To see this, denote by

Sn :=
{
S ∈ Rn×n |ST = S

}
the vector space of symmetric matrices and define f : Rn×n → Sn by

f(g) := gT g.

Its derivative df(g) : Rn×n → Sn is given by df(g)v = gT v + vT g. This
map is surjective for every g ∈ O(n): if gT g = 1l and S = ST ∈ Sn then the
matrix v := 1

2gS satisfies df(g)v = S. Hence 1l is a regular value of f and so
O(n) is a smooth manifold. It has the dimension

dim O(n) = n2 − dim Sn = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Exercise 1.20. Prove that the set

M :=
{

(x, y) ∈ R2 |xy = 0
}

is not a submanifold of R2. Hint: If U ⊂ R2 is a neighborhood of the origin
and f : U → R is a smooth map such that U∩M = f−1(0) then df(0, 0) = 0.
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1.2 Tangent spaces and derivatives

The main reason for first discussing the extrinsic notion of embedded mani-
folds in Euclidean space (and postponing the more general intrinsic defini-
tion of a manifold via a system of coordinate charts on a topological space)
is that the concept of a tangent vector is much easier to digest in the em-
bedded case: it is simply the derivative of a curve in M , understood as a
vector in the ambient Euclidean space in which M is embedded.

1.2.1 Tangent spaces

Definition 1.21. Let M ⊂ Rk be a smooth m-dimensional manifold and fix
a point p ∈ M . A vector v ∈ Rk is called a tangent vector of M at p if
there is a smooth curve γ : R→M such that

γ(0) = p, γ̇(0) = v.

The set
TpM := {γ̇(0) | γ : R→M is smooth, γ(0) = p}

of tangent vectors of M at p is called the tangent space of M at p (see
Figure 1.3).

ppMT

M

v

Figure 1.3: The tangent space TpM .

Remark 1.22. Let p ∈ M ⊂ Rk be as in Definition 1.21 and let v ∈ Rk.
Then

v ∈ TpM ⇐⇒ ∃ε > 0 ∃γ : (−ε, ε)→M 3
γ is smooth, γ(0) = p, γ̇(0) = v.

To see this suppose that γ : (−ε, ε) → M is a smooth curve with γ(0) = p
and γ̇(0) = v. Define γ̃ : R→M by

γ̃(t) := γ

(
εt√
ε2 + t2

)
, t ∈ R.

Then γ̃ is smooth and satisfies γ̃(0) = p and ˙̃γ(0) = v. Hence v ∈ TpM .
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Theorem 1.23 (Tangent spaces). Let M ⊂ Rk de a smooth m-dimensio-
nal manifold and fix a point p ∈M . Then the following holds.

(i) Let U0 ⊂ M be an M -open set with p ∈ U0 and φ0 : U0 → Ω0 be a
diffeomorphism onto an open subset Ω0 ⊂ Rm. Let x0 := φ0(p) and let
ψ0 := φ−1

0 : Ω0 → U0 be the inverse map. Then

TpM = im
(
dψ0(x0) : Rm → Rk

)
.

(ii) Let U,Ω ⊂ Rk be open sets and φ : U → Ω be a diffeomorphism such
that p ∈ U and φ(U ∩M) = Ω ∩ (Rm × {0}). Then

TpM = dφ(p)−1 (Rm × {0}) .

(iii) Let U ⊂ Rk be an open neighborhood of p and f : U → Rk−m be a
smooth map such that 0 is a regular value of f and U ∩M = f−1(0). Then

TpM = ker df(p).

(iv) TpM is an m-dimensional linear subspace of Rk.

Proof. Let ψ0 : Ω0 → U0 be as in (i) and φ : U → Ω be as in (ii). We prove
that

im dψ0(x0) ⊂ TpM ⊂ dφ(p)−1 (Rm × {0}) . (1.2)

To prove the first inclusion in (1.2) we choose a nonzero vector ξ ∈ Rm and
choose ε > 0 such that

Bε(x0) := {x ∈ Rm | |x− x0| < ε} ⊂ Ω0.

Define the curve γ : (−ε/ |ξ| , ε/ |ξ|)→M by

γ(t) := ψ0(x0 + tξ), |t| < ε

|ξ|
.

Then γ is a smooth curve in M with

γ(0) = ψ0(x0) = p, γ̇(0) =
d

dt

∣∣∣∣
t=0

ψ0(x0 + tξ) = dψ0(x0)ξ.

Hence it follows from Remark 1.22 that dψ0(x0)ξ ∈ TpM , as claimed. To
prove the second inclusion in (1.2) we fix a vector v ∈ TpM . Then, by
definition of the tangent space, there is a smooth curve γ : R → M such
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that γ(0) = p and γ̇(0) = v. Let U ⊂ Rk be as in (ii) and choose ε > 0 so
small that γ(t) ∈ U for |t| < ε. Then

φ(γ(t)) ∈ φ(U ∩M) ⊂ Rm × {0}

for |t| < ε and hence

dφ(p)v = dφ(γ(0))γ̇(0) =
d

dt

∣∣∣∣
t=0

φ(γ(t)) ∈ Rm × {0}.

This shows that v ∈ dφ(p)−1 (Rm × {0}) and thus we have proved (1.2).
Now the sets im dψ0(x0) and dφ(p)−1 (Rm × {0}) are bothm-dimensional

linear subspaces of Rk. Hence it follows from (1.2) that these subspaces agree
and that they both agree with TpM . Thus we have proved assertions (i),
(ii), and (iv).

We prove (iii). If v ∈ TpM then there is a smooth curve γ : R → M
such that γ(0) = p and γ̇(0) = v. For t sufficiently small we have γ(t) ∈ U ,
where U ⊂ Rk is the open set in (iii), and hence f(γ(t)) = 0. This implies

df(p)v = df(γ(0))γ̇(0) =
d

dt

∣∣∣∣
t=0

f(γ(t)) = 0.

Thus we have proved that TpM ⊂ ker df(p). Since the kernel of df(p)
and TpM are both m-dimensional linear subspaces of Rk we deduce that
TpM = ker df(p). This proves (iii) and the theorem.

Example 1.24. LetA = AT ∈ Rk×k be a nonzero matrix as in Example 1.12
and let c 6= 0. Then, by Theorem 1.23 (iii), the tangent space of the manifold

M =
{
x ∈ Rk |xTAx = c

}
at a point x ∈M is the k − 1-dimensional linear subspace

TxM =
{
ξ ∈ Rk |xTAξ = 0

}
.

Example 1.25. As a special case of Example 1.24 with A = 1l and c = 1
we find that the tangent space of the unit sphere Sm ⊂ Rm+1 at a point
x ∈ Sm is the orthogonal complement of x:

TxS
m = x⊥ =

{
ξ ∈ Rm+1 | 〈x, ξ〉 = 0

}
.

Here 〈x, ξ〉 =
∑m

i=0 xiξi denotes the standard inner product on Rm+1.
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Exercise 1.26. What is the tangent space of the 5-manifold

M :=
{

(x, y) ∈ R3 × R3 | |x− y| = r
}

at a point (x, y) ∈M? (See Exercise 1.14.)

Example 1.27. Let H(x, y) := 1
2 |y|

2 + V (x) be as in Exercise 1.17 and let
c be a regular value of H. If (x, y) ∈M := H−1(c) Then

T(x,y)M = {(ξ, η) ∈ Rn × Rn | 〈y, η〉+ 〈∇V (x), ξ〉 = 0} .

Here ∇V := (∂V/∂x1, . . . , ∂V/∂xn) : Rn → Rn denotes the gradient of V .

Exercise 1.28. The tangent space of SL(n,R) at the identity matrix is the
space

sl(n,R) := T1lSL(n,R) =
{
ξ ∈ Rn×n | trace(ξ) = 0

}
of traceless matrices. (Prove this, using Exercise 1.18.)

Example 1.29. The tangent space of O(n) at g is

TgO(n) =
{
v ∈ Rn×n | gT v + vT g = 0

}
.

In particular, the tangent space of O(n) at the identity matrix is the space
of skew-symmetric matrices

o(n) := T1lO(n) =
{
ξ ∈ Rn×n | ξT + ξ = 0

}
To see this, choose a smooth curve R → O(n) : t 7→ g(t). Then we have
g(t)T g(t) = 1l for every t ∈ R and, differentiating this identity with respect
to t, we obtain g(t)T ġ(t) + ġ(t)T g(t) = 0 for every t. Hence every ma-
trix v ∈ TgO(n) satisfies the equation gT v + vT g = 0. The claim follows
from the fact that gT v + vT g = 0 if and only if the matrix ξ := g−1v is
skew-symmetric and that the space of skew-symmetric matrices in Rn×n
has dimension n(n− 1)/2.

Exercise 1.30. Let Ω ⊂ Rm be an open set and h : Ω→ Rk−m be a smooth
map. Prove that the tangent space of the graph of h at a point (x, h(x)) is
the graph of the differential dh(x) : Rm → Rk−m:

M = {(x, h(x)) |x ∈ Ω} , T(x,h(x))M = {(ξ, dh(x)ξ) | ξ ∈ Rm} .
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1.2.2 The derivative

A key purpose behind the concept of a smooth manifold is to carry over
the notion of a smooth map and its derivatives from the realm of first year
analysis to the present geometric setting. Here is the basic definition.

Definition 1.31. Let M ⊂ Rk be an m-dimensional smooth manifold and
f : M → R` be a smooth map. The derivative of f at a point p ∈M is the
map

df(p) : TpM → R`

defined as follows. Given a tangent vector v ∈ TpM choose a smooth curve
γ : R→M satisfying γ(0) = p and γ̇(0) = v; now define the vector

df(p)v ∈ R`

by

df(p)v :=
d

dt

∣∣∣∣
t=0

f(γ(t)) = lim
h→0

f(γ(h))− f(p)

h
. (1.3)

That the limit on the right in equation (1.3) exists follows from our
assumptions. We must prove, however, that the derivative is well defined,
i.e. that the right hand side of (1.3) depends only on the tangent vector
v but not on the choice of the curve γ used in the definition. This is the
content of the first assertion in the next theorem.

Theorem 1.32 (Derivatives). Let M ⊂ Rk be an m-dimensional smooth
manifold and f : M → R` be a smooth map. Fix a point p ∈ M . Then the
following holds.

(i) The right hand side of (1.3) is independent of γ.

(ii) The map df(p) : TpM → R` is linear.

(iii) If N ⊂ R` is a smooth n-manifold and f(M) ⊂ N then

df(p)TpM ⊂ Tf(p)N.

(iv) (Chain Rule) Let N be as in (iii), suppose that f(M) ⊂ N , and let
g : N → Rd be a smooth map. Then

d(g ◦ f)(p) = dg(f(p)) ◦ df(p) : TpM → Rd.

(v) If f = id : M →M then df(p) = id : TpM → TpM .
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Proof. We prove (i). Let v ∈ TpM and γ : R→M be as in Definition 1.31.
By definition there is an open neighborhood U ⊂ Rk of p and a smooth map
F : U → R` such that F (q) = f(q) for every q ∈ U ∩M . Let dF (p) ∈ R`×k
denote the Jacobi matrix (i.e. the matrix of all first partial derivatives) of
F at p. Then, since γ(t) ∈ U ∩M for t sufficiently small, we have

dF (p)v = dF (γ(0))γ̇(0) =
d

dt

∣∣∣∣
t=0

F (γ(t)) =
d

dt

∣∣∣∣
t=0

f(γ(t)).

The right hand side of this identity is independent of the choice of F while
the left hand side is independent of the choice of γ. Hence the right hand
side is also independent of the choice of γ and this proves (i). Assertion (ii)
follows immediately from the identity df(p)v = dF (p)v just established.

Assertion (iii) follows directly from the definitions. Namely, if γ is as in
Definition 1.31 then

β := f ◦ γ : R→ N

is a smooth curve in N satisfying

β(0) = f(γ(0)) = f(p) =: q, β̇(0) = df(p)v =: w.

Hence w ∈ TqN . Assertion (iv) also follows directly from the definitions. If
g : N → Rd is a smooth map and β, q, w are as above then

d(g ◦ f)(p)v =
d

dt

∣∣∣∣
t=0

g(f(γ(t)))

=
d

dt

∣∣∣∣
t=0

g(β(t))

= dg(q)w

= dg(f(p))df(p)v.

Assertion (v) is obvious. This proves the theorem.

Corollary 1.33 (Diffeomorphisms). Let M ⊂ Rk be a smooth m-mani-
fold and N ⊂ R` be a smooth n-manifold. If f : M → N is a diffeomorphism
then m = n and the differential df(p) : TpM → Tf(p)N is a vector space
isomorphism for every p ∈M .

Proof. Denote g := f−1 : N →M . Then g ◦f is the identity on M and f ◦g
is the identity on N . Hence it follows from Theorem 1.32 that, for p ∈ M
and q := f(p) ∈ N , we have

dg(q) ◦ df(p) = id : TpM → TpM, df(p) ◦ dg(q) = id : TqN → TqN.

Hence df(p) is a vector space isomorphism with inverse dg(q).
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1.2.3 The inverse and implicit function theorems

Corollary 1.33 is analogous to the corresponding assertion for smooth maps
between open subsets of Euclidean space. Likewise, the inverse function
theorem for manifolds is a partial converse of Corollary 1.33.

Theorem 1.34 (Inverse Function Theorem). Let M ⊂ Rk and N ⊂ R`
be smooth n-manifolds and f : M → N be a smooth map. Let p0 ∈ M
and suppose that the differential df(p0) : Tp0M → Tf(p0)N is a vector space
isomorphism. Then there is a relatively open neighborhood U ⊂M of p0 such
that V := f(U) ⊂ N is a relatively open subset of N and the restriction of
f to U is a diffeomorphism from U to V .

Proof. Choose a coordinate charts φ0 : U0 → Ũ0, defined on an M -open
neighborhood U0 ⊂ M of p0 onto an open set Ũ0 ⊂ Rn, and ψ0 : V0 → Ṽ0,
defined on an N -open neighborhood V0 ⊂ N of q0 := f(p0) onto an open set
Ṽ0 ⊂ Rn. Shrinking U0, if necessary we may assume that f(U0) ⊂ V0. Then
the map

f̃ := ψ0 ◦ f ◦ φ−1
0 : Ũ0 → Ṽ0

is smooth and its differential df̃(x0) : Rn → Rn is bijective at the point
x0 := φ0(p0). Hence it follows from the inverse function theorem for smooth
maps on open subsets of Euclidean space that there is an open set Ũ ⊂ Ũ0

such that Ṽ := f̃(Ũ) is an open subset of Ṽ0 and the restriction of f̃ to Ũ
is a diffeomorphism from Ũ to Ṽ . Hence the assertion of the theorem holds
with U := φ−1

0 (Ũ) and V := ψ−1
0 (Ṽ ).

Definition 1.35 (Regular value). Let M ⊂ Rk be a smooth m-manifold
and N ⊂ R` be a smooth n-manifold. Let f : M → N be a smooth map. A
point q ∈ N is called a regular value of f if the differential

df(p) : TpM → Tf(p)N

is surjective for every p ∈M with f(p) = q.

Theorem 1.36 (Implicit function theorem). Let f : M → N be as in
Definition 1.35 and let q ∈ N be a regular value of f . Then the set

P := f−1(q) = {p ∈M | f(p) = q}

is a manifold of dimension m− n and its tangent space is

TpP = ker df(p) = {v ∈ TpM | df(p)v = 0}

for every p ∈ P .
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Proof. Fix a point p0 ∈ P ⊂M and choose a coordinate chart φ0 : U0 → Rm
on an M -open neighborhood U0 ⊂ M of p0. Let U ⊂ Rk be an open set
such that U ∩M = U0. Likewise, choose a coordinate chart ψ0 : V0 → Rn
on an N -open neighborhood V0 ⊂ N of q. Shrinking U (and hence U0), if
necessary, we may assume that f(U0) ⊂ V0. Then the point c0 := ψ0(q) is a
regular value of the map

f0 := ψ0 ◦ f ◦ φ−1
0 : φ0(U0)→ Rn.

Hence, by Theorem 1.10, the set

f−1
0 (c0) =

{
x ∈ φ0(U0) | f(φ−1

0 (x)) = q
}

= φ0(U0 ∩ P )

is a manifold of of dimension m−n contained in the open set φ0(U0) ⊂ Rm.
It now follows directly from Definition 1.3 that U0 ∩ P = U ∩ P is also
a manifold of dimension m − n. Thus every point p0 ∈ P has an open
neighborhood U ⊂ Rk such that U ∩ P is a manifold of dimension m − n.
Hence P is a manifold of dimension m−n. The assertion about the tangent
space is now an easy exercise.

1.3 Submanifolds and embeddings

The implicit function theorem deals with subsets of a manifold M that are
themselves manifolds in the sense of Definition 1.3. Such subsets are called
submanifolds of M .

Definition 1.37. Let M ⊂ Rn be an m-dimensional manifold. A subset
L ⊂ M is called a submanifold of M of dimension `, if L itself is an
`-manifold.

Definition 1.38. Let M ⊂ Rk be an m-dimensional manifold and N ⊂ R`
be an n-dimensional manifold. A smooth map f : N → M is called an
immersion if its differential df(q) : TqN → Tf(q)M is injective for every
q ∈ N . It is called proper if, for every compact subset K ⊂ f(N), the
preimage f−1(K) = {q ∈ N | f(q) ∈ K} is compact. The map f is called an
embedding if it is a proper injective immersion.

Remark 1.39. In our definition of proper maps it is important that the
compact set K is required to be contained in the image of f . The litera-
ture contains sometimes a stronger definition of proper which requires that
f−1(K) is a compact subset of M for every compact subset K ⊂ N , whether
or not K is contained in the image of f . If this holds the image of f is nec-
essarily M -closed. (Exercise!)
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Theorem 1.40 (Submanifolds). Let M ⊂ Rk be an m-dimensional man-
ifold and N ⊂ R` be an n-dimensional manifold.

(i) If f : N →M is an embedding then f(N) is a submanifold of M .

(ii) If P ⊂M is a submanifold then the inclusion P →M is an embedding.

(iii) A subset P ⊂ M is a submanifold of dimension n if and only if for
every p0 ∈ P there is a coordinate chart φ0 : U0 → Rm defined on an M -open
neighborhood U0 ⊂M of p0 such that

φ0(U0 ∩ P ) = φ0(U0) ∩ (Rn × {0}).

(See Figure 1.4.)

M

0
0

P

0φ
φp

(U )0U0

Figure 1.4: A coordinate chart adapted to a submanifold.

Lemma 1.41 (Embeddings). Let M and N be as in Theorem 1.40 and
let f : N → M be an embedding. Denote P := f(N) and let q0 ∈ N and
p0 := f(q0) ∈ P . Then there is an M -open neighborhood U ⊂ M of p0, an
N -open neighborhood V ⊂ N of q0, an open neighborhood W ⊂ Rm−n of the
origin, and a diffeomorphism F : V ×W → U such that, for all q ∈ V and
z ∈W , we have

F (q, 0) = f(q) (1.4)

and
F (q, z) ∈ P ⇐⇒ z = 0. (1.5)

Proof. Choose a coordinate chart φ0 : U0 → Rm on an M -open neighbor-
hood U0 ⊂M of p0. Then the differential

d(φ0 ◦ f)(q0) = dφ0(f(q0)) ◦ df(q0) : Tq0N → Rm

is injective. Hence there is a linear map B : Rm−n → Rm such that the map

Tq0N × Rm−n → Rm : (w, ζ) 7→ d(φ0 ◦ f)(q0)w +Bζ (1.6)

is a vector space isomorphism. Define the set

Ω :=
{

(q, z) ∈ N × Rm−n | f(q) ∈ U0, φ0(f(q)) +Bz ∈ φ0(U0)
}
.
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This is an open subset of N × Rm−n and we define F : Ω→M by

F (q, z) := φ−1
0 (φ0(f(q)) +Bz) .

This map is smooth, it satisfies F (q, 0) = f(q) for all q ∈ f−1(U0), and
the derivative dF (q0, 0) : Tq0N × Rm−n → Tp0M is the composition of the
map (1.6) with dφ0(p0)−1 : Rm → Tp0M and hence is a vector space iso-
morphism. Thus the Inverse Function Theorem 1.34 asserts that there is an
N -open neighborhood V0 ⊂ N of q0 and an open neighborhood W0 ⊂ Rm−n
of the origin such that V0 × W0 ⊂ Ω, the set U0 := F (V0 ×W0) ⊂M is
M -open, and the restriction of F to V0 ×W0 is a diffeomorphism onto U0.
Thus we have constructed a diffeomorphism F : V0 ×W0 → U0 that satis-
fies (1.4). We claim that its restriction to the product V ×W of sufficiently
small open neighborhoods V ⊂ N of q0 and W ⊂ Rm−n of the origin also
satisfies (1.5). Otherwise there are sequences qi ∈ V0 converging to q0 and
zi ∈ W0 \ {0} converging to zero such that F (qi, zi) ∈ P . Hence there is a
sequence q′i ∈ N such that

F (qi, zi) = f(q′i).

This sequence converges to f(q0). Since f is proper we may assume, passing
to a suitable subsequence, that q′i converges to a point q′0 ∈ N . Since f is
continuous we have

f(q′0) = lim
i→∞

f(q′i) = lim
i→∞

F (qi, zi) = f(q0).

Since f is injective we have q′0 = q0. Hence (q′i, 0) ∈ V0 ×W0 for i suffi-
ciently large and F (q′i, 0) = F (qi, zi). This contradicts the fact that the map
F : V0 ×W0 →M is injective. Thus we have proved the lemma.

Proof of Theorem 1.40. We prove (i). Let q0 ∈ N , denote p0 := f(q0) ∈ P ,
and choose a diffeomorphism F : V ×W → U as in Lemma 1.41. Then the
set U ∩P is P -open, the set V ⊂ N is diffeomorphic to an open subset of Rn
(after schrinking V if necessry), and the map V → U ∩ P : q 7→ F (q, 0) is a
diffeomorphism. Hence a P -open neighborhood of p0 is diffeomorphic to an
open subset of Rn. Since p0 ∈ P was chosen arbitrarily, this shows that P
is an n-dimensional submanifold of M .

We prove (ii). The inclusion ι : P →M is obviously smooth and injective
(it extends to the identity map on Rk). Moreover, TpP ⊂ TpM for every
p ∈ P and the differential dι(p) : TpP → TpM is the obvious inclusion
for every p ∈ P . That ι is proper follows immediately from the definition.
Hence ι is an embedding.
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We prove (iii). If a coordinate chart φ0 as in (iii) exists then the set
U0 ∩ P is P -open and is diffeomorphic to an open subset of Rn. Since the
point p0 ∈ P was chosen arbitrarily this proves that P is an n-dimensional
submanifold of M . Conversely, suppose that P is an n-dimensional subman-
ifold of M and let p0 ∈ P . Choose any coordinate chart φ0 : U0 → Rm of M
defined on an M -open neighborhood U0 ⊂M of p0. Then φ0(U0 ∩ P ) is an
n-dimensional submanifold of Rm. Hence it follows from Theorem 1.10 that
there are open sets V,W ⊂ Rm and a diffeomorphism ψ : V →W such that

φ0(p0) ∈ V, ψ(V ∩ φ0(U0 ∩ P )) = W ∩ (Rn × {0}).

Shrinking U0 if necessary, we may assume that φ0(U0) ⊂ V . Then the
coordinate chart ψ ◦ φ0 : U0 → Rm has the required properties.

Example 1.42. Let S1 ⊂ R2 ∼= C be the unit circle and consider the map
f : S1 → R2 given by

f(x, y) := (x, xy).

This map is a proper immersion but is not injective (the points (0, 1) and
(0,−1) have the same image under f). The image f(S1) is a figure 8 in R2

and is not a submanifold: see Figure 1.5.

Figure 1.5: A proper immersion.

Example 1.43. Consider the restriction of the map f in Example 1.42 to
the submanifold N := S1 \ {(0,−1)}. The resulting map f : N → R2 is an
injective immersion but it is not proper. It has the same image as before
and hence f(N) is not a manifold.

Example 1.44. The map f : R→ R2 given by

f(t) := (t2, t3)

is proper and injective, but is not an embedding (its differential at x = t is
not injective). The image of f is the set

f(R) = C :=
{

(x, y) ∈ R2 |x3 = y2
}

and is not a submanifold: see Figure 1.6. (Prove this!)
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Figure 1.6: A proper injection.

Example 1.45. Define the map f : R → R2 by f(t) := (cos(t), sin(t)).
This map is an immersion but is neither injective nor proper. However,
its image is the unit circle and hence is a submanifold of R2. The map
R→ R2 : t 7→ f(t3) is not an immersion and is neither injective nor proper,
but its image is still the unit circle.

1.4 Vector fields and flows

1.4.1 Vector fields

Definition 1.46 (Vector fields). Let M ⊂ Rk be a smooth m-manifold.
A (smooth) vector field on M is a smooth map X : M → Rk such that
X(p) ∈ TpM for every p ∈M . The set of smooth vector fields on M will be
denoted by

Vect(M) :=
{
X : M → Rk |X is smooth, X(p) ∈ TpM ∀ p ∈M

}
.

Exercise 1.47. Prove that the set of smooth vector fields on M is a real
vector space.

Example 1.48. Denote the standard cross product on R3 by

x× y :=

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1


For x, y ∈ R3. Fix a vector ξ ∈ S2 and define the maps X,Y : S2 → R3 by

X(p) := ξ × p, Y (p) := (ξ × p)× p.
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These are vector fields with zeros ±ξ. Their integral curves (see Defini-
tion 1.51 below) are illustrated in Figure 1.7.

Figure 1.7: Two vector fields on the 2-sphere.

Example 1.49. Let M := R2. A vector field on M is then any smooth map
X : R2 → R2. As an example consider the vector field

X(x, y) := (x,−y).

This vector field has a single zero at the origin and its integral curves are
illustrated in Figure 1.8.

Figure 1.8: A hyperbolic fixed point.

Example 1.50. Every smooth function f : Rm → R determines a gradient
vector field

X = ∇f :=


∂f
∂x1
∂f
∂x2
...
∂f
∂xm

 : Rm → Rm.

Definition 1.51 (Integral curves). Let M ⊂ Rk be a smooth m-manifold,
X ∈ Vect(M) be a smooth vector field on M , and I ⊂ R be an open interval.
A smooth map γ : I → M is called an integral curve of X if it satisfies
the equation γ̇(t) = X(γ(t)) for every t ∈ I.
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Theorem 1.52. Let M ⊂ Rk be a smooth m-manifold and X ∈ Vect(M) be
a smooth vector field on M . Fix a point p0 ∈M . Then the following holds.

(i) There is an open interval I ⊂ R containing 0 and a smooth curve
γ : I →M satisfying the equation

γ̇(t) = X(γ(t)), γ(0) = p0 (1.7)

for every t ∈ I.

(ii) If γ1 : I1 → M and γ2 : I2 → M are two solutions of (1.7) on open
intervals I1 and I2 containing 0, then γ1(t) = γ2(t) for every t ∈ I1 ∩ I2.

Proof. We prove (i). Let φ0 : U0 → Rm be a coordinate chart on M , defined
on an M -open neighborhood U0 ⊂M of p0. The image of φ0 is an open set

Ω := φ0(U0) ⊂M

and we denote the inverse map by ψ0 := φ−1
0 : Ω → M . Then, by Theo-

rem 1.23, the differential dψ0(x) : Rm → Rk is injective and its image is the
tangent space Tψ0(x)M for every x ∈ Ω. Define f : Ω→ Rm by

f(x) := dψ0(x)−1X(ψ0(x)), x ∈ Ω.

This map is smooth and hence, by the basic existence and uniqueness the-
orem for ordinary differential equations in Rm (see [11]), the equation

ẋ(t) = f(x(t)), x(0) = x0 := φ0(p0), (1.8)

has a solution x : I → Ω on some open interval I ⊂ R containing 0. Hence
the function γ := ψ0 ◦ x : I → U0 ⊂ M is a smooth solution of (1.7). This
proves (i).

The local unqueness theorem asserts that two solutions γi : Ii → M
of (1.7) for i = 1, 2 agree on the interval (−ε, ε) ⊂ I1∩I2 for ε > 0 sufficiently
small. This follows immediately from the standard uniqueness theorem for
the solutions of (1.8) in [11] and the fact that x : I → Ω is a solution of (1.8)
if and only if γ := ψ0 ◦ x : I → U0 is a solution of (1.7).

To prove (ii) we observe that the set I := I1 ∩ I2 is an open interval
containing zero and hence is connected. Now consider the set

A := {t ∈ I | γ1(t) = γ2(t)} .

This set is nonempty, because 0 ∈ A. It is closed, relative to I, because the
maps γ1 : I → M and γ2 : I → M are contionuous. Namely, if ti ∈ I is a
sequence converging to t ∈ I then γ1(ti) = γ2(ti) for every i and, taking the
limit i → ∞, we obtain γ1(t) = γ2(t) and hence t ∈ A. The set A is also
open by the local uniqueness theorem. Since I is connected it follows that
A = I. This proves (ii) and the theorem.
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1.4.2 The flow of a vector field

Definition 1.53 (The flow of a vector field). Let M ⊂ Rk be a smooth
m-manifold and X ∈ Vect(M) be a smooth vector field on M . For p0 ∈ M
the maximal existence interval of p0 is the open interval

I(p0) :=
⋃{

I

∣∣∣∣ I ⊂ R is an open interval containing 0
and there is a solution x : I →M of (1.7)

}
.

By Theorem 1.52 equation (1.7) has a solution γ : I(p0) → M . The flow
of X is the map

φ : D →M

defined by
D := {(t, p0) | p0 ∈M, t ∈ I(p0)}

and

φ(t, p0) := γ(t), where γ : I(p0)→M is the unique solution of (1.7).

Theorem 1.54. Let M ⊂ Rk be a smooth m-manifold and X ∈ Vect(M)
be a smooth vector field on M . Let φ : D → M be the flow of X. Then the
following holds.

(i) D is an open subset of R×M .

(ii) The map φ : D →M is smooth.

(iii) Let p0 ∈M and s ∈ I(p0). Then

I(φ(s, p0)) = I(p0)− s (1.9)

and, for every t ∈ R with s+ t ∈ I(p0), we have

φ(s+ t, p0) = φ(t, φ(s, p0)). (1.10)

Lemma 1.55. Let M , X, and φ : D → M be as in Theorem 1.54. Let
K ⊂ M be a compact set. Then there is an M -open set U ⊂ M and an
ε > 0 such that K ⊂ U , (−ε, ε)× U ⊂ D, and φ is smooth on (−ε, ε)× U .

Proof. In the case where M = Ω is an open subset of Rm this was proved
in [12]. Using local coordinates we deduce (as in the proof of Theorem 1.52)
that, for every p ∈M , there is an M -open neighborhood Up ⊂M of p and an
εp > 0 such that (−εp, εp)×Up ⊂ D and the restriction of φ to (−εp, εp)×Up
is smooth. Using this observation for every point p ∈ K (and the axiom of
choice) we obtain an M -open cover K ⊂

⋃
p∈K Up. Since K is compact there

is a finite subcover K ⊂ Up1 ∪ · · · ∪ UpN =: U. With ε := min{εp1 , . . . , εpN }
we obtain that φ is smooth on (−ε, ε)× U . This proves the lemma.
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Proof of Theorem 1.54. We prove (iii). The map γ : I(p0)− s→M defined
by γ(t) := φ(s+t, p0) is a solution of the initial value problem γ̇(t) = X(γ(t))
with γ(0) = φ(s, p0). Hence I(p0) − s ⊂ I(φ(s, p0)) and (1.10) holds for
every t ∈ R with s + t ∈ I(p0). In particular, with t = −s, we have
p0 = φ(−s, φ(s, p0)). Thus we obtain equality in (1.9) by the same argument
with the pair (s.p0) replaced by (−s, φ(s, p0)).

We prove (i) and (ii). Fix a pair (t0, p0) ∈ D so that p0 ∈ M and
t0 ∈ I(p0). Suppose t0 ≥ 0. Then the set

K := {φ(t, p0) | 0 ≤ t ≤ t0}

is a compact subset of M . (It is the image of the compact interval [0, t0]
under the unique solution γ : I(p0)→M of (1.7).) Hence, by Lemma 1.55,
there is an M -open set U ⊂M and an ε > 0 such that

K ⊂ U, (−ε, ε)× U ⊂ D,

and φ is smooth on (−ε, ε) × U . Choose N so large that t0/N < ε. Define
U0 := U and, for k = 1, . . . , N , define the sets Uk ⊂M inductively by

Uk := {p ∈ U |φ(t0/N, p) ∈ Uk−1} .

These sets are open in the relative topology of M .
We prove by induction on k that (−ε, kt0/N + ε) × Uk ⊂ D and φ is

smooth on (−ε, kt0/N + ε) × Uk. For k = 0 this holds by definition of ε
and U . If k ∈ {1, . . . , N} and the assertion holds for k − 1 then we have

p ∈ Uk =⇒ p ∈ U, φ(t0/N, p) ∈ Uk−1

=⇒ (−ε, ε) ⊂ I(p), (−ε, (k − 1)t0/N + ε) ⊂ I(φ(t0/N, p))

=⇒ (−ε, kt0/N + ε) ⊂ I(p).

Here the last implication follows from (1.9). Moreover, for p ∈ Uk and
t0/N − ε < t < kt0/N + ε, we have, by (1.10), that

φ(t, p) = φ(t− t0/N, φ(t0/N, p))

Since φ(t0/N, p) ∈ Uk−1 for p ∈ Uk the right hand side is a smooth map on
the open set (t0/N − ε, kt0/N + ε)× Uk. Since Uk ⊂ U , φ is also a smooth
map on (−ε, ε) × Uk and hence on (−ε, kt0/N + ε) × Uk. This completes
the induction. With k = N we have found an open neighborhood of (t0, p0)
contained in D, namely the set (−ε, t0 +ε)×UN , on which φ is smooth. The
case t0 ≤ 0 is treated similarly. This proves (i) and (ii) and the theorem.
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Definition 1.56. A vector field X ∈ Vect(M) is called complete if, for
each p0 ∈M , there is an integral curve γ : R→M of X with γ(0) = p0.

Lemma 1.57. If M ⊂ Rk is a compact manifold then every vector field on
M is complete.

Proof. Let X be a smooth vector field on M . It follows from Lemma 1.55
with K = M that there is a constant ε > 0 such that (−ε, ε) ⊂ I(p) for
every p ∈M . By Theorem 1.54 (iii) this implies I(p) = R for every p ∈M .
Hence X is complete.

Let M ⊂ Rk be a smooth manifold and X ∈ Vect(M) be a smooth vector
field on M . Then

X is complete ⇐⇒ I(p) = R ∀ p ∈M ⇐⇒ D = R×M.

If X is complete and φ : R×M →M is the flow of X we define φt : M →M
by

φt(p) := φ(t, p)

for t ∈ R and p ∈M . Then Theorem 1.54 says, in particular, that the map
φt : M →M is smooth for every t ∈ R and that

φs+t = φs ◦ φt, φ0 = id (1.11)

for all s, t ∈ R. In particular this implies that φt ◦ φ−t = φ−t ◦ φt = id.
Hence φt is bijective and (φt)−1 = φ−t, so each φt is a diffeomorphism.

Exercise 1.58. Let M ⊂ Rk be a smooth manifold. A vector field X on M
is said to have compact support if there is a compact subset K ⊂M such
that X(p) = 0 for every p ∈ M \ K. Prove that every vector field with
compact support is complete.

1.4.3 The group of diffeomorphisms

Let us denote the space of diffeomorphisms of M by

Diff(M) := {φ : M →M |φ is a diffeomorphism} .

This is a group. The group operation is composition and the neutral element
is the identity. Now equation (1.11) asserts that the flow of a complete vector
field X ∈ Vect(M) is a group homomorphism

R→ Diff(M) : t 7→ φt.
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This homomorphism is smooth and is characterized by the equation

d

dt
φt(p) = X(φt(p)), φ0(p) = p

for all p ∈M and t ∈ R. We will often abbreviate this equation in the form

d

dt
φt = X ◦ φt, φ0 = id. (1.12)

Exercise 1.59 (Isotopy). Let M ⊂ Rk be a compact manifold and I ⊂ R
be an open interval containing 0. Let

I ×M → Rk : (t, p) 7→ Xt(p)

be a smooth map such that Xt ∈ Vect(M) for every t. Prove that there is
a smooth family of diffeomorphisms I ×M →M : (t, p) 7→ φt(p) satisfying

d

dt
φt = Xt ◦ φt, φ0 = id (1.13)

for every t ∈ I. Such a family of diffeomorphisms I → Diff(M) : t 7→ φt
is called an isotopy of M . Conversely prove that every smooth isotopy
I → Diff(M) : t 7→ φt is generated (uniquely) by a smooth family of vector
fields I → Vect(M) : t 7→ Xt.

1.5 The Lie bracket

Let M ⊂ Rk and N ⊂ R` be smooth m-manifolds and X ∈ Vect(M) be
smooth vector field on M . If ψ : N →M is a diffeomorphism, the pullback
of X under ψ is the vector field on N defined by

(ψ∗X)(q) := dψ(q)−1X(ψ(q)) (1.14)

for q ∈ N . If φ : M → N is a diffeomorphism then the pushforward of X
under ψ is the vector field on N defined by

(φ∗X)(q) := dφ(φ−1(q))X(φ−1(q)) (1.15)

for q ∈ N .

Exercise 1.60. Prove that φ∗X = (φ−1)∗X. Prove that for two diffeomor-
phism φ : M → N and ψ : N → P and two vector fields X ∈ Vect(M) and
Z ∈ Vect(P ) we have (ψ ◦ φ)∗X = ψ∗φ∗X and (ψ ◦ φ)∗Z = φ∗ψ∗Z.
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We think of a vector field on M as a smooth map X : M → Rk that
satisfies the condition X(p) ∈ TpM for every p ∈ M . Ignoring this condi-
tion temporarily, we can differentiate X as a map from M to Rk and its
differential at p is then a linear map dX(p) : TpM → Rk. In general, this
differential will no longer take values in the tangent space TpM . However,
if we have two vector fields X and Y on M the next lemma shows that the
difference of the derivative of X in the direction Y and of Y in the direction
X does take values in the tangent spaces of M .

Lemma 1.61. Let M ⊂ Rk be a smooth m-manifold and X,Y ∈ Vect(M)
be complete vector fields. Denote by

R→ Diff(M) : t 7→ φt, R→ Diff(M) : t 7→ ψt

the flows of X and Y , respectively. Fix a point p ∈ M and consider the
smooth map γ : R→M defined by

γ(t) := φt ◦ ψt ◦ φ−t ◦ ψ−t(p).

Then γ̇(0) = 0 and

1

2
γ̈(0) =

d

ds

∣∣∣∣
s=0

((φs)∗ Y ) (p)

=
d

dt

∣∣∣∣
t=0

((
ψt
)∗
X
)

(p)

= dX(p)Y (p)− dY (p)X(p) ∈ TpM.

Exercise 1.62. Let γ : R→ Rk be a C2-curve and assume

γ̇(0) = 0.

Prove that the curve [0,∞)→ Rk : t 7→ γ(
√
t) is differentiable at t = 0 and

d

dt

∣∣∣∣
t=0

γ(
√
t) =

1

2
γ̈(0).

Proof of Lemma 1.61. Define the map β : R2 →M by

β(s, t) := φs ◦ ψt ◦ φ−s ◦ ψ−t(p)

for s, t ∈ R. Then

γ(t) = β(t, t)
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and

∂β

∂s
(0, t) = X(p)− dψt(ψ−t(p))X(ψ−t(p)), (1.16)

∂β

∂t
(s, 0) = dφs(φ−s(p))Y (φ−s(p))− Y (p). (1.17)

Hence

γ̇(0) =
∂β

∂s
(0, 0) +

∂β

∂t
(0, 0) = 0.

Moreover,
β(s, 0) = β(0, t) = p

for all s and t. This implies

∂2β

∂s2
(0, 0) =

∂2β

∂t2
(0, 0) = 0

and hence

γ̈(0) = 2
∂2β

∂s∂t
(0, 0). (1.18)

Combining (1.17) and (1.18) we find

1

2
γ̈(0) =

d

ds

∣∣∣∣
s=0

∂β

∂t
(s, 0)

=
d

ds

∣∣∣∣
s=0

dφs(φ−s(p))Y (φ−s(p))

=
d

ds

∣∣∣∣
s=0

((φs)∗ Y ) (p)).

Note that the right hand side is the derivative of a smooth curve in the tan-
gent space TpM and hence is itself an element of TpM . Likewise, combining
equations (1.16) and (1.18) we find

1

2
γ̈(0) =

d

dt

∣∣∣∣
t=0

∂β

∂s
(0, t)

= − d

dt

∣∣∣∣
t=0

dψt(ψ−t(p))X(ψ−t(p))

=
d

dt

∣∣∣∣
t=0

dψ−t(ψt(p))X(ψt(p))

=
d

dt

∣∣∣∣
t=0

dψt(p)−1X(ψt(p))

=
d

dt

∣∣∣∣
t=0

((
ψt
)∗
X
)

(p)).
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Moreover, we have

1

2
γ̈(0) =

∂

∂s

∣∣∣∣
s=0

dφs(φ−s(p))Y (φ−s(p))

=
∂

∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

φs ◦ ψt ◦ φ−s(p)

=
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

φs ◦ ψt ◦ φ−s(p)

=
∂

∂t

∣∣∣∣
t=0

(
X(ψt(p))− dψt(p)X(p)

)
= dX(p)Y (p)− ∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

ψt ◦ φs(p)

= dX(p)Y (p)− ∂

∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

ψt ◦ φs(p)

= dX(p)Y (p)− ∂

∂s

∣∣∣∣
s=0

Y (φs(p))

= dX(p)Y (p)− dY (p)X(p).

This proves the lemma.

Definition 1.63. Let M ⊂ Rk be a smooth manifold and X,Y ∈ Vect(M)
be smooth vector fields on M . The Lie bracket of X and Y is the vector
field [X,Y ] ∈ Vect(M) defined by

[X,Y ](p) := dX(p)Y (p)− dY (p)X(p). (1.19)

Warning: In the literature on differential geometry the Lie bracket of two
vector fields is often (but not always) defined with the opposite sign. The
rationale behind the present choice of the sign will be explained below.

Lemma 1.64. Let M ⊂ Rk and N ⊂ R` be a smooth manifolds. Let X,Y, Z
be smooth vector fields on M and let ψ : N →M be a diffeomorphism. Then

ψ∗[X,Y ] = [ψ∗X,ψ∗Y ], (1.20)

[X,Y ] + [Y,X] = 0, (1.21)

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (1.22)

The last equation is called the Jacobi identity
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Proof. Denote by φs the flow of X. Then the map s 7→ ψ−1 ◦ φs ◦ ψ is the
flow of the vector field ψ∗X. Hence it follows from Lemma 1.61 that

[ψ∗X,ψ∗Y ] =
d

ds

∣∣∣∣
s=0

(
ψ−1 ◦ φs ◦ ψ

)
∗ ψ
∗Y

=
d

ds

∣∣∣∣
s=0

ψ∗ (φs)∗ Y

= ψ∗
d

ds

∣∣∣∣
s=0

(φs)∗ Y

= ψ∗[X,Y ].

This proves equation (1.20). Equation (1.21) is obvious and the proof
of (1.22) is left to the reader. (Hint: Prove this in local coordinates.)

Definition 1.65. A Lie algebra is a real vector space g equipped with a
skew symmetric bilinear map g × g → g : (ξ, η) 7→ [ξ, η] that satisfies the
Jacobi identity.

Example 1.66. The Vector fields on a smooth manifold M ⊂ Rk form a Lie
algebra with the Lie bracket defined by (1.19). The space gl(n,R) = Rn×n
of real n× n-matrices is a Lie algebra with the Lie bracket

[ξ, η] := ξη − ηξ.

It is also interesting to consider subspaces of gl(n,R) that are invariant under
this Lie bracket. An example is the space

o(n) :=
{
ξ ∈ gl(n,R) | ξT + ξ = 0

}
of skew-symmetric n × n-matrices. It is a nontrivial fact that every finite
dimensional Lie algebra is isomorphic to a Lie subalgebra of gl(n,R) for
some n. For example, the cross product defines a Lie algebra structure
on R3 and the resulting Lie algebra is isomorphic to o(3).

Remark 1.67. There is a linear map

Rm×m → Vect(Rm) : ξ 7→ Xξ

which assigns to a matrix ξ ∈ gl(m,R) the linear vector field Xξ : Rm → Rm
given by Xξ(x) := ξx for x ∈ Rm. This map preserves the Lie bracket, i.e.
[Xξ, Xη] = X[ξ,η], and hence is a Lie algebra homomorphism.
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To understand the geometric interpretation of the Lie bracket consider
again the curve

γ(t) := φt ◦ ψt ◦ φ−t ◦ ψ−t(p)

in Lemma 1.61, where φt and ψt are the flows of the vector fields X and Y ,
respectively. Since γ̇(0) = 0 we have

[X,Y ](p) =
1

2
γ̈(0) =

d

dt

∣∣∣∣
t=0

φ
√
t ◦ ψ

√
t ◦ φ−

√
t ◦ ψ−

√
t(p). (1.23)

(See Exercise 1.62.) Geometrically this means following first the backward
flow of Y for time ε, then the backward flow of X for time ε, then the
forward flow of Y for time ε, and finally the forward flow of X for time ε,
we will not, in general, get back to the original point p where we started but
approximately obtain an “error” ε2[X,Y ](p). An example of this (which we
learned from Donaldson) is the mathematical formulation of parking a car.

Example 1.68 (Parking a car). The configuration space for driving a car
in the plane is the manifold M := C × S1, where S1 ⊂ C denotes the unit
circle. Thus a point in M is a pair p = (z, λ) ∈ C× C with |λ| = 1. The
point z ∈ C represents the position of of the car and the unit vector λ ∈ S1

represents the direction in which it is pointing. The left turn is represented
by a vector field X and the right turn by a vector field Y on M . These
vector field are given by

X(z, λ) := (λ, iλ) , Y (z, λ) := (λ,−iλ) .

Their Lie bracket is the vector field

[X,Y ](z, λ) = (−2iλ, 0).

This vector field represents a sideways move of the car to the right. And a
sideways move by 2ε2 can be achieved by following a backward right turn
for time ε, then a backward left turn for time ε, then a forward right turn
for time ε, and finally a forward left turn for time ε.

This example can be reformulated by identifying C with R2 via z = x+iy
and representing a point in the unit circle by the angle θ ∈ R/2πZ via
λ = eiθ. In this formulation the manifold is M = R2×R/2πZ, a point in M
is represented by a triple (x, y, θ) ∈ R3, the vector fields X and Y are

X(x, y, θ) := (cos(θ), sin(θ), 1) , Y (x, y, θ) := (cos(θ), sin(θ),−1) ,

and their Lie bracket is [X,Y ](x, y, θ) = 2(sin(θ),− cos(θ), 0).
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Lemma 1.69. Let X,Y ∈ Vect(M) be complete vector fields on a manifold
M and φt, ψt ∈ Diff(M) be the flows of X and Y , respectively. Then the Lie
bracket [X,Y ] vanishes if and only if the flows of X and Y commute, i.e.

φs ◦ ψt = ψt ◦ φs ∀ s, t ∈ R.

Proof. If the flows of X and Y commute then the Lie bracket [X,Y ] vanishes
by Lemma 1.61. Conversely, suppose that [X,Y ] = 0. Then we have

d

ds
(φs)∗ Y = (φs)∗

d

dr
(φr)∗ Y = (φs)∗ [X,Y ] = 0

for every s ∈ R and hence
(φs)∗Y = Y. (1.24)

Now fix a real number s and consider the curve γ : R→M given by

γ(t) := φs
(
ψt(p)

)
.

This curve satisfies γ(0) = φs(p) and the differential equation

γ̇(t) = dφs(ψt(p))Y (ψt(p)) = ((φs)∗ Y ) (γ(t)) = Y (γ(t)).

Here the last equation follows from (1.24). Since ψt is the flow of Y we
obtain γ(t) = ψt(φs(p)) for every t ∈ R and this proves the lemma.

1.6 Lie groups

Combining the concept of a group and a manifold, it is interesting to consider
groups which are also manifolds and have the property that the group op-
eration and the inverse define smooth maps. We shall only consider groups
of matrices.

1.6.1 Definition and examples

Definition 1.70 (Lie groups). A nonempty subset G ⊂ Rn×n is called a
Lie group if it is a submanifold of Rn×n and a subgroup of GL(n,R), i.e.

g, h ∈ G =⇒ gh ∈ G

(where gh denotes the product of the matrices g and h) and

g ∈ G =⇒ det(g) 6= 0 and g−1 ∈ G.

(Since G 6= ∅ it follows from these conditions that the identity matrix 1l is
an element of G.)
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Example 1.71. The general linear group G = GL(n,R) is an open subset
of Rn×n and hence is a Lie group. By Exercise 1.18 the special linear group

SL(n,R) = {g ∈ GL(n,R) | det(g) = 1}

is a Lie group and, by Example 1.19, the special orthogonal group

SO(n) :=
{
g ∈ GL(n,R) | gT g = 1l, det(g) = 1

}
are Lie groups. In fact every orthogonal matrix has determinant ±1 and so
SO(n) is an open subset of O(n) (in the relative topology).

In a similar vein the group

GL(n,C) :=
{
g ∈ Cn×n | det(g) 6= 0

}
of complex matrices with nonzero (complex) determinant is an open subset
of Cn×n and hence is a Lie group. As in the real case one can prove that
the subgroups

SL(n,C) := {g ∈ GL(n,C) | det(g) = 1} ,

U(n) := {g ∈ GL(n,C) | g∗g = 1l} ,

SU(n) := {g ∈ GL(n,C) | g∗g = 1l, det(g) = 1}

are submanifolds of GL(n,C) and hence are Lie groups. Here g∗ := ḡT

denotes the conjugate transpose of a complex matrix.

Exercise 1.72. Prove that SO(n) is connected and deduce that O(n) has
two connected components.

Exercise 1.73. Prove that the group GL(n,C) can be identified with the
group

G := {Φ ∈ GL(2n,R) |ΦJ0 = J0Φ} , J0 :=

(
0 −1l
1l 0

)
.

Hint: Use the isomophism Rn × Rn → Cn : (x, y) 7→ x + iy. Show that a
matrix Φ ∈ R2n×2n commutes with J0 if and only if it has the form

Φ =

(
X −Y
Y X

)
, X, Y ∈ Rn×n.

What is the relation between the real determinant of Φ and the complex
determinant of X + iY ?

Exercise 1.74. Prove that SL(n,C), U(n), and SU(n) are Lie groups.
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Let G ⊂ GL(n,R) be a Lie group. Then the maps

G×G→ G : (g, h) 7→ gh

and

G→ G : g 7→ g−1

are smooth. This was proved in Analysis II [12]. Fixing an element h ∈ G
we find that the derivative of the map G→ G : g 7→ gh at g ∈ G is given by
the linear map

TgG→ TghG : v 7→ vh. (1.25)

Here v and h are both matrices in Rn×n and vh denotes the matrix product.
In fact, if v ∈ TgG then, since G is a manifold, there is a smooth curve
γ : R → G with γ(0) = g and γ̇(0) = v. Since G is a group we obtain a
smooth curve β : R → G given by β(t) := γ(t)h. It satisfies β(0) = gh and
so vh = β̇(0) ∈ TghG.

The linear map (1.25) is obviously a vector space isomorphism with
inverse TghG → TgG : w 7→ wh−1. It is sometimes convenient to define the
map Rh : G → G by Rh(g) := gh (right multiplication by h). This is a
diffeomorphism and the linear map (1.25) is just the derivative of Rh at g
so that

dRh(g)v = vh

for every v ∈ TgG. Similarly, for every g ∈ G we have a diffeomorphism
Lg : G → G given by Lg(h) := gh for h ∈ G and its derivative at a point
h ∈ G is again given by matrix multiplication:

ThG→ TghG : w 7→ gw = dLg(h)w. (1.26)

Since Lg is a diffeomorphism its differential dLg(h) : ThG → TghG is again
a vector space isomorphism for every h ∈ G.

Exercise 1.75. Prove that the map G→ G : g 7→ g−1 is a diffeomorphism
and that its derivative at g ∈ G is the vector space isomorphism

TgG→ Tg−1G : v 7→ −g−1vg−1.

Hint: Use [12] or any textbook on first year analysis.
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1.6.2 The Lie algebra of a Lie group

Let G ⊂ GL(n,R) be a Lie group. Its tangent space at the identity is called
the Lie algebra of G and will be denoted by

g = Lie(G) := T1lG.

This terminology is justified by the fact that g is in fact a Lie algebra, i.e. it
is invariant under the standard Lie bracket operation [ξ, η] := ξη−ηξ on the
space Rn×n of square matrices (see Lemma 1.76 below). The proof requires
the notion of the exponential matrix. For ξ ∈ Rn×n and t ∈ R we define

exp(tξ) :=
∞∑
k=0

tkξk

k!
. (1.27)

It was proved in Analysis II (see [12]) that this series converges absolutely
(and uniformly on compact t-intervals), that the map t 7→ exp(tξ) is smooth
and satisfies the differential equation

d

dt
exp(tξ) = ξ exp(tξ) = exp(tξ)ξ, (1.28)

and that

exp((s+ t)ξ) = exp(sξ) exp(tξ), exp(0ξ) = 1l (1.29)

for all s, t ∈ R.

Lemma 1.76. Let G ⊂ GL(n,R) be a Lie group and denote by g := Lie(G)
its Lie algebra. Then the following holds.

(i) If ξ ∈ g then exp(tξ) ∈ G for every t ∈ R.

(ii) If g ∈ G and η ∈ g then gηg−1 ∈ g.

(iii) If ξ, η ∈ g then [ξ, η] = ξη − ηξ ∈ g.

Proof. We prove (i). For every g ∈ G we have a vector space isomorphism
g = T1lG→ TgG : ξ 7→ ξg as in (1.25). Hence every element ξ ∈ g determines
a vector field Xξ ∈ Vect(G) defined by

Xξ(g) := ξg ∈ TgG, g ∈ G. (1.30)

By Theorem 1.52 there is an integral curve γ : (−ε, ε)→ G satisfying

γ̇(t) = Xξ(γ(t)) = ξγ(t), γ(0) = 1l.
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By (1.28), the curve (−ε, ε)→ Rn×n : t 7→ exp(tξ) satisfies the same initial
value problem and hence, by uniqueness, we have exp(tξ) = γ(t) ∈ G for
|t| < ε. Now let t ∈ R and choose N ∈ N such that

∣∣ t
N

∣∣ < ε. Then
exp( t

N ξ) ∈ G and hence it follows from (1.29) that

exp(tξ) = exp

(
t

N
ξ

)N
∈ G.

This proves (i).

We prove (ii). Consider the smooth curve γ : R→ Rn×n defined by

γ(t) := g exp(tη)g−1.

By (i) we have γ(t) ∈ G for every t ∈ R. Since γ(0) = 1l we have

gηg−1 = γ̇(0) ∈ g.

This proves (ii).

We prove (iii). Define the smooth map η : R→ Rn×n by

η(t) := exp(tξ)η exp(−tξ).

By (i) we have exp(tξ) ∈ G and, by (ii), we have η(t) ∈ g for every t ∈ R.
Hence [ξ, η] = η̇(0) ∈ g. This proves (iii) and the lemma.

By Lemma 1.76 the curve γ : R → G defined by γ(t) := exp(tξ)g is the
integral curve of the vector field Xξ in (1.30) with initial condition γ(0) = g.
Thus Xξ is complete for every ξ ∈ g.

Lemma 1.77. If ξ ∈ g and γ : R→ G is a smooth curve satisfying

γ(s+ t) = γ(s)γ(t), γ(0) = 1l, γ̇(0) = ξ, (1.31)

then γ(t) = exp(tξ) for every t ∈ R.

Proof. For every t ∈ R we have

γ̇(t) =
d

ds

∣∣∣∣
s=0

γ(s+ t) =
d

ds

∣∣∣∣
s=0

γ(s)γ(t) = γ̇(0)γ(t) = ξγ(t).

Hence γ is the integral curve of the vector field Xξ in (1.30) with γ(0) = 1l.
This implies γ(t) = exp(tξ) for every t ∈ R, as claimed.
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Example 1.78. Since the general linear group GL(n,R) is an open subset
of Rn×n its Lie algebra is the space of all real n× n-matrices

gl(n,R) := Lie(GL(n,R)) = Rn×n.

The Lie algebra of the special linear group is

sl(n,R) := Lie(SL(n,R)) = {ξ ∈ gl(n,R) | trace(ξ) = 0}

(see Exercise 1.28) and the Lie algebra of the special orthogonal group is

so(n) := Lie(SO(n)) =
{
ξ ∈ gl(n,R) | ξT + ξ = 0

}
= o(n)

(see Example 1.29).

Exercise 1.79. Prove that the Lie algebras of the general linear group
over C, the special linear group over C, the unitary group, and the special
unitary group are given by

gl(n,C) := Lie(GL(n,C)) = Cn×n,

sl(n,C) := Lie(SL(n,C)) = {ξ ∈ gl(n,C) | trace(ξ) = 0} ,

u(n) := Lie(U(n)) = {ξ ∈ gl(n,R) | ξ∗ + ξ = 0} ,

su(n) := Lie(SU(n)) = {ξ ∈ gl(n,C) | ξ∗ + ξ = 0, trace(ξ) = 0} .

These are vector spaces over the reals. Determine their real dimensions.
Which of these are also complex vector spaces?

Exercise 1.80. Let G ⊂ GL(n,R) be a subgroup. Prove that G is a Lie
group if and only if it is a closed subset of GL(n,R) in the relative topology.

1.6.3 Lie group homomorphisms

Let G and H be Lie groups and g and h be Lie algebras. A Lie group
homomorphism from G to H is a smooth map ρ : G→ H that is a group
homomorphism. A Lie algebra homomorphism from g to h is a linear
map that preserves the Lie bracket.

Lemma 1.81. Let G and H be Lie groups and denote their Lie algebras by
g := Lie(G) and h := Lie(H). Let ρ : G→ H be a Lie group homomorphism
and denote its derivative at 1l ∈ G by

ρ̇ := dρ(1l) : g→ h.

Then ρ̇ is a Lie algebra homomorphism.
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Proof. The proof has three steps.

Step 1. For all ξ ∈ g and t ∈ R we have ρ(exp(tξ)) = exp(tρ̇(ξ)).

Fix an element ξ ∈ g. Then, by Lemma 1.76, we have exp(tξ) ∈ G for every
t ∈ R. Thus we can define a map γ : R→ H by γ(t) := ρ(exp(tξ)). Since ρ is
smooth, this is a smooth curve in H and, since ρ is a group homomorphism
and the exponential map satisfies (1.29), our curve γ satisfies the conditions

γ(s+ t) = γ(s)γ(t), γ(0) = 1l, γ̇(0) = dρ(1l)ξ = ρ̇(ξ).

Hence it follows from Lemma 1.77 that γ(t) = exp(tρ̇(ξ)). This proves Step 1.

Step 2. For all g ∈ G and η ∈ g we have ρ̇(gηg−1) = ρ(g)ρ̇(η)ρ(g−1).

Define the smooth curve γ : R→ G by γ(t) := g exp(tη)g−1. By Lemma 1.76
this curve takes values in G. By Step 1 we have

ρ(γ(t)) = ρ(g)ρ(exp(tη))ρ(g)−1 = ρ(g) exp(tρ̇(η))ρ(g)−1

for every t. Since γ(0) = 1l and γ̇(0) = gηg−1 we obtain

ρ̇(gηg−1) = dρ(γ(0))γ̇(0)

=
d

dt

∣∣∣∣
t=0

ρ(γ(t))

=
d

dt

∣∣∣∣
t=0

ρ(g) exp(tρ̇(η))ρ(g−1)

= ρ(g)ρ̇(η)ρ(g−1).

This proves Step 2.

Step 3. For all ξ, η ∈ g we have ρ̇([ξ, η]) = [ρ̇(ξ), ρ̇(η)].

Define the curve η : R → g by η(t) := exp(tξ)η exp(−tξ). By Lemma 1.76
this curve takes values in the Lie algebra of G and η̇(0) = [ξ, η]. Hence

ρ̇([ξ, η]) =
d

dt

∣∣∣∣
t=0

ρ̇ (exp(tξ)η exp(−tξ))

=
d

dt

∣∣∣∣
t=0

ρ (exp(tξ)) ρ̇(η)ρ (exp(−tξ))

=
d

dt

∣∣∣∣
t=0

exp (tρ̇(ξ)) ρ̇(η) exp (−tρ̇(ξ))

= [ρ̇(ξ), ρ̇(η)] .

Here the first equation follows from the fact that ρ̇ is linear, the second
equation follows from Step 2 with g = exp(tξ), and the third equation
follows from Step 1. This proves Step 3 and the lemma.
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Example 1.82. The complex determinant defines a Lie group homomor-
phism det : U(n)→ S1. The associated Lie algebra homomorphism is

trace = ˙det : u(n)→ iR = Lie(S1).

Example 1.83 (The unit quaternions). The Lie group SU(2) is diffeo-
morphic to the 3-sphere. Namely, every matrix in SU(2) can be written in
the form

g =

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
, x2

0 + x2
1 + x2

2 + x2
3 = 1. (1.32)

Here the xi are real numbers. They can be interpreted as the coordinates
of a quaternion

x = x0 + ix1 + jx2 + kx3 ∈ H.
There is a product structure on the quaternions defined by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

This product structure is associative but not commutative. Conjugation on
the quaternions reverses the sign of the coordinates x1, x2, x3. Thus

x̄ := x0 − ix1 − jx2 − kx3

and we have
xy = ȳx̄, xx̄ = |x|2 , |xy| = |x| |y|

for x, y ∈ H, where |x| denotes the Euclidean norm of a vector x ∈ H ∼= R4.
Thus the unit quaternions form a group

Sp(1) := {x ∈ H | |x| = 1}

with inverse map x 7→ x̄ and the map Sp(1)→ SU(2) : x 7→ g in (1.32) is a
Lie group isomorphism.

Exercise 1.84 (The double cover of SO(3)). Identify the imaginary part
of H with R3. Thus we write a vector ξ ∈ R3 = Im(H) as a purely imaginary
quaternion ξ = iξ1 + jξ1 + kξ3. Define the map ρ : Sp(1)→ SO(3) by

ρ(x)ξ := xξx̄, x ∈ Sp(1), ξ ∈ Im(H).

Prove that ρ(x) is represented by the 3× 3-matrix

ρ(x) =

 x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0 + x2
2 − x2

3 − x2
1 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 + x2

3 − x2
1 − x2

2

 .

Show that ρ is a Lie group homomorphism. For x, y ∈ Sp(1) prove that
ρ(x) = ρ(y) if and only if y = ±x.
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Example 1.85. Let g be a finite dimensional Lie algebra. Then the set

Aut(g) :=

{
Φ : g→ g

∣∣∣∣ Φ is a bijective linear map,
Φ[ξ, η] = [Φξ,Φη] ∀ ξ, η ∈ g

}
of Lie algebra automorphisms of g is a Lie group. Its Lie algebra is the
space of derivations on g denoted by

Der(g) :=

{
A : g→ g

∣∣∣∣ A is a linear map,
A[ξ, η] = [Aξ, η] + [ξ, Aη] ∀ ξ, η ∈ g

}
.

Now suppose that g = Lie(G) is the Lie algebra of a Lie group G. Then
there is a map

ad : G→ Aut(g), ad(g)η := gηg−1, (1.33)

for g ∈ G and η ∈ g. Lemma 1.76 (ii) asserts that ad(g) is indeed a linear
map from g to itself for every g ∈ G. The reader may verify that the map
ad(g) : g → g is a Lie algebra automorphism for every g ∈ G and that the
map ad : G → Aut(g) is a Lie group homomorphism. The associated Lie
algebra homomorphism is the map

Ad : g→ Der(g), Ad(ξ)η := [ξ, η], (1.34)

for ξ, η ∈ g. To verify the claim Ad = ȧd we compute

ȧd(ξ)η =
d

dt

∣∣∣∣
t=0

ad(exp(tξ))η =
d

dt

∣∣∣∣
t=0

exp(tξ)η exp(−tξ) = [ξ, η].

Exercise 1.86. Let g be any Lie algebra and define Ad : g → End(g)
by (1.34). Prove that Ad(ξ) : g→ g is a derivation for every ξ ∈ g and that
Ad : g→ Der(g) is a Lie algebra homomorphism. If g is finite dimensional,
prove that Aut(g) is a Lie group with Lie algebra Der(g).

Example 1.87. Consider the map

GL(n,R)→ Diff(Rn) : g 7→ φg

which assigns to every nonsingular matrix g ∈ GL(n,R) the linear diffeo-
morphism φg : Rn → Rn given by φg(x) := gx. This map g → φg is a group
homomorphism. The group Diff(Rn) is infinite dimensional and thus cannot
be a Lie group. However, it has many properties in common with Lie groups.
For example one can define what is meant by a smooth path in Diff(Rn) and
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extend formally the notion of a tangent vector (as the derivative of a path
through a given element of Diff(Rn)) to this setting. In particular, the tan-
gent space of Diff(Rn) at the identity can then be identified with the space
of vector fields TidDiff(Rn) = Vect(Rn). Differentiating the map g → φg one
then obtains a linear map

gl(n,R)→ Vect(Rn) : ξ 7→ Xξ

which assigns to every matrix ξ ∈ gl(n,R) the vector field Xξ : Rn → Rn
given by Xξ(x) := ξx. We have already seen in Remark 1.67 that this map
is a Lie algebra homomorphism.

1.6.4 Lie groups and diffeomorphisms

There is a natural correspondence between Lie groups and Lie algebras on
the one hand and diffeomorphisms and vector fields on the other hand. We
summarize this correspondence in the following table

Lie groups Diffeomorphisms
G ⊂ GL(n,R) Diff(M)

g = Lie(G) = T1lG Vect(M) = TidDiff(M)
exponential map flow of a vector field
t 7→ exp(tξ) t 7→ φt = “ exp(tX)′′

adjoint representation pushforward
ξ 7→ gξg−1 X 7→ φ∗X

Lie bracket on g Lie bracket of vector fields
[ξ, η] = ξη − ηξ [X,Y ] = dX · Y − dY ·X.

To understand the correspondence between the exponential map and the
flow of a vector field compare equation (1.12) with equation (1.28). To
understand the correspondence between adjoint representation and pushfor-
ward observe that

φ∗Y =
d

dt

∣∣∣∣
t=0

φ ◦ ψt ◦ φ−1, gηg−1 =
d

dt

∣∣∣∣
t=0

g exp(tη)g−1,

where ψt denotes the flow of Y . To understand the correspondence between
the Lie brackets recall that

[X,Y ] =
d

dt

∣∣∣∣
t=0

(φt)∗Y, [ξ, η] =
d

dt

∣∣∣∣
t=0

exp(tξ)η exp(−tξ),

where φt denotes the flow of X. We emphasize that the analogy between
Lie groups and Diffeomorphisms only works well when the manifold M is
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compact so that every vector field on M is complete. The next exercise gives
another parallel between the Lie bracket on the Lie algebra of a Lie group
and the Lie bracket of two vector fields.

Exercise 1.88. Let G ⊂ GL(n,R) be a Lie group with Lie algebra g and
let ξ, η ∈ g. Define the smooth curve γ : R→ G by

γ(t) := exp(tξ) exp(tη) exp(−tξ) exp(−tη).

Prove that γ̇(0) = 0 and 1
2 γ̈(0) = [ξ, η]. Compare this with Lemma 1.61.

Exercise 1.89. Let G ⊂ GL(n,R) be a Lie group with Lie algebra g and let
ξ, η ∈ g. Show that [ξ, η] = 0 if and only if exp(sξ) exp(tη) = exp(tη) exp(sξ)
for all s, t ∈ R. How can this result be deduced from Lemma 1.69?

1.6.5 Vector fields and derivations

Let M be a compact smooth manifold and denote by

F (M) := C∞(M,R)

the space of smooth real valued functions f : M → R. This is an algebra
with addition and multiplication of functions. An automorphism of F (M)
is a bijective linear map Φ : F (M)→ F (M) that satisfies

Φ(fg) = Φ(f)Φ(g), Φ(1) = 1.

A derivation of F (M) is a linear map δ : F (M)→ F (M) that satisfies

δ(fg) = δ(f)g + fδ(g).

The automorphisms of F (M) form a group denoted by Aut(F (M)) and
the derivations form a Lie algebra denoted by Der(F (M)). We may think
of Der(F (M)) as the Lie algebra of Aut(F (M)) with the Lie bracket given
by the commutator. Now there is a natural map

Diff(M)→ Aut(F (M)) : φ 7→ φ∗. (1.35)

Here the pullback automorphism φ∗ : F (M)→ F (M) is defined by

φ∗f := f ◦ φ.

The map φ 7→ φ∗ can be thought of as a Lie group anti-homomorphism.
Differentiating it at the identity φ = id we obtain a linear map

Vect(M)→ Der(F (M)) : X 7→ LX . (1.36)
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Here the operator LX : F (M) → F (M) is given by the derivative of a
function f in the direction of the vector field X, i.e.

LXf := df ·X =
d

dt

∣∣∣∣
t=0

f ◦ φt,

where φt denotes the flow of X. Since the map (1.36) is the derivative of
the “Lie group” anti-homomorphism (1.35) we expect it to be a Lie algebra
anti-homomorphism. Indeed, one can show that

L[X,Y ] = LY LX − LXLY = −[LX ,LY ] (1.37)

for X,Y ∈ Vect(M). This confirms that our sign in the definition of the
Lie bracket is consistent with the standard conventions in the theory of
Lie groups. In the literature the difference between a vector field and the
associated derivation LX is sometimes neglected in the notation and many
authors write Xf := df · X = LXf , thus thinking of a vector field on a
manifold M as an operator on the space of functions. With this notation one
obtains the equation [X,Y ]f = Y (Xf)−X(Y f) and here lies the origin for
the use of the opposite sign for the Lie bracket in many books on differential
geometry.

Exercise 1.90. Prove that the map (1.35) is bijective. Hint: An ideal in
F (M) is a linear subspace J ⊂ F (M) satisfying the condition

f ∈ F (M), g ∈J =⇒ fg ∈J .

A maximal ideal in F (M) is an ideal J ⊂ F (M) such that every ideal
J ′ ( F (M) containing J must be equal to J . Prove that if J ⊂ F (M)
is an ideal with the property that, for every p ∈M , there is an f ∈J with
f(p) 6= 0 then J = F (M). Deduce that every maximal ideal in F (M) has
the form Jp := {f ∈ F (M) | f(p) = 0} for some p ∈ M . If Φ ∈ Aut(M)
and p ∈M show that Φ−1Jp is a maximal ideal and hence there is a unique
element φ(p) ∈ M such that Φ−1Jp = Jφ(p). Show that φ : M → M is a
diffeomorphism and that Φ = φ∗.

Exercise 1.91. Prove that the map (1.36) is bijective. Hint: Fix a deriva-
tion δ ∈ Der(F (M)) and prove the following. Fact 1: If U ⊂M is an open
set and f ∈ F (M) vanishes on U then δ(f) vanishes on U . Fact 2: If p ∈M
and the derivative df(p) : TpM → R is zero then (δ(f))(p) = 0. (By Fact 1
the proof of Fact 2 can be reduced to an argument in local coordinates.)

Exercise 1.92. Verify the formula (1.37).
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1.7 Vector bundles and submersions

1.7.1 Submersions

Let M ⊂ Rk be a smooth m-manifold and N ⊂ R` be a smooth n-manifold.
A smooth map f : N →M is called a submersion if df(q) : TqN → Tf(q)M
is surjective for every q ∈M .

Lemma 1.93. Let M ⊂ Rk be a smooth m-manifold, N ⊂ R` be a smooth
n-manifold, and f : N →M be a smooth map. The following are equivalent.

(i) f is a submersion.

(ii) For every q0 ∈ N there is an M -open neighborhood U of p0 := f(q0) and
a smooth map g : U → N such that g(f(q0)) = q0 and f ◦ g = id : U → U .
Thus f has a local right inverse near every point in N (see Figure 1.9).

q
0N

g f

UM p
0

Figure 1.9: A local right inverse of a submersion.

Proof. We prove that (i) implies (ii). Since df(q0) : Tq0N → Tp0M is surjec-
tive we have n ≥ m and dim ker df(q0) = n−m. Hence there is a linear map
A : R` → Rn−m whose restriction to the kernel of df(q0) is bijective. Now
define the map ψ : N →M × Rn−m by

ψ(q) := (f(q), A(q − q0))

for q ∈ N . Then ψ(q0) = (p0, 0) and dψ(q0) : Tq0N → Tp0M × Rn−m sends
w ∈ Tq0N to (df(q0)w,Aw) and is therefore bijective. Hence it follows from
the inverse function theorem for manifolds (Theorem 1.34) that there is an
N -open neighborhood V ⊂ N of q0 such that W := ψ(N) ⊂ M × Rn−m is
an open neighborhood of (p0, 0) and ψ|V : V →W is a diffeomorphism. Let

U := {p ∈M | (p, 0) ∈W}

and define the map g : U → N by g(p) := ψ−1(p, 0). Then p0 ∈ U , g
is smooth, and (p, 0) = ψ(g(p)) = (f(g(p)), A(g(p) − q0)). This implies
f(g(p)) = p for all p ∈ U and g(p0) = ψ−1(p0, 0) = q0. Thus we have proved
that (i) implies (ii). The converse is an easy consequence of the chain rule
and is left to the reader.
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Corollary 1.94. The image of a submersion f : N →M is open.

Proof. If p0 = f(q0) ∈ f(N) then the neighborhood U ⊂ M of p0 in
Lemma 1.93 (ii) is contained in the image of f .

Corollary 1.95. If N is a nonempty compact manifold, M is a connected
manifold, and f : N → M is a submersion then f is surjective and M is
compact.

Proof. The image f(M) is an open subset of M by Corollary 1.94, it is a
relatively closed subset of M because N is compact, and it is nonempty
because N is nonempty. Since M is connected this implies that f(N) = M .
In particular, M is compact.

Exercise 1.96. Let f : N → M be a smooth map. Prove that the sets
{q ∈ N | df(q) is injective} and {q ∈ N | df(q) is surjective} are open (in the
relative topology of N).

1.7.2 Vector bundles

Let M ⊂ Rk be an m-dimensional smooth manifold. A (smooth) vector
bundle (over M of rank n) is a smooth submanifold E ⊂ M × R` such
that, for every p ∈M , the set

Ep :=
{
v ∈ R` | (p, v) ∈ E

}
is an n-dimensional linear subspace of R` (called the fiber of E over p). If
E ⊂ M × R` is a vector bundle then a (smooth) section of E is smooth
map s : M → R` such that s(p) ∈ Ep for every p ∈ M . A vector bundle
E ⊂M × R` is equipped with a smooth map

π : E →M

defined by π(p, v) := p, called the projection. A section s : M → R` of E
determines a smooth map σ : M → E which sends the point p ∈ M to the
pair (p, s(p)) ∈ E. This map satisfies

π ◦ σ = id.

It is sometimes convenient to abuse notation and eliminate the distinction
between s and σ. Thus we will sometimes use the same letter s for the map
from M to E.



1.7. VECTOR BUNDLES AND SUBMERSIONS 49

Example 1.97. Let M ⊂ Rk be a smooth m-dimensional submanifold. The
set

TM := {(p, v) | p ∈M, v ∈ TpM}

is called the tangent bundle of M . This is a subset of M×Rk and its fiber
TpM is an m-dimensional linear subspace of Rk by Theorem 1.23. However,
it is not immediately clear from the definition that TM is a submanifold
of M × Rk. This will be proved below. The sections of TM are the vector
fields on M .

Exercise 1.98. Let f : M → N be a smooth map between manifolds. Prove
that the tangent map TM → TN : (p, v) 7→ (f(p), df(p)v) is smooth.

Exercise 1.99. Let V ⊂ R` be an n-dimensional linear subspace. The
orthogonal projection of R` onto V is the matrix Π ∈ R`×` that satisfies

Π = Π2 = ΠT , im Π = V. (1.38)

Prove that there is a unique matrix Π ∈ R`×` satisfying (1.38). Prove that,
for every symmetric matrix S = ST ∈ R`×`, the kernel of S is the orthogonal
complement of the image of S. If D ∈ R`×n is any injective matrix whose
image is V , prove that det(DTD) 6= 0 and

Π = D(DTD)−1DT . (1.39)

Theorem 1.100. Let M ⊂ Rk be a smooth m-dimensional manifold and
let E ⊂M × R` be a subset. Assume that, for every p ∈M , the set

Ep :=
{
v ∈ R` | (p, v) ∈ E

}
(1.40)

is an n-dimensional linear subspace of R`. Let Π : M → R`×` be the map
that assigns to every p ∈M the orthogonal projection of R` onto Ep, i.e.

Π(p) = Π(p)2 = Π(p)T , im Π(p) = Ep. (1.41)

Then the following are equivalent.

(i) E is a vector bundle.

(ii) The map Π : M → R`×` is smooth.

(iii) For every p0 ∈M and every v0 ∈ Ep0 there is a smooth map s : M → R`
such that s(p) ∈ Ep for every p ∈M and s(p0) = v0.

Condition (i) implies that the projection π : E →M is a submersion. In (iii)
the section s can be chosen to have compact support, i.e. there is a compact
subset K ⊂M such that s(p) = 0 for p /∈ K.



50 CHAPTER 1. FOUNDATIONS

Corollary 1.101. Let M ⊂ Rk be a smooth m-manifold. Then TM is a
vector bundle over M and hence is a smooth 2m-manifold in Rk × Rk.

Proof. Let φ : U → Ω be a coordinate chart on an M -open set U ⊂M with
values in an open subset Ω ⊂ Rm. Denote its inverse by ψ := φ−1 : Ω→M .
By Theorem 1.23 the linear map dψ(x) : Rm → Rk is injective and its image
is Tψ(x)M for every x ∈ Ω. Hence the map D : U → Rk×m defined by

D(p) := dψ(φ(p)) ∈ Rk×m

is smooth and, for every p ∈ U , the linear map D(p) : Rm → Rk is injective
and its image is TpM . Thus the function ΠTM : M → Rk×k defined by (1.41)
with Ep = TpM is given by

ΠTM (p) = D(p)
(
D(p)TD(p)

)−1
D(p)T

for p ∈ U (see Exercise 1.99). Hence the restriction of Π to U is smooth.
Since M can be covered by coordinate charts it follows that ΠTM is smooth
and hence, by Theorem 1.100, TM is a smooth vector bundle. This proves
the corollary.

Let M ⊂ Rk be an m-manifold, N ⊂ R` be an n-manifold, f : N → M
be a smooth map, and E ⊂ M × Rd be a vector bundle. The pullback
bundle is the vector bundle f∗E → N defined by

f∗E :=
{

(q, v) ∈ N × Rd | v ∈ Ef(q)

}
and the normal bundle of E is the vector bundle E⊥ →M defined by

E⊥ :=
{

(p, w) ∈M × Rd | 〈v, w〉 = 0 ∀ v ∈ Ep
}
.

Corollary 1.102. The pullback and normal bundles are vector bundles.

Proof. Let Π = ΠE : M → Rd×d be the map defined by (1.41). This map is
smooth by Theorem 1.100. Moreover, the corresponding maps for f∗E and
E⊥ are given by

Πf∗E = ΠE ◦ f : N → Rd×d, ΠE⊥ = 1l−ΠE : M → Rd×d.

These maps are smooth and hence it follows again from Theorem 1.100 that
f∗E and E⊥ are vector bundles.
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Proof of Theorem 1.100. We first assume that E is a vector bundle and
prove that π : E → M is a submersion. Let σ : M → E denote the zero
section given by σ(p) := (p, 0). Then π◦σ = id and hence it follows from the
chain rule that the derivative dπ(p, 0) : T(p,0)E → TpM is surjective. Now it
follows from Exercise 1.96 that for every p ∈M there is an ε > 0 such that
the derivative dπ(p, v) : T(p,v)E → TpM is surjective for every v ∈ Ep with
|v| < ε. Consider the map fλ : E → E defined by fλ(p, v) := (p, λv). This
map is a diffeomorphism for every λ > 0. It satisfies π = π ◦ fλ and hence

dπ(p, v) = dπ(p, λv) ◦ dfλ(p, v) : T(p,v)E → TpM.

Since dfλ(p, v) is bijective and dπ(p, λv) is surjective for λ < ε/ |v| it follows
that dπ(p, v) is surjective for every p ∈ M and every v ∈ Ep. Thus the
projection π : E →M is a submersion for every vector bundle E over M .

We prove that (i) implies (iii). Let p0 ∈ M and v0 ∈ Ep0 . We have
already proved that π is a submersion. Hence it follows from Lemma 1.93
that there exists an M -open neighborhood U ⊂M of p0 and a smooth map
σ0 : U → E such that π ◦ σ0 = id : U → U and σ0(p0) = (p0, v0). Define the
map s0 : U → R` by (p, s0(p)) := σ0(p)). Then s0(p0) = v0 and s0(p) ∈ Ep
for all p ∈ U . Now choose ε > 0 such that {p ∈M | |p− p0| < ε} ⊂ U and
choose a smooth cutoff function β : Rk → [0, 1] such that β(p0) = 1 and
β(p) = 0 for |p− p0| ≥ ε. Define s : M → R` by

s(p) :=

{
β(p)s0(p), if p ∈ U,
0, if p /∈ U.

This map satisfies the requirements of (iii).
That (ii) implies (iii) follows by choosing s(p) := Π(p)v0 for every p ∈M .
We prove that (iii) implies (ii). Thus we assume that E satisfies (iii).

Choose a point p0 ∈ M and a basis v1, . . . , vn of Ep0 . By (iii) there are
smooth sections s1, . . . , sn : M → R` of E such that si(p0) = vi for
i = 1, . . . , n. Now there is an M -open neighborhood U ⊂ M of p0 such
that the vectors s1(p), . . . , sn(p) are linearly independent, and hence form a
basis of Ep, for every p ∈ U . Hence, for every p ∈ U , we have

Ep = imD(p), D(p) := [s1(p) · · · sn(p)] ∈ R`×n.

By Exercise 1.99 this implies

Π(p) = D(p)
(
D(p)TD(p)

)−1
D(p)T

for every p ∈ U . Thus we have proved that every point p0 ∈ M has a
neighborhood U such that the restriction of Π to U is smooth. This shows
that (iii) implies (ii).
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To prove that (iii) also implies (i) we fix a point p0 ∈ M and choose
D : U → R`×n as above. Shrinking U if necessary, we may assume that
there is a coordinate chart φ : U → Ω with values in an open set Ω ⊂ Rm.
Consider the open subset

π−1(U) = {(p, v) | p ∈ U, v ∈ Ep}

of E and define the map Φ : π−1(U)→ Ω× Rn by

Φ(p, v) :=
(
φ(p),

(
D(p)TD(p)

)−1
D(p)T v

)
.

This map is a diffeomorphism with Φ−1(x, ξ) =
(
φ−1(x), D(φ−1(x))ξ

)
for

x ∈ Ω and ξ ∈ Rn. Hence Φ is a coordinate chart on π−1(U). Thus we have
proved that (iii) implies (i) and this completes the proof of the theorem.

Remark 1.103. Let D : U → R`×n be as in the above proof. Then the map
Φ : π−1(U)→ φ(U)×Rn in the above proof is called a local trivialization
of the vector bundle E. It fits into a commutative diagram

π−1(U)
Φ //

π

��

Ω× Rn

pr1
��

U
φ // Ω

.

It is sometimes convenient to consider local trivializations that leave the first
coordinate unchanged. For example in our setting we could take the map
π−1(U)→ U × Rn : (p, v) 7→

(
p, (D(p)TD(p))−1D(p)T v

)
. The restriction of

this map to each fiber is an isomorphism Ep → Rn.

Exercise 1.104. Construct a vector bundle E ⊂ S1 × R2 of rank 1 that
does not admit a global trivialization, i.e. that is not isomorphic to the trivial
bundle S1 × R. Such a vector bundle is called a Möbius strip. Define
the notion of an isomorphism between two vector bundles E and F over a
manifold M .

1.8 The theorem of Frobenius

Let M ⊂ Rk be an m-dimensional manifold and n be a nonnegative integer.
A subbundle of rank n of the tangent bundle TM is a subset E ⊂ TM
that is itself a vector bundle of rank n over M , i.e. it is a submanifold of
TM and the fiber Ep = {v ∈ TpM | (p, v) ∈ E} is an n-dimensional linear
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subspace of TpM for every p ∈ M . Note that the rank n of a subbundle
is necessarily less than or equal to m. In the literature a subbundle of the
tangent bundle is sometimes called a distribution on M . We shall, however,
not use this terminology in order to avoid confusion with the concept of a
distribution in the functional analytic setting.

Definition 1.105. Let M ⊂ Rk be an m-dimensional manifold and E ⊂
TM be a subbundle of rank n. E is called involutive if, for any two vector
fields X,Y ∈ Vect(M), we have

X(p), Y (p) ∈ Ep ∀ p ∈M =⇒ [X,Y ](p) ∈ Ep ∀ p ∈M. (1.42)

E is called integrable if, for every p0 ∈ M , there exists a submanifold
N ⊂ M such that p0 ∈ N and TpN = Ep for every p ∈ N . A foliation
box for E (see Figure 1.10) is a coordinate chart φ : U → Ω on an M -open
subset U ⊂M with values in an open set Ω ⊂ Rn × Rm−n such that the set
Ω ∩ (Rn × {y}) is connected for every y ∈ Rm−n and, for every p ∈ U and
every v ∈ TpM , we have

v ∈ Ep ⇐⇒ dφ(p)v ∈ Rn × {0}.

M

U Ωφ

Figure 1.10: A foliation box.

Theorem 1.106 (Frobenius). Let M ⊂ Rk be an m-dimensional manifold
and E ⊂ TM be a subbundle of rank n. Then the following are equivalent.

(i) E is involutive.

(ii) E is integrable.

(iii) For every p0 ∈M there is a foliation box φ : U → Ω with p0 ∈ U .

It is easy to show that (iii) =⇒ (ii) =⇒ (i) (see below). The hard part of
the theorem is to prove that (i) =⇒ (iii). This requires the following lemma.

Lemma 1.107. Let E ⊂ TM be an involutive subbundle and X ∈ Vect(M)
be a complete vector field such that X(p) ∈ Ep for every p ∈M . Denote by
R → Diff(M) : t 7→ φt the flow of X. Then, for all t ∈ R and p ∈ M , we
have

dφt(p)Ep = Eφt(p). (1.43)
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Lemma 1.107 implies Theorem 1.106. We prove that (iii) implies (ii). Let
p0 ∈M , choose a foliation box φ : U → Ω for E with p0 ∈ U , and define

N := (p ∈ U |φ(p) ∈ Rn × {y0}}

where (x0, y0) := φ(p0) ∈ Ω. Then N satisfies the requirements of (ii).
We prove that (ii) implies (i). Choose two vector fields X,Y ∈ Vect(M)

that satisfy X(p), Y (p) ∈ Ep for all p ∈ M and fix a point p0 ∈ M . By (ii)
there is a submanifold N ⊂M containing p0 such that TpN = Ep for every
p ∈ N . Hence the restrictions X|N and Y |N are vector fields on N and so is
the restriction of the Lie bracket [X,Y ] to N . Hence [X,Y ](p0) ∈ Tp0N =
Ep0 as claimed.

We prove that (i) implies (iii). Thus we assume that E is an involutive
subbundle of TM and fix a point p0 ∈ M . By Theorem 1.100 there exist
vector fields X1, . . . , Xn ∈ Vect(M) such that Xi(p) ∈ Ep for all i and p and
the vectors X1(p0), . . . , Xn(p0) form a basis of Tp0E. Using Theorem 1.100
again we find vector fields Y1, . . . , Ym−n ∈ Vect(M) such that the vectors

X1(p0), . . . , Xn(p0), Y1(p0), . . . , Ym−n(p0)

form a basis of Tp0M . Using cutoff functions as in the proof of Theorem 1.100
we may assume without loss of generality that the vector fields Xi and Yj
have compact support and hence are complete (see Exercise 1.58). Denote
by φt1, . . . , φ

t
n the flows of the vector fields X1, . . . , Xn, respectively, and by

ψt1, . . . , ψ
t
m−n the flows of the vector fields Y1, . . . , Ym−n. Define the map

ψ : Rn × Rm−n →M by

ψ(x, y) := φx11 ◦ · · · ◦ φ
xn
n ◦ ψ

y1
1 ◦ · · · ◦ ψ

ym−n
m−n (p0).

By Lemma 1.107, this map satisfies

∂ψ

∂xi
(x, y) ∈ Eψ(x,y) (1.44)

for all x ∈ Rn and y ∈ Rm−n. Moreover,

∂ψ

∂xi
(0, 0) = Xi(p0),

∂ψ

∂yj
(0, 0) = Yj(p0).

Hence the derivative dψ(0, 0) : Rn × Rm−n → Tp0M is bijective. By the
inverse function theorem 1.34 it follows that there is an open neighborhood
Ω ⊂ Rn×Rm−n of the origin such that the set U := ψ(Ω) ⊂M is an M -open
neighborhood of p0 and ψ|Ω : Ω→ U is a diffeomorphism. Thus the vectors
∂ψ/∂xi(x, y) are linearly independent for every (x, y) ∈ Ω and, by (1.44),
form a basis of Eψ(x,y). Hence the inverse map φ := (ψ|Ω)−1 : U → Ω is a
foliation box. This proves the theorem.
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To complete the proof of the Frobenius theorem it remains to prove
Lemma 1.107. This requires the following result.

Lemma 1.108. Let E ⊂ TM be an involutive subbundle. If β : R2 →M is
a smooth map such that

∂β

∂s
(s, 0) ∈ Eβ(s,0),

∂β

∂t
(s, t) ∈ Eβ(s,t), (1.45)

for all s, t ∈ R then
∂β

∂s
(s, t) ∈ Eβ(s,t), (1.46)

for all s, t ∈ R.

Lemma 1.108 implies Lemma 1.107. Let X ∈ Vect(M) be a complete vec-
tor field satisfying X(p) ∈ Ep for every p ∈ M and let φt be the flow of X.
Choose a point p0 ∈M and a vector v0 ∈ Ep0 . By Theorem 1.100 there is a
vector field Y ∈ Vect(M) with values in E such that Y (p0) = v0. Moreover
this vector field may be chosen to have compact support and hence it is
complete (see Exercise 1.58). Thus there is a solution γ : R → M of the
initial value problem

γ̇(s) = Y (γ(s)), γ(0) = p0.

Define β : R2 →M by
β(s, t) := φt(γ(s))

for s, t ∈ R. Then

∂β

∂s
(s, 0) = γ̇(s) = Y (γ(s)) ∈ Eβ(s,0)

and
∂β

∂t
(s, t) = X(β(s, t)) ∈ Eβ(s,t)

for all s, t ∈ R. Hence it follows from Lemma 1.108 that

dφt(p0)v0 =
∂β

∂s
φt(γ(0))γ̇(0) =

∂β

∂s
(0, t) ∈ Eφt(p0)

for every t ∈ R. This proves the lemma.

Proof of Lemma 1.108. Given any point p0 ∈ M we choose a coordinate
chart φ : U → Ω, defined on an M -open set U ⊂M with values in an open
set Ω ⊂ Rn × Rm−n, such that

p0 ∈ U, dφ(p0)Ep0 = Rn × {0}.
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Shrinking U , if necessary, we obtain that dφ(p)Ep is the graph of a matrix
A ∈ R(m−n)×n for every p ∈ U . Thus there is a map A : Ω → R(m−n)×n

such that, for every p ∈ U , we have

dφ(p)Ep = {(ξ, A(x, y)ξ) | ξ ∈ Rn} , (x, y) := φ(p) ∈ Ω. (1.47)

For (x, y) ∈ Ω we define the linear maps

∂A

∂x
(x, y) : Rn → R(m−n)×n,

∂A

∂y
(x, y) : Rm−n → R(m−n)×n

by

∂A

∂x
(x, y) · ξ :=

n∑
i=1

ξi
∂A

∂xi
(x, y),

∂A

∂y
(x, y) · η :=

m−n∑
j=1

ηj
∂A

∂yj
(x, y),

for ξ = (ξ1, . . . , ξn) ∈ Rn and η = (η1, . . . , ηm−n) ∈ Rm−n. We prove the
following.

Claim 1. Let (x, y) ∈ Ω, ξ, ξ′ ∈ Rn and define η, η′ ∈ Rm−n by η := A(x, y)ξ
and η′ := A(x, y)ξ′. Then(

∂A

∂x
(x, y) · ξ +

∂A

∂y
(x, y) · η

)
ξ′ =

(
∂A

∂x
(x, y) · ξ′ + ∂A

∂y
(x, y) · η′

)
ξ.

The graphs of the matrices A(z) determine a subbundle Ẽ ⊂ Ω × Rm with
fibers

Ẽz :=
{

(ξ, η) ∈ Rn × Rm−n | η = A(x, y)ξ
}

for z = (x, y) ∈ Ω. This subbundle is the image of

E|U := {(p, v) | p ∈ U, v ∈ Ep}

under the diffeomorphism TM |U → Ω × Rm : (p, v) 7→ (φ(p), dφ(p)v) and
hence it is involutive. Now define the vector fields ζ, ζ ′ : Ω→ Rm by

ζ(z) := (ξ, A(z)ξ), ζ ′(z) := (ξ′, A(z)ξ′), z ∈ Ω.

Then ζ and ζ ′ are sections of Ẽ and their Lie bracket [ζ, ζ ′] is given by

[ζ, ζ ′](z) =
(
0,
(
dA(z)ζ ′(z)

)
ξ(z)− (dA(z)ζ(z)) ξ′(z)

)
.

Since Ẽ is involutive the Lie bracket [ζ, ζ ′] must take values in the graph
of A. Hence the right hand side vanishes and this proves Claim 1.
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Claim 2. Let I, J ⊂ R be open intervals and z = (x, y) : I2 → Ω be a
smooth map. Fix two points s0 ∈ I and t0 ∈ J and assume that

∂y

∂s
(s0, t0) = A

(
x(s0, t0), y(s0, t0)

)∂x
∂s

(s0, t0), (1.48)

∂y

∂t
(s, t) = A

(
x(s, t), y(s, t)

)∂x
∂t

(s, t) (1.49)

for all s ∈ I and t ∈ J . Then

∂y

∂s
(s0, t) = A

(
x(s0, t), y(s0, t)

)∂x
∂s

(s0, t) (1.50)

for all t ∈ J .

Equation (1.50) holds by assumption for t = t0. Moreover, dropping the
argument z(s0, t) = z = (x, y) for notational convenience we obtain

∂

∂t

(
∂y

∂s
−A · ∂x

∂s

)
=

∂2y

∂s∂t
−A ∂2x

∂s∂t
−
(
∂A

∂x
· ∂x
∂t

+
∂A

∂y
· ∂y
∂t

)
∂x

∂s

=
∂2y

∂s∂t
−A ∂2x

∂s∂t
−
(
∂A

∂x
· ∂x
∂t

+
∂A

∂y
·
(
A
∂x

∂t

))
∂x

∂s

=
∂2y

∂s∂t
−A ∂2x

∂s∂t
−
(
∂A

∂x
· ∂x
∂s

+
∂A

∂y
·
(
A
∂x

∂s

))
∂x

∂t

=
∂2y

∂s∂t
−A ∂2x

∂s∂t
−
(
∂A

∂x
· ∂x
∂s

+
∂A

∂y
· ∂y
∂s

)
∂x

∂t

+

(
∂A

∂y
·
(
∂y

∂s
−A∂x

∂s

))
∂x

∂t

=

(
∂A

∂y
·
(
∂y

∂s
−A∂x

∂s

))
∂x

∂t

Here the second equation follows from (1.49), the third equation follows from
Claim 1, and the last equation follows by differentiating equation (1.49) with
respect to s. Define η : J → Rm−n by

η(t) :=
∂y

∂s
(s0, t)−A

(
x(s0, t), y(s0, t)

)∂x
∂s

(s0, t).

By (1.48) and what we have just proved, the function η satisfies the linear
differential equation

η̇(t) =

(
∂A

∂y

(
x(s0, t), y(s0, t)

)
· η(t)

)
∂x

∂t
(s0, t), η(t0) = 0.

Hence η(t) = 0 for all t ∈ J . This proves (1.50) and Claim 2.



58 CHAPTER 1. FOUNDATIONS

Now let β : R2 → M be a smooth map satisfying (1.45) and fix a real
number s0. Consider the set W :=

{
t ∈ R | ∂β∂s (s0, t) ∈ Eβ(s0,t)

}
. By going

to local coordinates, we obtain from Claim 2 that W is open. Moreover, W
is obviously closed, and W 6= ∅ because 0 ∈ W by (1.45). Hence W = R.
Since s0 ∈ R was chosen arbitrarily, this proves (1.46) and the lemma.

Any subbundle E ⊂ TM determines an equivalence relation on M via

p0 ∼ p1 ⇐⇒
there is a smooth curve γ : [0, 1]→M such that
γ(0) = p0, γ(1) = p1, γ̇(t) ∈ Eγ(t) ∀ t ∈ [0, 1].

(1.51)

If E is integrable this equivalence relation is called a foliation and the
equivalence class of p0 ∈ M is called the leaf of the foliation through p0.
The next example shows that the leaves do not need to be submanifolds

Example 1.109. Consider the torus M := S1 × S1 ⊂ C2 with the tangent
bundle

TM =
{

(z1, z2, iλ1z1, iλ2z2) ∈ C4 | |z1| = |z2| = 1, λ1, λ2 ∈ R
}
.

Let ω1, ω2 be real numbers and consider the subbundle

E :=
{

(z1, z2, itω1z1, itω2z2) ∈ C4 | |z1| = |z2| = 1, t ∈ R
}
.

The leaf of this subbundle through z = (z1, z2) ∈ T2 is given by

L =
{(
eitω1z1, e

itω2z2

) ∣∣∣ t ∈ R
}
.

It is a submanifold if and only if the quotient ω1/ω2 is a rational number
(or ω2 = 0). Otherwise each leaf is a dense subset of T2.

Exercise 1.110. Prove that (1.51) defines an equivalence relation for every
subbundle E ⊂ TM .

Exercise 1.111. Each subbundle E ⊂ TM of rank 1 is integrable.

Exercise 1.112. Consider the manifold M = R3. Prove that the subbun-
dle E ⊂ TM = R3 × R3 with fiber Ep =

{
(ξ, η, ζ) ∈ R3 | ζ − yξ = 0

}
over

p = (x, y, z) ∈ R3 is not integrable and that any two points in R3 can be
connected by a path tangent to E.

Exercise 1.113. Consider the manifold M = S3 ⊂ R4 = C2 and define

E :=
{

(z, ζ) ∈ C2 × C2 | |z| = 1, ζ ⊥ z, iζ ⊥ z
}
.

Thus the fiber Ez ⊂ TzS
3 = z⊥ is the maximal complex linear subspace

of TzS
3. Prove that E has real rank 2 and is not integrable.
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Exercise 1.114. Let E ⊂ TM be an integrable subbundle of rank n and
let L ⊂ M be a leaf of the foliation determined by E. Call a subset V ⊂ L
L-open if it can be written as a union of submanifolds N of M with tangent
spaces TpN = Ep for p ∈ N . Prove that the L-open sets form a topology on L
(called the intrinsic topology) Prove that the obvious inclusion ι : L→M
is continuous with respect to the intrinsic topology on L. Prove that the
inclusion ι : L → M is proper if and only if the intrinsic topology on L
agrees with the relative topology inherited from M (called the extrinsic
topology).

Remark 1.115. It is surprisingly difficult to prove that each closed leaf L
of a foliation is a submanifold of M . A proof due to David Epstein [4] is
sketched in Subsection 1.9.7 below.

1.9 The intrinsic definition of a manifold

It is somewhat restrictive to only consider manifolds that are embedded in
some Euclidean space. Although we shall see that (at least) every compact
manifold admits an embedding into a Euclidean space, such an embedding is
in many cases not a natural part of the structure of a manifold. In particular,
we encounter manifolds that are described as quotient spaces and there are
manifolds that are embedded in certain infinite dimensional Hilbert spaces.
For this reason it is convenient, at this point, to introduce a more general
intrinisc definition of a manifold. This requires some background from point
set topology that is not covered in the first year analysis courses. We shall
then see that all the definitions and results of this first chapter carry over
in a natural manner to the intrinsic setting.

1.9.1 Definition and examples

Definition 1.116. Let m be a nonnegative integer. A smooth m-manifold
is a topological space M equipped with an open cover {Uα}α and a collection
of homeomorphisms φα : Uα → φα(Uα) ⊂ Rm (one for each open set in the
cover) onto open subsets φα(Uα) ⊂ Rm such that the transition maps

φβα := φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) (1.52)

are diffeomorphisms for all α, β (see Figure 1.11). The maps φα : Uα → Rm
are called coordinate charts of M . The collection A = {Uα, φα}α is called
an atlas on M . It is also sometimes called a smooth structure.
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M

Uα βU

βαφ
βφα φ

Figure 1.11: Coordinate charts and transition maps.

Remark 1.117. The coordinate charts φα determine the topology on M .
Namely, for every subset U ⊂M , we have

U is open ⇐⇒ φα(U ∩ Uα) is open for all α. (1.53)

This observation gives rise to a slightly different, but equivalent, formulation
of Definition 1.116. A manifold can be defined as a pair (M,A ) where M
is a set and A is a collection of bijective maps φα : Uα → φα(Uα) onto open
subsets φα(Uα) of Rm, the sets Uα cover M , and the transition maps (1.52)
are diffeomorphisms between open subsets of Rm. One can then define a
topology U ⊂ 2M (the collection of open sets) by (1.53). It is easy to verify
that (1.53) indeed defines a topology on M and that the coordinate charts
φα are homeomorphisms with respect to this topology. (Prove this!)

The atlas A = {Uα, φα}α is an intrinsic part of the structure of a mani-
fold. This allows for a great deal of freedom as we may add more coordinate
charts without changing anything else about the manifold M . Thus we
shall identify two manifolds (M,A ) and (M,A ′) if each coordinate chart
of A is compatible with each coordinate chart of A ′ in the sense that
the transition maps (1.52) are all diffeomorphisms. In this case the union
A ∪ A ′ is also an atlas on M . Thus we can turn an atlas A into a max-
imal atlas Amax by adding to A each homeomorphism φ : U → Ω from
an open subset U ⊂ M onto an open set Ω ⊂ Rm such that the map
φ ◦ φ−1

α : φα(U ∩ Uα)→ φ(U ∩ φα) is a diffeomorphism for every coordinate
chart φα of A . The resulting atlas is maximal in the sense that each atlas
A ′ on M whose coordinate charts are compatible with the coordinate charts
in Amax is already contained in Amax. Thus we can also define a manifold as
a set M equipped with a maximal atlas. Although the coordinate charts are
part of the structure of a manifold we will often not mention them explicitly
and just say “let M be a manifold”, assuming the atlas as given.
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Exercise 1.118. Prove that for every atlas A there is a unique maximal
atlas Amax containing A and that Amax induces the same topology as A .

Remark 1.119. One can consider manifolds where the transition maps
φβα in (1.52) satisfy additional conditions. For example we can require
the transition maps to be real analytic or even polynomials, leading to the
subject of real algebraic geometry. Or we can consider the case where
m = 2n is even, identify R2n with Cn, and require the transition maps
to be holomorphic, leading to the subject of complex geometry. Still
in the case m = 2n we could require the transition maps to be canonical
transformations in the sense of classical mechanics and this is the subject
of symplectic geometry. One can also weaken the requirements on the
transition maps and only ask that they are of class Ck. In the case k = 0
there can be dramatic differences. For example, there are 4-dimensional
C0-manifolds that do not admit any smooth structure.

Example 1.120. The complex projective space CPn is the set

CPn =
{
` ⊂ Cn+1 | ` is a 1-dimensional complex subspace

}
of complex lines in Cn+1. It can be identified with the quotient space

CPn =
(
Cn+1 \ {0}

)
/C∗

of nonzero vectors in Cn+1 modulo the action of the multiplicative group
C∗ = C \ {0} of nonzero complex numbers. The equivalence class of a
nonzero vector z = (z0, . . . , zn) ∈ Cn+1 will be denoted by

[z] = [z0 : z1 : · · · : zn] := {λz |λ ∈ C∗}

and the associated line is ` = Cz. This space is equipped with the quotient
topology. Namely, if π : Cn+1 \ {0} → CPn denotes the obvious projection,
a subset U ⊂ CPn is open by definition if and only if π−1(U) is an open
subset of Cn+1 \ {0}. The atlas on CPn is given by the open cover

Ui := {[z0 : · · · : zn] | zi 6= 0}

and the coordinate charts φi : Ui → Cn are

φi([z0 : · · · : zn]) :=

(
z0

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
(1.54)

for i = 0, 1, . . . , n. Exercise: Prove that each φi is a homeomorphism and
the transition maps are holomorphic.
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Example 1.121. The real projective space RPn is the set

RPn =
{
` ⊂ Rn+1 | ` is a 1-dimensional linear subspace

}
of real lines in Rn+1. It can again be identified with the quotient space

RPn =
(
Rn+1 \ {0}

)
/R∗

of nonzero vectors in Rn+1 modulo the action of the multiplicative group
R∗ = R\{0} of nonzero real numbers, and the equivalence class of a nonzero
vector x = (x0, . . . , xn) ∈ Rn+1 will be denoted by

[x] = [x0 : x1 : · · · : xn] := {λx |λ ∈ R∗} .

As before this space is equipped with the quotient topology. Namely, if
π : Rn+1 \ {0} → RPn denotes the obvious projection, a subset U ⊂ RPn

is open if and only if π−1(U) is an open subset of Rn+1 \ {0}. An atlas on
RPn is given by the open cover

Ui := {[x0 : · · · : xn] |xi 6= 0}

and the coordinate charts φi : Ui → Rn are again given by (1.54), with zj
replaced by xj . Exercise: Prove that each φi is a homeomorphism and that
the transition maps are real analytic.

Example 1.122. The real n-torus is the topological space

Tn := Rn/Zn

equipped with the quotient topology. Thus two vectors x, y ∈ Rn are equiv-
alent if their difference x − y ∈ Zn is an integer vector and we denote by
π : Rn → Tn the obvious projection which assigns to each vector x ∈ Rn its
equivalence class

π(x) := [x] := x+ Zn.

Then a set U ⊂ Tn is open if and only if the set π−1(U) is an open subset
of Rn. An atlas on Tn is given by the open cover

Uα := {[x] |x ∈ Rn, |x− α| < 1/2} ,

parametrized by vectors α ∈ Rn, and the coordinate charts φα : Uα → Rn
defined by φα([x]) := x for x ∈ Rn with |x− α| < 1/2. Exercise: Show
that each transition map for this atlas is a translation by an integer vector.
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Example 1.123. Consider the complex Grassmannian

Gk(Cn) := {V ⊂ Cn | v is a k − dimensional complex linear subspace} .

This set can again be described as a quotient space Gk(Cn) ∼= Fk(Cn)/U(k).
Here

Fk(Cn) :=
{
D ∈ Cn×k |D∗D = 1l

}
denotes the set of unitary k-frames in Cn and the group U(k) acts on Fk(Cn)
contravariantly by D 7→ Dg for g ∈ U(k). The projection

π : Fk(Cn)→ Gk(Cn)

sends a matrix D ∈ Fk(Cn) to its image V := π(D) := imD. A subset
U ⊂ Gk(Cn) is open if and only if π−1(U) is an open subset of Fk(Cn). Given
a k-dimensional subspace V ⊂ Cn we can define an open set UV ⊂ Gk(Cn) as
the set of all k-dimensional subspaces of Cn that can be represented as graphs
of linear maps from V to V ⊥. This set of graphs can be identified with the
complex vector space HomC(V, V ⊥) of complex linear maps from V to V ⊥

and hence with C(n−k)×k. This leads to an atlas on Gk(Cn) with holomorphic
transition maps and shows that Gk(Cn) is a manifold of complex dimension
kn − k2. Exercise: Verify the details of this construction. Find explicit
formulas for the coordinate charts and their transition maps. Carry this
over to the real setting. Show that CPn and RPn are special cases.

Example 1.124 (The real line with two zeros). A topological space
M is called Hausdorff if any two points in M can be separated by disjoint
open neighborhoods. This example shows that a manifold need not be a
Hausdorff space. Consider the quotient space

M := R× {0, 1}/ ≡

where [x, 0] ≡ [x, 1] for x 6= 0. An atlas on M consists of two coordinate
charts φ0 : U0 → R and φ1 : U1 → R where Ui := {[x, i] |x ∈ R} and
φi([x, i]) := x for i = 0, 1. Thus M is a 1-manifold. But the topology on M
is not Hausdorff, because the points [0, 0] and [0, 1] cannot be separated by
disjoint open neighborhoods.

Example 1.125 (A 2-manifold without a countable atlas). Consider
the vector space X = R× R2 with the equivalence relation

[t1, x1, y2] ≡ [t2, x2, y2] ⇐⇒ either y1 = y2 6= 0, t1 + x1y1 = t2 + x2y2

or y1 = y2 = 0, t1 = t2, x1 = x2.



64 CHAPTER 1. FOUNDATIONS

For y 6= 0 we have [0, x, y] ≡ [t, x− t/y, y], however, each point (x, 0) on the
x-axis gets replaced by the uncountable set R×{(x, 0)}. Our manifold is the
quotient space M := X/ ≡. This time we do not use the quotient topology
but the topology induced by our atlas via (1.53). The coordinate charts are
parametrized by the reals: for t ∈ R the set Ut ⊂ M and the coordinate
chart φt : Ut → R2 are given by

Ut := {[t, x, y] |x, y ∈ R} , φt([t, x, y]) := (x, y).

A subset U ⊂M is open, by definition, if φt(U ∩Ut) is an open subset of R2

for every t ∈ R. With this topology each φt is a homeomorphism from Ut
onto R2 and M admits a countable dense subset S := {[0, x, y] |x, y ∈ Q}.
However, there is no atlas on M consisting of countably many charts. (Each
coordinate chart can contain at most countably many of the points [t, 0, 0].)
The function f : M → R given by f([t, x, y]) := t + xy is smooth and each
point [t, 0, 0] is a critical point of f with value t. Thus f has no regular
value. Exercise: Show that M is a path-connected Hausdorff space.

1.9.2 Paracompactness

The existence of a countable atlas is of fundamental importance for almost
everything we will prove about manifolds. The next two remarks describe
several equivalent conditions.

Remark 1.126. Let M be a smooth manifold and denote by U ⊂ 2M the
topology induced by the atlas via (1.53). Then the following are equivalent.

(a) M admits a countable atlas.

(b) M is σ-compact, i.e. there is a sequence of compact subsets Ki ⊂ M
such that Ki ⊂ int(Ki+1) for every i ∈ N and M =

⋃∞
i=1Ki.

(c) Every open cover of M has a countable subcover.

(d) M is second countable, i.e. there is a countable collection of open sets
B ⊂ U such that every open set U ∈ U is a union of open sets from the
collection B. (B is then called a countable base for the topology of M .)

That (a) =⇒ (b) =⇒ (c) =⇒ (a) and (a) =⇒ (d) follows directly from the
definitions. The proof that (d) implies (a) requires the construction of a
countable refinement and the axiom of choice. (A refinement of an open
cover {Ui}i∈I is an open cover {Vj}j∈J such that each set Vj is contained in
one of the sets Ui.)
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Remark 1.127. Let M and U be as in Remark 1.126 and suppose that M
is a connected Hausdorff space. Then the existence of a countable atlas is
also equivalent to each of the following conditions.

(e) M is metrizable, i.e. there is a distance function d : M ×M → [0,∞)
such that U is the topology induced by d.

(f) M is paracompact, i.e. every open cover of M has a locally finite
refinement. (An open cover {Vj}j∈J is called locally finite if every p ∈M
has a neighborhood that intersects only finitely many Vj .)

That (a) implies (e) follows from the Urysohn metrization theorem
which asserts (in its original form) that every normal second countable topo-
logical space is metrizable [9, Theorem 34.1]. A topological space M is called
normal if points are closed and, for any two disjoint closed sets A,B ⊂M ,
there are disjoint open sets U, V ⊂ M such that A ⊂ U and B ⊂ V . It
is called regular if points are closed and, for every closed set A ⊂ M and
every b ∈ M \ A, there are disjoint open sets U, V ⊂ M such that A ⊂ U
and b ∈ V . It is called locally compact if, for every open set U ⊂ M and
every p ∈ U , there is a compact neighborhood of p contained in U . It is easy
to show that every manifold is locally compact and every locally compact
Hausdorff space is regular. Tychonoff’s Lemma asserts that a regular
topological space with a countable base is normal [9, Theorem 32.1]. Hence
it follows from the Urysohn metrization theorem that every Hausdorff man-
ifold with a countable base is metrizable. That (e) implies (f) follows from a
more general theorem which asserts that every metric space is paracompact
(see [9, Theorem 41.4] and [10]). Conversely, the Smirnov metrization
theorem asserts that a paracompact Hausdorff space is metrizable if and
only it is locally metrizable, i.e. every point has a metrizable neighborhood
(see [9, Theorem 42.1]). Since every manifold is locally metrizable this shows
that (f) implies (e). Thus we have (a) =⇒ (e) ⇐⇒ (f) for every Hausdorff
manifold.

The proof that (f) implies (a) does not require the Hausdorff property
but we do need the assumption that M is connected. (A manifold with
uncountably many connected components, each of which is paracompact, is
itself paracompact but does not admit a countable atlas.) Here is a sketch.
If M is a paracompact manifold then there is a locally finite open cover
{Uα}α∈A by coordinate charts. Since each set Uα has a countable dense
subset, the set {α ∈ A |Uα ∩ Uα0 6= ∅} is at most countable for each α0 ∈ A.
Since M is connected we can reach each point from Uα0 through a finite
sequence of sets Uα1 , . . . , Uα` with Uαi−1 ∩ Uαi 6= ∅. This implies that the
index set A is countable and hence M admits a countable atlas.
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Remark 1.128. A Riemann surface is a 1-dimensional complex manifold
(i.e. the coordinate charts take values in the complex plane C and the transi-
tion maps are holomorphic) with a Hausdorff topology. It is a deep theorem
in the theory of Riemann surfaces that every connected Riemann surface is
necessarily second countable (see [2]). Thus pathological examples of the
type discussed in Example 1.125 cannot be constructed with holomorphic
transition maps.

Exercise 1.129. Prove that every manifold is locally compact. Find an ex-
ample of a manifold M and a point p0 ∈M such that every closed neighbor-
hood of p0 is non-compact. Hint: The example is necessarly non-Hausdorff.

Exercise 1.130. Prove that a manifold M admits a countable atlas if and
only if it is σ-compact if and only if every open cover of M has a countable
subcover if and only if it is second countable. Hint: Every open set in Rm
has a countable base and is σ-compact.

Exercise 1.131. Prove that every manifold M ⊂ Rk (as in Definition 1.3)
is second countable.

Exercise 1.132. Prove that every connected component of a manifold M
is an open subset of M and is path-connected.

Our next goal is to carry over all the definitions from embedded manifolds
in Euclidean space to the intrinsic setting.

1.9.3 Smooth maps and diffeomorphisms

Definition 1.133. Let (M, {Uα, φα}α∈A) and (N, {Vβ, ψβ}β∈B) be smooth
manifolds. A map f : M → N is called smooth if it is continuous and the
map

fβα := ψβ ◦ f ◦ φ−1
α : φα(Uα ∩ f−1(Vβ))→ ψβ(Vβ) (1.55)

is smooth for every α ∈ A and every β ∈ B. It is called a diffeomorphism
if it is bijective and f and f−1 are smooth. The manifolds M and N are
called diffeomorphic if there exists a diffeomorphism f : M → N .

The reader may check that the notion of a smooth map is independent
of the atlas used in the definition, that compositions of smooth maps are
smooth, and that sums and products of smooth maps from M to R are
smooth.
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Exercise 1.134. Let M be a smooth m-dimensional manifold with an atlas
A = {Uα, φα}α∈A . Consider the quotient space

M̃ :=
⋃
α∈A
{α} × φα(Uα)/ ∼

where (α, x) ∼ (β, y) iff φ−1
α (x) = φ−1

β (y). Define an atlas on M̃ by

Ũα := {[α, x] |x ∈ φα(Uα)} , φ̃α([α, x]) := x.

Prove that M̃ is a smooth m-manifold and that it is diffeomorphic to M .

Exercise 1.135. Prove that CP1 is diffeomorphic to S2. Hint: Stereo-
graphic projection.

Remark 1.136. Sometimes one encounters a situation where a topological
space M admits in a natural way two atlases A and A ′ such that the
coordinate charts of A are not compatible with the coordinate charts of
A ′. However, this does not necessarily mean that (M,A ) and (M,A ′)
are not diffeomorphic; it only means that the identity map on M is not
a diffeomorphism between these different smooth structures. For example
on M = R the coordinate charts φ, ψ : R → R given by φ(x) := x and
ψ(x) := x3 define different smooth structures but the resulting manifolds
are diffeomorphic.

A fundamental question in differential topology is to decide if two given
smooth manifolds are diffeomorphic. For example, one can ask if a given
manifold that is homeomorphic to Rm is in fact diffeomorphic to Rm. A
surprising and deep fact in dimension m = 4 is that there are uncountably
many smooth manifolds that are all homeomorphic to R4 but no two of them
are diffeomorphic to each other.

1.9.4 Submanifolds

Definition 1.137. Let M be an m-manifold and n ∈ {0, 1, . . . ,m}. A subset
N ⊂M is called an n-dimensional submanifold of M if, for every p ∈ N ,
there is a local coordinate chart φ : U → Ω for M , defined on an an open
neighborhood U ⊂ M of p and with values in an open set Ω ⊂ Rn × Rm−n,
such that φ(U ∩N) = Ω ∩ (Rn × {0}) .

By Theorem 1.10 an m-manifold M ⊂ Rk in the sense of Definition 1.3
is a submanifold of Rk in the sense of Definition 1.137. By Theorem 1.40 the
notion of a submanifold N ⊂ M of a manifold M ⊂ Rk in Definition 1.37
agrees with the notion of a submanifold in Definition 1.137.
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Exercise 1.138. Let N be a submanifold of M . Show that if M is Hausdorff
so is N , and if M is paracompact so is N .

Exercise 1.139. Let N be a submanifold of M . Prove that there is an
open set U ⊂M such that N is closed in the relative topology of U .

Exercise 1.140. Let N be a submanifold of M and P be a submanifold
of N . Prove that P is a submanifold of M . Hint: Use Theorem 1.10.

1.9.5 Tangent spaces and derivatives

If M is a submanifold of Euclidean space and p ∈ M we have defined the
tangent space of M at p as the set of all derivatives γ̇(0) of smooth curves
γ : R → M that pass through p = γ(0). We cannot do this for manifolds
in the intrinsic sense, as the derivative of a curve has yet to be defined. In
fact, the purpose of introducing a tangent space of M is precisely to allow
us to define what we mean by the derivative of a smooth map. There are
two approaches. One is to introduce an appropriate equivalence relation on
the set of curves through p and the other is to use local coordinates.

Definition 1.141. Let M be a manifold with an atlas A = {Uα, φα}α∈A
and let p ∈ M . Two smooth curves γ0, γ1 : R → M with γ0(0) = γ1(0) = p
are called p-equivalent if for some (and hence every) α ∈ A with p ∈ Uα
we have

d

dt

∣∣∣∣
t=0

φα(γ0(t)) =
d

dt

∣∣∣∣
t=0

φα(γ1(t)).

We write γ0
p∼ γ1 if γ0 is p-equivalent to γ1 and denote the equivalence class

of a smooth curve γ : R → M with γ(0) = p by [γ]p. The tangent space
of M at p is defined as the set of equivalence classes

TpM := {[γ]p | γ : R→M is smooth and γ(0) = p} . (1.56)

Definition 1.142. Let M be a manifold with an atlas A = {Uα, φα}α∈A
and let p ∈ M . The tangent space of M at p is defined as the quotient
space

TpM :=
⋃
p∈Uα

{α} × Rm/ p∼ (1.57)

where the union runs over all α ∈ A with p ∈ Uα and

(α, ξ)
p∼ (β, η) ⇐⇒ d

(
φβ ◦ φ−1

α

)
(x)ξ = η, x := φα(p).

The equivalence class will be denoted by [α, ξ]p.
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In Definition 1.141 it is not immediately obvious that TpM is a vector
space. However, the quotient space (1.57) is obviously a vector space of
dimension m and there is a natural bijection given by

[γ]p 7→
[
α,

d

dt

∣∣∣∣
t=0

φα(γ(t))

]
p

(1.58)

for a smooth curve γ : R→M with γ(0) = p. Hence the set (1.56) is a vector
space as well. The reader may check that the map (1.58) is well defined and is
indeed a bijection between the quotient spaces (1.56) and (1.57). Moreover,
for each smooth curve γ : R → M with γ(0) = p we can now define the
derivative γ̇(0) ∈ TpM simply as the equivalence class

γ̇(0) := [γ]p ∼=
[
α,

d

dt

∣∣∣∣
t=0

φα(γ(t))

]
p

∈ TpM.

If f : M → N is a smooth map between two manifolds (M, {Uα, φα}α∈A)
and (N, {Vβ, ψβ}β∈B) we define the derivative

df(p) : TpM → Tf(p)N

by the formula
df(p)[γ]p := [f ◦ γ]f(p) (1.59)

for each smooth curve γ : R→M with γ(0) = p. Here we use (1.56). Under
the isomorphism (1.58) this corresponds to the linear map

df(p)[α, ξ]p := [β, dfβα(x)ξ]f(p), x := φα(p), (1.60)

for α ∈ A with p ∈ Uα and β ∈ B with f(p) ∈ Vβ, where fβα is given
by (1.55).

Remark 1.143. Think of N = Rn as a manifold with a single coordinate
chart, namely the identity map ψβ = id : Rn → Rn. For every q ∈ N = Rn
the tangent space TqN is then canonically isomorphic to Rn via (1.57). Thus
for every smooth map f : M → Rn the derivative of f at p ∈ M is a linear
map df(p) : TpM → Rn, and the formula (1.60) reads

df(p)[α, ξ]p = d(f ◦ φ−1
α )(x)ξ, x := φα(p).

This formula also applies to maps defined on some open subset of M . In-
particular, with f = φα : Uα → Rm we have

dφα(p)[α, ξ]p = ξ.

Thus the map dφα(p) : TpM → Rm is the canonical vector space isomor-
phism determined by α.
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With these definitions the derivative of f at p is a linear map and we have
the chain rule for the composition of two smooth maps as in Theorem 1.32.
In fact, all the theorems we have proved for embedded manifolds and their
proofs carry over almost word for word to the present setting. For example
we have the inverse function theorem, the notion of a regular value, the
implicit function theorem, the notion of an immersion, the notion of an
embedding, and the fact from Theorem 1.40 that a subset P ⊂ M is a
submanifold if and only if it is the image of an embedding.

Example 1.144 (Veronese embedding). The map

CP2 → CP5 : [z0 : z1 : z2] 7→ [z2
0 : z2

1 : z2
2 : z1z2 : z2z0 : z0z1]

is an embedding. (Exercise: Prove this.) It restricts to an embedding of
the real projective plane into RP5 and also gives rise to embeddings of RP2

into R4 as well as to the Roman surface: an immersion of RP2 into R3. (See
Example 1.16.) There are similar embeddings

CPn → CPN−1, N :=

(
n+ d

d

)
,

for all n and d, defined in terms of monomials of degree d in n+ 1 variables.
These are the Veronese embeddings.

Example 1.145 (Plücker embedding). The Grassmannian G2(R4) of 2-
planes in R4 is a smooth 4-manifold and can be expressed as the quotient
of the space F2(R4) of orthonormal 2-frames in R4 by the orthogonal group
O(2). (See Example 1.123.) Write an orthonormal 2-frame in R4 as a matrix

D =


x0 y0

x1 y1

x2 y2

x3 y3

 , DTD = 1l.

Then the map f : G2(R4)→ RP5, defined by

f([D]) := [p01 : p02 : p03 : p23 : p31 : p12], pij := xiyj − xjyi.,
is an embedding and its image is the quadric

X := f(G2(R4)) =
{
p ∈ RP5 | p01p23 + p02p31 + p03p12 = 0

}
.

(Exercise: Prove this.) There are analogous embeddings

f : Gk(Rn)→ RPN−1, N :=

(
n

k

)
,

for all k and n, defined in terms of the k × k-minors of the (orthonormal)
frames. These are the Plücker embeddings.
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1.9.6 The tangent bundle and vector fields

Let M be a m-manifold with an atlas A = {Uα, φα}α∈A. The tangent
bundle of M is defined as the disjoint union of the tangent spaces, i.e.

TM :=
⋃
p∈M
{p} × TpM = {(p, v) | p ∈M, v ∈ TpM} .

Denote by π : TM →M the projection given by π(p, v) := p.

Lemma 1.146. The tangent bundle of M is a smooth 2m-manifold with
coordinate charts

φ̃α : Ũα := π−1(Uα)→ φα(Uα)× Rm, φ̃α(p, v) := (φα(p), dφα(p)v) .

The projection π : TM →M is a submersion (a smooth map with surjective
derivative at each point). If M is second countable and Hausdorff so is TM .

Proof. For each pair α, β ∈ A the set φ̃α(Ũα ∩ Ũβ) = φα(Uα ∩ Uβ) × Rm is
open in Rm × Rm and the transition map

φ̃βα := φ̃β ◦ φ̃−1
α : φ̃α(Ũα ∩ Ũβ)→ φ̃β(Ũα ∩ Ũβ)

is given by
φ̃βα(x, ξ) = (φβα(x), dφβα(x)ξ)

for x ∈ φα(Uα∩Uβ) and ξ ∈ Rm where φβα := φβ ◦φ−1
α . Thus the transition

maps are all diffeomorphisms and so the coordinate charts φ̃α define an
atlas on TM . The topology on TM is determined by this atlas via (1.53).
If M has a countable atlas so does TM . The remaining assertions are easy
exercises.

Definition 1.147. Let M be a smooth m-manifold. A (smooth) vector
field on M is a collection of tangent vectors X(p) ∈ TpM , one for each
point p ∈ M , such that the map M → TM : p 7→ (p,X(p)) is smooth. The
set of smooth vector fields on M will be denoted by Vect(M).

Associated to a vector field is a smooth map M → TM whose composi-
tion with the projection π : TM → M is the identity map on M . Strictly
speaking this map should be denoted by a symbol other than X, for exam-
ple by X̃. However, it is convenient at this point, and common practice, to
slightly abuse notation and denote the map from M to TM also by X. Thus
a vector field can be defined as a smooth map X : M → TM such that

π ◦X = id : M →M.

Such a map is also called a section of the tangent bundle.
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Now suppose A = {Uα, φα}α∈A is an atlas on M and X : M → TM
is a vector field on M . Then X determines a collection of smooth maps
Xα : φα(Uα)→ Rm given by

Xα(x) := dφα(p)X(p), p := φ−1
α (x), (1.61)

for x ∈ φα(Uα). We can think of each Xα as a vector field on the open set
φα(Uα) ⊂ Rm, representing the vector field X on the coordinate patch Uα.
These local vector fields Xα satisfy the condition

Xβ(φβα(x)) = dφβα(x)Xα(x) (1.62)

for x ∈ φα(Uα ∩ Uβ). This equation can also be expressed in the form

Xα|φα(Uα∩Uβ) = φ∗βαXβ|φβ(Uα∩Uβ). (1.63)

Conversely, any collection of smooth maps Xα : φα(Uα) → Rm satisfy-
ing (1.62) determines a unique vectorfield X on M via (1.61). Thus we can
define the Lie bracket of two vector fields X,Y ∈ Vect(M) by

[X,Y ]α(x) := [Xα, Yα](x) = dXα(x)Yα(x)− dYα(x)Xα(x) (1.64)

for α ∈ A and x ∈ φα(Uα). It follows from equation (1.20) in Lemma 1.64
that the local vector fields [X,Y ]α : φα(Uα)→ Rm satisfy (1.63) and hence
determine a unique vector field [X,Y ] on M via

[X,Y ](p) := dφα(p)−1[Xα, Yα](φα(p)), p ∈ Uα. (1.65)

Thus the Lie bracket of X and Y is defined on Uα as the pullback of
the Lie bracket of the vector fields Xα and Yα under the coordinate chart
φα. With this understood all the results in Section 1.4 about vector fields
and flows along with their proofs carry over word for word to the intrin-
sic setting whenever M is a Hausdorff space. This includes the existence
and uniquess result for integral curves in Theorem 1.52, the concept of the
flow of a vector field in Definition 1.53 and its properties in Theorem 1.54,
the notion of completeness of a vector field (that the integral curves exist
for all time), and the various properties of the Lie bracket such as the Ja-
cobi identity (1.22), the formulas in Lemma 1.61, and the fact that the Lie
bracket of two vector fields vanishes if and only if the corresponding flows
commute (see Lemma 1.69). We can also introduce the notion of a subbun-
dle E ⊂ TM of rank n by the condition that E is a smooth submanifold
of TM and intersects each fiber TpM in an n-dimensional linear subspace
Ep := {v ∈ TpM | (p, v) ∈ E}. Then the characterization of subbundles in
Theorem 1.100 and the theorem of Frobenius 1.106 including their proofs
also carry over to the intrinsic setting.
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1.9.7 Leaves of a foliation

Let M be an m-dimensional paracompact Hausdorff manifold and E ⊂ TM
be an integrable subbundle of rank n. Let L ⊂ M be a closed leaf of the
foliation determined by E. Then L is a smooth n-dimensional submanifold
of M . Here is a sketch of David Epstein’s proof of this fact in [4].

(a) The space L with the intrinsic topology admits the structure of a mani-
fold such that the obvious inclusion ι : L→M is an injective immersion.
This is an easy exercise. For the definition of the intrinsic topology see
Exercise 1.114. The dimension of L is n.

(b) If f : X → Y is a continuous map between topological spaces such that Y
is paracompact and there is an open cover {Vj}j∈J of Y such that f−1(Vj)
is paracompact for each j, then X is paracompact. To see this, we may
assume that the cover {Vj}j∈J is locally finite. Now let {Uα}α∈A be an open
cover of X. Then the sets Uα ∩ f−1(Vj) define an open cover of f−1(Vj).
Choose a locally finite refinement {Wij}i∈Ij of this cover. Then the open
cover {Wij}j∈J, i∈Ij of M is a locally finite refinement of {Uα}α∈A.

(c) The intrinsic topology of L is paracompact. This follows from (b) and
the fact that the intersection of L with every foliation box is paracompact
in the intrinsic topology.

(d) The intrinsic topology of L is second countable. This follows from (a)
and (c) and the fact that every connected paracompact manifold is second
countable (see Remark 1.127).

(e) The intersection of L with a foliation box consists of at most countably
many connected components. This follows immediately from (d).

(f) If L is a closed subset of M then the intersection of L with a foliation
box has only finitely many connected components. To see this, we choose
a transverse slice of the foliation at p0 ∈ L, i.e. a connected submanifold
T ⊂ M through p0, diffeomorphic to an open ball in Rm−n, whose tangent
space at each point p ∈ T is a complement of Ep. By (d) we have that T ∩L
is at most countable. If this set is not finite, even after shrinking T , there
must be a sequence pi ∈ (T ∩L)\{p0} converging to p0. Using the holonomy
of the leaf (obtained by transporting transverse slices along a curve via a
lifting argument) we find that every point p ∈ T ∩ L is the limit point of a
sequence in (T ∩L) \ {p}. Hence the one-point set {p} has empty interior in
the relative topology of T ∩L for each p ∈ T ∩L. Thus T ∩L is a countable
union of closed subsets with empty interior. Since T ∩L admits the structure
of a complete metric space, this contradicts the Baire category theorem.

(g) It follows immediately from (f) that L is a submanifold of M .
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1.9.8 Coordinate notation

Fix a coordinate chart φα : Uα → Rm on anm-manifoldM . The components
of φα are smooth real valued functions on the open subset Uα of M and it
is customary to denote them by

x1, . . . , xm : Uα → R.

The derivatives of these functions at p ∈ Uα are linear functionals

dxi(p) : TpM → R, i = 1, . . . ,m. (1.66)

They form a basis of the dual space

T ∗pM := Hom(TpM,R).

(A coordinate chart on M can in fact be characterized as an m-tuple of real
valued functions on an open subset of M whose derivatives are everywhere
linearly independent and which, taken together, form an injective map.)
The dual basis of TpM will be denoted by

∂

∂x1
(p), . . . ,

∂

∂xm
(p) ∈ TpM (1.67)

so that

dxi(p)
∂

∂xj
(p) = δij :=

{
1, if i = j,
0, if i 6= j.

Thus ∂/∂xi is a vector field on the coordinate patch Uα. For each p ∈ Uα it
is the canonical basis of TpM determined by φα. In the notation of (1.57)
and Remark 1.143 we have

∂

∂xi
(p) = [α, ei]p = dφα(p)−1ei

where ei = (0, . . . , 0, 1, 0, . . . , 0) (with 1 in the ith place) denotes the stan-
dard basis vector of Rm. In other words, for every vector

ξ = (ξ1, . . . , ξm) ∈ Rm

and every p ∈ Uα, the tangent vector v := dφα(p)−1ξ ∈ TpM is given by

v = [α, ξ]p =
m∑
i=1

ξi
∂

∂xi
(p). (1.68)
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Thus the restriction of a vector field X ∈ Vect(M) to Uα has the form

X|Uα =

m∑
i=1

ξi
∂

∂xi

where ξ1, . . . , ξm : Uα → R are smooth real valued functions. If the map
Xα : φα(Uα) → Rm is defined by (1.61) then Xα ◦ φ−1

α = (ξ1, . . . , ξm).
The above notation is motivated by the observation that the derivative of
a smooth function f : M → R in the direction of a vector field X on a
coordinate patch Uα is given by

LXf |Uα =
m∑
i=1

ξi
∂f

∂xi
.

Here the term ∂f/∂xi is understood as first writing f as a function of
x1, . . . , xm, then taking the partial derivative, and afterwards expressing this
partial derivative again as a function of p. Thus ∂f/∂xi is the shorthand
notation for the function

(
∂
∂xi

(f ◦ φ−1
α )
)
◦ φα : Uα → R.

1.10 Partitions of unity

In geometry it is often necessary to turn a construction in local coordinates
into a global geometric object. A key technical tool for such “local to global”
constructions is an existence theorem for partitions of unity.

1.10.1 Definition and existence

Definition 1.148. Let M be a smooth manifold. A partition of unity on
M is a collection of smooth functions θα : M → [0, 1] for α ∈ A such that
each point p ∈ M has an open neighborhood V ⊂ M on which only finitely
many θα do not vanish, i.e.

# {α ∈ A | θα|V 6≡ 0} <∞, (1.69)

and, for every p ∈M , we have∑
α∈A

θα(p) = 1. (1.70)

If {Uα}α∈A is an open cover of M then a partition of unity {θα}α∈A (in-
dexed by the same set A) is called subordinate to the cover if each θα is
supported in Uα, i.e.

supp(θα) := {p ∈M | θα(p) 6= 0} ⊂ Uα.
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Theorem 1.149 (Partitions of unity). Let M be a manifold whose topol-
ogy is paracompact and Hausdorff. For every open cover of M there exists
a partition of unity subordinate to that cover.

Lemma 1.150. Let M be a Hausdorff manifold. For every open set V ⊂M
and every compact set K ⊂ V there is a smooth function κ : M → [0,∞)
wich compact support such that supp(κ) ⊂ V and κ(p) > 0 for every p ∈ K.

Proof. Assume first that K = {p0} is a single point. Since M is a mani-
fold it is locally compact. Hence there is a compact neighborhood C ⊂ V
of p0. Since M is Hausdorff C is closed and hence the set U := int(C) is a
neighborhood of p0 whose closure U ⊂ C is compact and contained in V .
Shrinking U , if necessary, we may assume that there is a coordinate chart
φ : U → Ω with values in some open neighborhood Ω ⊂ Rm of the origin
such that φ(p0) = 0. (Here m is the dimension of M .) Now choose a smooth
function κ0 : Ω → [0,∞) with compact support such that κ0(0) > 0. Then
the function κ : M → [0, 1] defined by κ|U := κ0 ◦ φ and κ(p) := 0 for
p ∈M \U is supported in V and satisfies κ(p0) > 0. This proves the lemma
in the case where K is a point.

Now let K be any compact subset of V . Then, by the first part of
the proof, there is a collection of smooth functions κp : M → [0,∞), one
for every p ∈ K, such that κp(p) > 0 and supp(κp) ⊂ V . Since K is
compact there are finitely many points p1, . . . , pk ∈ K such that the sets{
p ∈M |κpj (p) > 0

}
cover K. Hence the function κ :=

∑
j κpj is supported

in V and is everywhere positive on K. This proves the lemma.

Lemma 1.151. Let M be a topological space. If {Vi}i∈I is a locally finite
collection of open sets in M then⋃

i∈I0

Vi =
⋃
i∈I0

V i

for every subset I0 ⊂ I.

Proof. The set
⋃
i∈I0 V i is obviously contained in the closure of

⋃
i∈I0 Vi. To

prove the converse choose a point p0 ∈M \
⋃
i∈I0 V i. Since the collection

{Vi}i∈I is locally finite there is an open neighborhood U of p0 such that

I1 := {i ∈ I |Vi ∩ U 6= ∅}

is a finite set. Hence the set U0 := U \
⋃
i∈I0∩I1 V i is an open neighborhood

of p0 and we have U0 ∩ Vi = ∅ for every i ∈ I0. Hence p0 /∈
⋃
i∈I0 Vi.
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Proof of Theorem 1.149. Let {Uα}α∈A be an open cover of M . We prove in
four steps that there is a partition of unity subordinate to this cover. The
proofs of steps one and two are taken from [9, Lemma 41.6].

Step 1. There is a locally finite open cover {Vi}i∈I of M such that, for
every i ∈ I, the closure V i is compact and contained in one of the sets Uα.

Denote by V ⊂ 2M the set of all open sets V ⊂M such that V is compact
and V ⊂ Uα for some α ∈ A. Since M is a locally compact Hausdorff space
the collection V is an open cover of M . (If p ∈M then there is an α ∈ A such
that p ∈ Uα; since M is locally compact there is a compact neighborhood
K ⊂ Uα of p; since M is Hausdorff K is closed and thus V := int(K) is an
open neighborhood of p with V ⊂ K ⊂ Uα.) Since M is paracompact the
open cover V has a locally finite refinement {Vi}i∈I . This cover satisfies the
requirements of Step 1.

Step 2. There is a collection of compact sets Ki ⊂ Vi, one for each i ∈ I,
such that M =

⋃
i∈I Ki.

Denote by W ⊂ 2M the set of all open sets W ⊂ M such that W ⊂ Vi for
some i. Since M is a locally compact Hausdorff space, the collection W is an
open cover of M . Since M is paracompact W has a locally finite refinement
{Wj}j∈J . By the axiom of choice there is a map

J → I : j 7→ ij

such that

W j ⊂ Vij ∀ j ∈ J.

Since the collection {Wj}j∈J is locally finite, we have

Ki :=
⋃
ij=i

Wj =
⋃
ij=i

W j ⊂ Vi

by Lemma 1.151. Since V i is compact so is Ki.

Step 3. There is a partition of unity subordinate to the cover {Vi}i∈I .

Choose a collection of compact sets Ki ⊂ Vi for i ∈ I as in Step 2. Then,
by Lemma 1.150 and the axiom of choice, there is a collection of smooth
functions κi : M → [0,∞) with compact support such that

supp(κi) ⊂ Vi, κi|Ki > 0 ∀ i ∈ I.
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Since the cover {Vi}i∈I is locally finite the sum

κ :=
∑
i∈I

κi : M → R

is locally finite (i.e. each point in M has a neighborhood in which only
finitely many terms do not vanish) and thus defines a smooth function on M .
This function is everywhere positive, because each summand is nonnegative
and, for each p ∈ M , there is an i ∈ I with p ∈ Ki so that κi(p) > 0. Thus
the funtions χi := κi/κ define a partition of unity satisfying supp(χi) ⊂ Vi
for every i ∈ I as required.

Step 4. There is a partition of unity subordinate to the cover {Uα}α∈A.

Let {χi}i∈I be the partition of unity constructed in Step 3. By the axiom
of choice there is a map I → A : i 7→ αi such that Vi ⊂ Uαi for every i ∈ I.
For α ∈ A define θα : M → [0, 1] by

θα :=
∑
αi=α

χi.

Here the sum runs over all indices i ∈ I with αi = α. This sum is locally
finite and hence is a smooth function on M . Moreover, each point in M has
an open neighborhood in which only finitely many of the θα do not vanish.
Hence the sum of the θα is a well defined function on M and∑

α∈A
θα =

∑
α∈A

∑
αi=α

χi =
∑
i∈I

χi ≡ 1.

This shows that the functions θα form a partition of unity. To prove the
inclusion supp(θα) ⊂ Uα we consider the open sets

Wi := {p ∈M |χi(p) > 0}

for i ∈ I. Since Wi ⊂ Vi this collection is locally finite. Hence, by
Lemma 1.151, we have

supp(θα) =
⋃
αi=α

Wi =
⋃
αi=α

W i =
⋃
αi=α

supp(χi) ⊂
⋃
αi=α

Vi ⊂ Uα.

This proves the theorem.
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1.10.2 Embedding in Euclidean space

Theorem 1.152. For every compact m-manifold M with a Hausdorff topol-
ogy there is an integer k ∈ N and an embedding f : M → Rk.

Proof. Since M is compact it can be covered by finitely many coordinate
charts φi : Ui → Ωi, i = 1, . . . , `, onto open subset Ωi ⊂ Rm. By Theo-
rem 1.149, there is a partition of unity subordinate to the cover {Ui}i=1,...,`.
Thus there are smooth maps θ1, . . . , θ` : M → [0, 1] such that supp(θi) ⊂ Ui
for all i and

⋃
i Ui = M . Let k := `(m+ 1) and define f : M → Rk by

f(p) :=


θ1(p)

θ1(p)φ1(p)
...

θ`(p)
θ`(p)φ`(p)

 .

This map is injective. Namely, if p0, p1 ∈M satisfy f(p0) = f(p1) then

I := {i | θi(p0) > 0} = {i | θi(p1) > 0}

and for i ∈ I we have θi(p0) = θi(p1), hence φi(p0) = φi(p1), and hence
p0 = p1. Moreover, for every p ∈ M the derivative df(p) : TpM → Rk is
injective, and f is proper because M is compact. Hence f is an embedding
as claimed.

The number ` in the proof of Theorem 1.152 can actually be chosen less
than or equal to m + 1. However, this is a deep fact in algebraic topology
and we shall not address this question here. Assuming this, the proof of
Theorem 1.152 shows that every compact m-manifold M can be embedded
in Rk with k = (m + 1)2. Using Sard’s theorem one can in fact reduce the
dimension of the ambient space to k = 2m + 1 and a further trick, due to
Whitney, shows that a compact m-manifold can always be embedded into
R2m. Moreover, Theorem 1.152 can in fact be extended to noncompact
manifolds and one can show that a manifold admits an embedding into a
finite dimensional vector space if and only if it is Hausdorff and second
countable. However, we will not address this issue here.

Remark 1.153. The manifold RP2 cannot be embedded into R3. The same
is true for the the Klein bottle K := R2/ ≡ where the equivalence relation
is given by [x, y] ≡ [x+ k, `− y] for x, y ∈ R and k, ` ∈ Z.
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Standing assumption

We have seen that all the results in the first chapter carry over to the in-
trinsic setting, assuming that the topology of M is Hausdorff and paracom-
pact. In fact, in most cases it is enough to assume the Hausdorff property.
However, these results mainly deal with introducing the basic concepts like
smooth maps, embeddings, submersions, vector fields, flows, and verifying
their elementary properties, i.e. with setting up the language for differen-
tial geometry and topology. When it comes to the substance of the subject
we shall deal with Riemannian metrics and they only exist on paracompact
Hausdorff manifolds. Another central ingredient in differential topology is
the theorem of Sard and that requires second countability. To quote Moe
Hirsch [6]: “Manifolds that are not paracompact are amusing, but they never
occur naturally and it is difficult to prove anything about them.” Thus we
will set the following convention for the remaining chapters.

We assume from now on that each intrinsic manifold M
is Hausdorff and second countable and hence is also paracompact.

For most of this text we will in fact continue to develop the theory for
submanifolds of Euclidean space and indicate, wherever necessary, how to
extend the definitions, theorems, and proofs to the intrinsic setting.



Chapter 2

Geodesics

2.1 The length of a curve

The length of a smooth curve γ : [0, 1]→ Rn is the number

L(γ) :=

∫ 1

0
|γ̇(t)| dt, (2.1)

where |v| denotes the Euclidean norm of a vector v ∈ Rn. More gener-
ally, the length of a continuous function γ : [0, 1] → Rn can be defined as
the supremum of the expressions

∑N
i=1 |γ(ti)− γ(ti−1)| over all partitions

0 = t0 < t1 < · · · < tN = 1 of the unit interval. By a theorem in first year
analysis [12] this supremum is finite whenever γ is continuously differentiable
and is given by (2.1).

Remark 2.1. Every smooth curve γ : [0, 1]→ Rn with endpoints γ(0) = p
and γ(1) = q satisfies the inequality

L(γ) ≥
∣∣∣∣∫ 1

0
γ̇(t) dt

∣∣∣∣ = |p− q| .

For γ(t) := p+t(q−p) we have equality and hence the straight lines minimize
the length among all curves from p to q.

Remark 2.2 (Reparametrization). If γ : [0, 1] → Rn is a smooth curve
and α : [0, 1] → [0, 1] is a smooth function such that α(0) = 0, α(1) = 1,
and α̇(t) ≥ 0 for every t ∈ [0, 1] then

L(γ ◦ α) = L(γ).

81
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To see this, we compute

L(γ ◦ α) =

∫ 1

0

∣∣∣∣ ddt(γ(α(t))

∣∣∣∣ dt =

∫ 1

0
|γ̇(α(t))| α̇(t) dt = L(γ).

Here second equation follows from the chain rule and the fact that α̇(t) ≥ 0
for all t and the third equation follows from change of variables formula for
the Riemann integral. This proves the lemma.

Remark 2.3. Choosing α in Remark 2.2 such that α(t) = 0 for t sufficiently
close to 0 and α(t) = 1 for t sufficiently close to 1, we can reparametrize γ
to obtain a curve that is constant near t = 0 and near t = 1. And the
reparametrized curve has the same endpoints, the same image, and the
same length as the original curve.

M

p

q

p q

Figure 2.1: Curves in M .

Let us now assume that M ⊂ Rn is a connected smooth m-dimensional
submanifold. We examine the lengths of curves γ : [0, 1] → M with fixed
endpoints. Thus it may happen that two points on M have a very short
distance in Rn but can only be connected by very long curves in M (see
Figure 2.1). This leads to the notion of intrinsic distance in M . For p, q ∈M
we denote the space of smooth paths in M connecting p and q by

Ωp,q := {γ : [0, 1]→M | γ is smooth and γ(0) = p, γ(1) = q} . (2.2)

Since M is connected the set Ωp,q is nonempty for all p, q ∈M . (Prove this!)
We define the intrinsic distance function d : M ×M → [0,∞) by

d(p, q) := inf
γ∈Ωp,q

L(γ) (2.3)

for p, q ∈ M . The inequality d(p, q) ≥ 0 holds because each curve has
nonnegative length and the inequality d(p, q) <∞ holds because Ωp,q 6= ∅.
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Lemma 2.4. The function d : M ×M → [0,∞) defines a metric on M :

(i) If p, q ∈M with d(p, q) = 0 then p = q.

(ii) For all p, q ∈M we have d(p, q) = d(q, p).

(iii) For all p, q, r ∈M we have d(p, r) ≤ d(p, q) + d(q, r).

Proof. By Remark 2.1 we have

d(p, q) ≥ |p− q|

for all p, q ∈ Rn and this proves (i). Assertion (ii) follows from the fact that
the curve γ̃(t) := γ(1 − t) has the same length as γ and belongs to Ωq,p

whenever γ ∈ Ωp,q. To prove (iii) fix a constant ε > 0 and choose γ0 ∈ Ωp,q

and γ1 ∈ Ωq,r such that

L(γ0) < d(p, q) + ε, L(γ1) < d(q, r) + ε.

By Remark 2.3 we may assume without loss of generality that

γ0(1− t) = γ1(t) = q

for t sufficiently small. Under this assumption the curve

γ(t) :=

{
γ0(2t), for 0 ≤ t ≤ 1/2,
γ1(2t− 1), for 1/2 ≤ t ≤ 1,

is smooth and has endpoints γ(0) = p and γ(1) = r. Thus γ ∈ Ωp,r and

L(γ) = L(γ0) + L(γ1) < d(p, q) + d(q, r) + 2ε.

Hence d(p, r) < d(p, q) + d(q, r) + 2ε for every ε > 0. This proves (iii) and
the lemma.

Example 2.5. Let M = S2 be the unit sphere in R3 and fix two points
p, q ∈ S2. Then d(p, q) is the length of the shortest curve on the 2-sphere
connecting p and q. Such a curve is a segment on a great circle through p
and q (see Figure 2.2) and its length is

d(p, q) = cos−1(〈p, q〉), (2.4)

where 〈p, q〉 denotes the standard inner product, and we have

0 ≤ d(p, q) ≤ π.

(See Example 2.23 below for details.) By Lemma 2.4 this defines a metric
on S2. Exercise: Prove directly that (2.4) is a distance function on S2.
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q

p

Figure 2.2: A geodesic on the 2-sphere.

We now have two topologies on our manifold M ⊂ Rn, namely the
topology determined by the metric d in Lemma 2.4 and the relative topol-
ogy inherited from Rn. The latter is also determined by a distance function,
namely the extrinsic distance function defined as the restriction of the Eu-
clidean distance function on Rn to the subset M . We denote it by

d0 : M ×M → [0,∞), d0(p, q) := |p− q| .

A natural question is now if these two metrics d and d0 induce the same
topology on M . In other words is a subset U ⊂M open with respect to d0

if and only if it is open with respect to d? Or, equivalently, does a sequence
pν ∈ M converge to p0 ∈ M with respect to d if and only if it converges to
p0 with respect to d0? Lemma 2.7 answers this question in the affirmative.

Exercise 2.6. Prove that every translation of Rn and every orthogonal
transformation preserves the lengths of curves.

Lemma 2.7. For every p0 ∈M we have

lim
p,q→p0

d(p, q)

|p− q|
= 1.

In other words, for every p0 ∈ M and every ε > 0 there is an open neigh-
borhood U ⊂M of p0 such that, for all p, q ∈ U , we have

(1− ε) |p− q| ≤ d(p, q) ≤ (1 + ε) |p− q| .

Proof. We have already observed that

|p− q| ≤ d(p, q)

for all p, q ∈M (see Remark 2.1). Now fix a point p0 ∈M . By Exercise 2.6
we may assume without loss of generality that

p0 = 0, T0M = Rm × {0}.
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Then there is a smooth function f : Ω → Rn−m, defined on an open neigh-
borhood Ω ⊂ Rm of the origin such that

M ⊃
{

(x, y) ∈ Rm × Rn−m |x ∈ Ω, y = f(x)
}
, f(0) = 0, df(0) = 0.

Moreover, the graph of f is an open subset of M in the relative topology.
Choose δ > 0 such that, for all x ∈ Rm, we have

|x| < δ =⇒ x ∈ Ω and |df(x)| < ε

and define
U := {(x, f(x)) |x ∈ Rm, |x| < δ} .

This is an open subset M . We prove that δ and U satisfy the assertion of
the lemma. Thus let p = (x0, f(x0)) and q = (x1, f(x1)) be two points in U
and consider the curve γ : [0, 1]→ U defined by

γ(t) := (x(t), f(x(t)), x(t) := (1− t)x0 + tx1.

This curve satisfies γ(0) = p, γ(1) = q, and

|γ̇(t)|2 = |ẋ(t)|2 + |df(x(t))ẋ(t)|2

≤ |ẋ(t)|2 + |df(x(t))|2 |ẋ(t)|2

≤ (1 + ε2) |ẋ(t)|2

= (1 + ε2) |x0 − x1|2

≤ (1 + ε)2 |p− q|2 .

This implies
d(p, q) ≤ L(γ) ≤ (1 + ε) |p− q|

and the lemma is proved.

A next question one might ask is: Can we choose a coordinate chart

φ : U → Ω

on M with values in an open set Ω ⊂ Rm so that the length of each smooth
curve γ : [0, 1]→ U is equal to the length of the curve c := φ◦γ : [0, 1]→ Ω?
We examine this question by considering the inverse map

ψ := φ−1 : Ω→ U.

We denote the components of x and ψ(x) by

x = (x1, . . . , xm) ∈ Ω, ψ(x) = (ψ1(x), . . . , ψn(x)) ∈ U.
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Given a smooth curve [0, 1]→ Ω : t 7→ c(t) = (c1(t), . . . , cm(t)) we can write
the length of the composition γ = ψ ◦ c : [0, 1]→M in the form

L(ψ ◦ c) =

∫ 1

0

∣∣∣∣ ddtψ(c(t))

∣∣∣∣ dt
=

∫ 1

0

√√√√ n∑
ν=1

(
d

dt
ψν(c(t))

)2

dt

=

∫ 1

0

√√√√ n∑
ν=1

(
m∑
i=1

∂ψν

∂xi
(c(t))ċi(t)

)2

dt

=

∫ 1

0

√√√√ n∑
ν=1

m∑
i,j=1

∂ψν

∂xi
(c(t))

∂ψν

∂xj
(c(t))ċi(t)ċj(t) dt

=

∫ 1

0

√√√√ m∑
i,j=1

ċi(t)gij(c(t))ċj(t) dt,

where the functions gij : Ω→ R are defined by

gij(x) :=
n∑
ν=1

∂ψν

∂xi
(x)

∂ψν

∂xj
(x) =

〈
∂ψ

∂xi
(x),

∂ψ

∂xj
(x)

〉
. (2.5)

Thus we have a smooth function g = (gij) : Ω → Rm×m with values in the
positive definite matrices given by

g(x) = dψ(x)Tdψ(x)

such that

L(ψ ◦ c) =

∫ 1

0

√
ċ(t)T g(c(t))ċ(t) dt (2.6)

for every smooth curve c : [0, 1] → Ω. Thus the condition L(ψ ◦ c) = L(c)
for every such curve is equivalent to

gij(x) = δij

for all x ∈ Ω or, equivalently,

dψ(x)Tdψ(x) = 1l. (2.7)

This means that ψ preserves angles and areas. The next example shows that
for M = S2 it is impossible to find such coordinates.
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Example 2.8. Consider the manifold M = S2. If there is a diffeomorphism
ψ : Ω → U from an open set Ω ⊂ S2 onto an open set U ⊂ S2 that
satisfies (2.7) it has to map straight lines onto arcs of great circles and it
preserves the area. However, the area A of a spherical triangle bounded by
three arcs on great circles satisfies the angle sum formula

α+ β + γ = π +A.

(See Figure 2.3.) Hence there can be no such map ψ.

Aβ

α

γ

Figure 2.3: A spherical triangle.

2.2 Geodesics

Let M ⊂ Rn be an m-dimensional connected submanifold. We will address
the following question. Given two points p, q ∈M is there is a smooth curve
γ : [0, 1]→M with endpoints γ(0) = p and γ(1) = q satisfying

L(γ) = d(p, q)

so that γ minimizes the length functional L : Ωp,q → R among all curves
in Ωp,q? To address this question it is convenient to modify the problem and
consider instead the energy functional E : Ωp,q →M defined by

E(γ) :=
1

2

∫ 1

0
|γ̇(t)|2 dt.

The advantage is that the function E is smooth in the appropriate sense (to
be made more precise below) while the length fnctional L is only smooth
at those points γ ∈ Ωp,q that satisfy γ̇(t) 6= 0 for all t. Our goal is to
examine the critical points of the functionals L and E. This requires some
preparation.
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2.2.1 The orthogonal projection onto TpM

For p ∈M let Π(p) ∈ Rn×n be the orthogonal projection onto TpM . Thus

Π(p) = Π(p)2 = Π(p)T (2.8)

and
Π(p)v = v ⇐⇒ v ∈ TpM (2.9)

for p ∈ M and v ∈ Rn (see Exercise 1.99). We have seen in Theorem 1.100
and Corollary 1.101 that the map Π : M → Rn×n is smooth.

Example 2.9. Consider the case n = m + 1. Thus M ⊂ Rm+1 is a sub-
manifold of codimension 1. By Corollary 1.102 the normal bundle TM⊥

is a vector bundle of rank 1 over M and hence each fiber Ep = TpM
⊥ is

spanned by a single unit vector ν(p) ∈ Rm. Note that the vector ν(p) ∈ Sm
is determined by the tangent space TpM up to a sign. By Theorem 1.100
each point p0 ∈ M has an open neighborhood U ⊂ M on which there is a
smooth function ν : U → Rm+1 satisfying

ν(p) ⊥ TpM, |ν(p)| = 1 (2.10)

for p ∈ U (see Figure 2.4). Such a map ν is called a Gauss map. The
function Π : M → Rn×n is in this case given by

Π(p) = 1l− ν(p)ν(p)T , p ∈ U. (2.11)

T M

 M

pν(  )

p

Figure 2.4: A unit normal vector field.

Example 2.10. In the case M = S2 ⊂ R3 we have ν(p) = p and hence

Π(p) = 1l− ppT =

 1− x2 −xy −xz
−yx 1− y2 −yz
−zx −zy 1− z2


for every p = (x, y, z) ∈ S2.
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Example 2.11. If f : U → Rn−m is a smooth function, 0 ∈ Rn−m is a
regular value of f , and U ∩M = f−1(0) then TpM = ker df(p) and

Π(p) = 1l− df(p)T
(
df(p)df(p)T

)−1
df(p)

for every p ∈ U ∩M . (Prove this!)

Example 2.12. If ψ : Ω → M is a smooth embedding of an open set
Ω ⊂ Rm then

Π(ψ(x)) = dψ(x)
(
dψ(x)Tdψ(x)

)−1
dψ(x)T

for every x ∈ Ω. (See the proof of Corollary 1.101.)

Example 2.13 (The Möbius strip). Consider the submanifold M ⊂ R3

given by

M :=

(x, y, z) ∈ R3

∣∣∣∣∣
x = (1 + r cos(θ/2)) cos(θ),
y = (1 + r cos(θ/2)) sin(θ),
z = r sin(θ/2), r, θ ∈ R, |r| < ε


for ε > 0 sufficiently small. Show that there does not exist a global smooth
function ν : M → R3 satisfying (2.10).

2.2.2 The covariant derivative

Let I ⊂ R be an open interval and γ : I →M be a smooth curve. A vector
field along γ is a smooth map X : I → Rn such that X(t) ∈ Tγ(t)M for
every t ∈ I (see Figure 2.5). The set of smooth vector fields along γ is a real
vector space and will be denoted by

Vect(γ) :=
{
X : I → Rn |X is smooth and X(t) ∈ Tγ(t)M ∀ t ∈ I

}
.

X(t)

tγ( )

 M

Figure 2.5: A vector field along a curve.
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The first derivative Ẋ(t) of a vector field along γ at t ∈ I will, in general,
not be tangent to M . We may decompose it as a sum of a tangent vector
and a normal vector in the form

Ẋ(t) = Π(γ(t))Ẋ(t) +
(
1l−Π(γ(t))

)
Ẋ(t),

where Π : M → Rn×n is defined by (2.8) and (2.9). The tangential compo-
nent of this decomposition plays an important geometric role. It is called
the covariant derivative of X at t ∈ I and will be denoted by

∇X(t) := Π(γ(t))Ẋ(t) ∈ Tγ(t)M. (2.12)

This is a smooth vector field along γ. Thus the covariant derivative defines
a linear operator ∇ : Vect(γ) → Vect(γ). A vector field X ∈ Vect(γ) is
called parallel if it belongs to the kernel of this operator so that ∇X ≡ 0.

Remark 2.14. For every vector field X ∈ Vect(γ) and every t ∈ I we have

∇X(t) = 0 ⇐⇒ Ẋ(t) ⊥ Tγ(t)M.

In particular, γ̇ is a vector field along γ and ∇γ̇(t) = Π(γ(t))γ̈(t). Hence,
for every t ∈ I, we have ∇γ̇(t) = 0 if and only if γ̈(t) ⊥ Tγ(t)M .

Remark 2.15. For any two vector fields X,Y ∈ Vect(γ) along γ we have

d

dt
〈X,Y 〉 = 〈∇X,Y 〉+ 〈X,∇Y 〉. (2.13)

2.2.3 The space of paths

Fix two points p, q ∈M . We may think of the space Ωp,q of smooth paths in
M connecting p to q as a kind of “infinite dimensional manifold”. This is to
be understood in a heuristic sense and we use these terms here to emphasize
an analogy. Of course, the space Ωp,q is not a manifold in the strict sense
of the word. To begin with it is not embedded in any finite dimensional
Euclidean space. However, it has many features in common with manifolds.
The first is that we can speak of smooth curves in Ωp,q. Of course Ωp,q is
itself a space of curves in M . Thus a smooth curve in Ωp,q would then be a
curve of curves, namly a map

R→ Ωp,q : s 7→ γs

that assigns to each real number a smooth curve γs : [0, 1] → M satisfying
γs(0) = p and γs(1) = q. We shall call such a curve of curves smooth if the
associated map R× [0, 1]→M : (s, t) 7→ γs(t) is smooth.



2.2. GEODESICS 91

Having defined what we mean by a smooth curve in Ωp,q we can also
differentiate such a curve with respect to s. Here we can simply recall that,
since M ⊂ Rn, we have a smooth map R× [0, 1]→ Rn and the derivative of
the curve s 7→ γs in Ωp,q can simply be understood as the partial derivative of
the map (s, t) 7→ γs(t) with respect to s. Thus, in analogy with embedded
manifolds, we define the tangent space of the space of curves Ωp,q at γ
as the set of all derivatives of smooth curves R → Ωp,q : s 7→ γs passing
through γ:

TγΩp,q :=

{
∂

∂s

∣∣∣∣
s=0

γs

∣∣∣∣R→ Ωp,q : s 7→ γs is smooth and γ0 = γ

}
.

Let us denote such a partial derivative by

X(t) :=
∂

∂s

∣∣∣∣
s=0

γs(t) ∈ Tγ(t)M.

Thus we obtain a smooth vector field along γ. Since γs(0) = p and γs(1) = q
for all s, this vector field must vanish at t = 0, 1. This suggests the formula

TγΩp,q = {X ∈ Vect(γ) |X(0) = 0, X(1) = 0} . (2.14)

That every tangent vector of the path space Ωp,q at γ is a vector field along γ
vanishing at the endpoints follows from the above discussion. The converse
inclusion is the content of the next exercise.

Exercise 2.16. Verify equation (2.14) for γ ∈ Ωp,q. Namely, for every
smooth vector field X ∈ Vect(γ) along γ satisfying

X(0) = 0, X(1) = 0,

there is a smooth curve R→ Ωp,q : s 7→ γs satisfying

γ0 = γ,
∂

∂s

∣∣∣∣
s=0

γs = X. (2.15)

Hint: Construct a smooth map [0, 1] × Ω → M : (t, x) 7→ ψt(x), for some
open neighborhood Ω ⊂ Rm of zero, such that each map ψt : Ω → M is a
diffeomorphism onto an open set Ut ⊂M satisfying ψt(0) = γ(t).
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2.2.4 Critical points of E and L

We can now define the derivative of the energy functional E : Ωp,q → R
at γ in the direction of a tangent vector X ∈ TγΩp,q by

dE(γ)X :=
d

ds

∣∣∣∣
s=0

E(γs) (2.16)

for X ∈ TγΩp,q, where R → Ωp,q : s 7→ γs is a smooth curve of curves
satisfying (2.15). This defines rise to a linear map

dE(γ) : TγΩp,q → R.

Similarly, the derivative of the length functional L : Ωp,q → R at γ is
the linear map

dL(γ) : TγΩp,q → R,

defined by

dL(γ)X :=
d

ds

∣∣∣∣
s=0

L(γs) (2.17)

for X ∈ TγΩp,q where s 7→ γs is chosen as before. However, care must
be taken. To even define the expressions (2.16) and (2.17) the functions
s 7→ E(γs) and s 7→ L(γs) must be differentiable at the origin. This is
no problem in the case of E but it only holds for L when γ̇(t) 6= 0 for
all t ∈ [0, 1]. Second we must show that the right hand sides of (2.16)
and (2.17) depend only on X and not on the choice of the curve of curves
s 7→ γs satisfying (2.15). Third one needs to verify that the maps dE(γ)
and dL(γ) are indeed linear. All this is an exercise in first year analysis
which we leave to the reader (see also the proof of Theorem 2.17 below). A
curve γ ∈ Ωp,q is called a critical point of E if dE(γ) = 0 and, in the case
γ̇(t) 6= 0 for all t, it is called a critical point of L if dL(γ) = 0.

Theorem 2.17. Let γ ∈ Ωp,q. Then the following are equivalent.

(i) γ is a critical point of E.

(ii) Either γ(t) ≡ p = q or

|γ̇(t)| ≡ c 6= 0

and γ is a critical point of L.

(iii) ∇γ̇(t) ≡ 0.

Definition 2.18. Let M ⊂ Rn be an m-dimensional submanifold and I ⊂ R
be an interval. A smooth curve γ : I →M is called a geodesic if ∇γ̇ ≡ 0.



2.2. GEODESICS 93

Proof of Theorem 2.17. We prove that (i) is equivalent to (iii). Let

X ∈ TγΩp,q

be given and choose a smooth curve of curves R → Ωp,q : s 7→ γs that
satisfies (2.15). Then the function (s, t) 7→ |γ̇s(t)|2 is smooth and hence we
can interchange differentiation with respect to the s-variable and integration
with respect to the t-variable. Thus

dE(γ)X =
d

ds

∣∣∣∣
s=0

E(γs)

=
d

ds

∣∣∣∣
s=0

1

2

∫ 1

0
|γ̇s(t)|2 dt

=
1

2

∫ 1

0

∂

∂s

∣∣∣∣
s=0

|γ̇s(t)|2 dt

=

∫ 1

0

〈
γ̇(t),

∂

∂s

∣∣∣∣
s=0

γ̇s(t)

〉
dt

=

∫ 1

0

〈
γ̇(t), Ẋ(t)

〉
dt

= −
∫ 1

0
〈γ̈(t), X(t)〉 dt.

That (iii) implies (i) follows immediately from this identity. Conversely,
suppose that γ is a critical point of E and that there is a point t0 ∈ [0, 1]
such that ∇γ̇(t0) 6= 0. Then, by Remark 2.14, γ̈(t0) is not orthogonal to
Tγ(t0)M . We assume without loss of generality that 0 < t0 < 1. and choose
a vector v0 ∈ Tγ(t0)M such that 〈γ̈(t0), v0〉 > 0. Hence there is a constant
ε > 0 such that 0 < t0 − ε < t0 + ε < 1 and

t0 − ε < t < t0 + ε =⇒ 〈γ̈(t),Π(γ(t))v0〉 > 0.

Choose a smooth cutoff function β : [0, 1] → [0, 1] such that β(t) = 0 for
|t− t0| ≥ ε and β(t0) = 1. Define X ∈ TγΩp,q by

X(t) := β(t)Π(γ(t))v0.

Then 〈γ̈(t), X(t)〉 ≥ 0 for all t and 〈γ̈(t0), X(t0)〉 > 0. Hence

dE(γ)X = −
∫ 1

0
〈γ̈(t), X(t)〉 dt < 0

and this contradicts (i). Thus we have proved that (i) is equivalent to (iii).
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We prove that (i) is equivalent to (ii). Assume first that γ satisfies (i).
Then γ also satisfies (iii) and hence γ̈(t) ⊥ Tγ(t)M for all t ∈ [0, 1]. This
implies

0 = 〈γ̈(t), γ̇(t)〉 =
1

2

d

dt
|γ̇(t)|2 .

Hence the function t 7→ |γ̇(t)|2 is constant. Choose c ≥ 0 such that |γ̇(t)| ≡ c.
If c = 0 then γ(t) is constant and thus γ(t) ≡ p = q. If c > 0 we have

dL(γ)X =
d

ds

∣∣∣∣
s=0

L(γs)

=
d

ds

∣∣∣∣
s=0

∫ 1

0
|γ̇s(t)| dt

=

∫ 1

0

∂

∂s

∣∣∣∣
s=0

|γ̇s(t)| dt

=

∫ 1

0

〈
γ̇(t), ∂

∂s

∣∣
s=0

γ̇s(t)
〉

|γ̇(t)|
dt

=
1

c

∫ 1

0

〈
γ̇(t), Ẋ(t)

〉
dt

=
1

c
dE(γ)X.

Thus, in the case c > 0, γ is a critical point of E if and only if it is a critical
point of L. Hence (i) is equivalent to (ii) and this proves the theorem.

As we have seen in Remark 2.2 the length of a curve remains unchanged
under reparametrization. This implies that if a path γ ∈ Ωp,q (satisfying
γ̇(t) 6= 0 for all t) is a critical point of L then each reparametrization of γ is
still a critical point of L; only the unique reparametrization for which |γ̇(t)|
is constant is also a critical point of E.

Exercise 2.19. Let γ : [0, 1] → M be a smooth curve satisfying γ̇(t) 6= 0
for every t. Prove that there is a unique smooth map α : [0, 1] → [0, 1]
satisfying α(0) = 0, α(1) = 1, α̇(t) > 0, such that the derivative of γ ◦α has
constant norm.

Theorem 2.17 still does not answer the question of the existence of a
curve that minimizes the length among all curves with the same endpoints.
However it characterizes the critical points of the energy and length function-
als and thus gives us a necessary condition that energy-minimizing curves
must satisfy.
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2.3 Christoffel symbols

We examine the covariant derivative and the geodesic equation in local coor-
dinates on an embedded manifold M ⊂ Rn of dimension m. Let φ : U → Ω
be a coordinate chart on an open set U ⊂ M with values in an open set
Ω ⊂ Rm and denote its inverse by ψ : Ω→M . Let

c = (c1, . . . , cm) : I → Ω

be a smooth curve in Ω, defined on an interval I ⊂ R, and consider the curve

γ = ψ ◦ c : I →M

(see Figure 2.6). Our goal is to understand the equation ∇γ̇ = 0 or, more
generally, to describe the operator X 7→ ∇X on the space of vector fields
along γ in local coordinates.

tγ( )

X(t)

c(t)

U

Ω

ψ

φ

 M

ξ( )t

Figure 2.6: A vector field along a curve in local coordinates.

Let X : I → Rn be a vector field along γ. Then

X(t) ∈ Tγ(t)M = Tψ(c(t))M = im
(
dψ(c(t)) : Rm → Rn

)
for every t ∈ I and hence there is a unique smooth function

ξ = (ξ1, . . . , ξm) : I → Rm

such that

X(t) = dψ(c(t))ξ(t) =
m∑
i=1

ξi(t)
∂ψ

∂xi
(c(t)). (2.18)
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Differentiating this identity we obtain

Ẋ(t) =

m∑
i=1

ξ̇i(t)
∂ψ

∂xi
(c(t)) +

m∑
i,j=1

ξi(t)ċj(t)
∂2ψ

∂xi∂xj
(c(t)). (2.19)

We examine the projection ∇X(t) = Π(γ(t))Ẋ(t) of this vector onto the
tangent space of M at γ(t). The first summand on the right in (2.19) is
already tangent to M . For the second summand we simply observe that the
vector Π(ψ(x))∂2ψ/∂xi∂xj lies in tangent space Tψ(x)M and can therefore be
expressed as a linear combination of the basis vectors ∂ψ/∂x1, . . . , ∂ψ/∂xm.
The coefficients will be denoted by Γkij(x). Thus there are smooth functions

Γkij : Ω→ R for i, j, k = 1, . . . ,m defined by

Π(ψ(x))
∂2ψ

∂xi∂xj
(x) =

m∑
k=1

Γkij(x)
∂ψ

∂xk
(x) (2.20)

for x ∈ Ω and i, j ∈ {1, . . . ,m}. The coefficients Γkij are called the Christof-
fel symbols. To sum up we have proved the following.

Lemma 2.20. Let c : I → Ω be a smooth curve and denote γ := ψ ◦ c : I →
M . If ξ : I → Rm is a smooth map and X ∈ Vect(γ) is given by (2.18) then
its covariant derivative at time t ∈ I is given by

∇X(t) =
m∑
k=1

(
ξ̇k(t) + Γkij(c(t))ξ

i(t)ċj(t)
) ∂ψ

∂xk
(c(t)), (2.21)

where the Γkij are the Christoffel symbols defined by (2.20).

Corollary 2.21. Let M ⊂ Rn be an m-dimensional submanifold and φ :
U → Ω be a coordinate chart on M with inverse ψ := φ−1 : Ω → U . Let
Γkij : Ω→ R be the Christoffel symbols defined by (2.20). Let c : I → Ω be a
smooth curve. Then the curve γ := ψ ◦ c : I → M is a geodesic if and only
if c satisfies the 2nd order differential equation

c̈k +
m∑

i,j=1

Γkij(c)ċ
iċj = 0 (2.22)

for k = 1, . . . ,m.

Proof. This follows immediately from the definition of geodesics and equa-
tion (2.21) in Lemma 2.20 with X = γ̇ and ξ = ċ.
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Corollary 2.22. Let M ⊂ Rn be an m-dimensional submanifold.

(i) For every p ∈ M and every v ∈ TpM there is an ε > 0 and a smooth
curve γ : (−ε, ε)→M such that

∇γ̇ ≡ 0, γ(0) = p, γ̇(0) = v. (2.23)

(iI) If γ1 : I1 →M and γ2 : I2 →M are geodesics and t0 ∈ I1 ∩ I2 with

γ1(t0) = γ2(t0), γ̇1(t0) = γ̇2(t0)

then γ1(t) = γ2(t) for all t ∈ I1 ∩ I2.

Proof. Let φ : U → Ω be a coordinate chart on an open neighborhood
U ⊂M of p and let Γkij : Ω→ R be the Christoffel symbols defined by (2.20)

with ψ := φ−1. Let x0 := φ(p) and ξ0 := dφ(p)v. Then γ : (−ε, ε)→ U is a
solution of (2.23) if and only if c := φ ◦ γ is a solution of the second order
differential equation (2.22) with the initial condition c(0) = x0 and ċ(0) = ξ0.
Hence it follows from the existence and uniqueness theorem for solutions of
ordinary differential equation that the initial value problem (2.23) has a
solution γ : (−ε, ε)→ U for some ε > 0 and that any two solutions of (2.23)
with images in U agree on the intersection of their domains. To prove the
global uniqueness statement in Corollary 2.22 we define the set

A := {t ∈ I1 ∩ I2 | γ1(t) = γ2(t), γ̇1(t) = γ̇2(t)} .

This set is obviously closed and nonempty because t0 ∈ A. Moreover, it is
open by the local uniqueness result just proved. Since I1 ∩ I2 is connected
we obtain A = I1 ∩ I2 and this proves the corollary.

Example 2.23. Let Sm ⊂ Rm+1 be the unit sphere. Given a point p ∈ Sm
and a nonzero tangent vector v ∈ TpS

m = p⊥, the geodesic γ : R → Sm

with γ(0) = p and γ̇(0) = v is given by

γ(t) = cos(t |v|)p+
sin(t |v|)
|v|

v

for t ∈ R. Indeed, γ̇(t) is perpendicular to γ(t) for every t. With q := γ(1)
we have L(γ|[0,1]) = |v| and, in the case 0 ≤ |v| ≤ π there is no shorter curve
in Sm connecting p and q. (Exercise: Prove this!) Hence the intrinsic
distance on Sm is given by

d(p, q) = cos−1(〈p, q〉) (2.24)

for p, q ∈ Sm.
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Our next goal is to understand how the Christoffel symbols are deter-
mined by the metric in local coordinates. Recall from equation (2.5) that the
inner products on the tangent spaces inherited from the standard Euclidean
inner product on the ambient space Rn are in local coordinates represented
by the matrix function

g = (gij)
m
i,j=1 : Ω→ Rm×m

given by

gij :=

〈
∂ψ

∂xi
,
∂ψ

∂xj

〉
Rn
. (2.25)

We shall see that the Christoffel symbols are completely determined by the
functions gij : Ω→ R. Here are first some elementary observations.

Remark 2.24. The matrix g(x) ∈ Rm×m is symmetric and positive definite
for every x ∈ Ω. This follows from the fact that the matrix dψ(x) ∈ Rn×m
has rank m and

〈ξ, g(x)η〉Rm = 〈dψ(x)ξ, dψ(x)η〉Rn

for all x ∈ Ω and ξ, η ∈ Rm.

Remark 2.25. For x ∈ Ω we denote the entries of the inverse matrix
g(x)−1 ∈ Rm×m by gk`(x). They are determined by the condition

m∑
j=1

gij(x)gjk(x) = δki =

{
1, if i = k,
0, if i 6= k.

Since g(x) is symmetric and positive definite, so is its inverse matrix g(x)−1.
In particular we have gk`(x) = g`k(x) for all x ∈ Ω and k, ` ∈ {1, . . . ,m}.

Remark 2.26. Suppose X,Y ∈ Vect(γ) are vector fields along our curve
γ = ψ ◦ c : I →M and ξ, η : I → Rm are defined by

X(t) =
m∑
i=1

ξi(t)
∂ψ

∂xi
(c(t)), Y (t) =

m∑
j=1

ηj(t)
∂ψ

∂xj
(c(t)).

Then the inner product of X and Y is given by

〈X(t), Y (t)〉 =

m∑
i,j=1

gij(c(t))ξ
i(t)ηj(t).
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Theorem 2.27 (Christoffel symbols). Let Ω ⊂ Rm be an open set and

gij : Ω→ R, i, j = 1, . . . ,m,

be smooth functions such that each matrix (gij(x))mi,j=1 is symmetric and

positive definite. Let Γkij : Ω→ R be smooth functions for i, j, k = 1, . . . ,m.

Then the Γkij satisfy the conditions

Γkij = Γkji,
∂gij
∂xk

=
m∑
`=1

(
gi`Γ

`
jk + gj`Γ

`
ik

)
(2.26)

for i, j, k = 1, . . . ,m if and only if they are given by

Γkij =

m∑
`=1

gk`
1

2

(
∂g`i
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
. (2.27)

If the Γkij are defined by (2.20) and the gij by (2.25), then the Γkij sat-
isfy (2.26) and hence are given by (2.27).

Proof. Suppose that the Γkij are given by (2.20) and the gij by (2.25). Let
c : I → Ω and ξ, η : I → Rm be smooth functions and suppose that the
vector fields X,Y along the curve

γ := ψ ◦ c : I →M

are given by

X(t) :=

m∑
i=1

ξi(t)
∂ψ

∂xi
(c(t)), Y (t) :=

m∑
j=1

ηj(t)
∂ψ

∂xj
(c(t)).

Then, by Remark 2.26 and Lemma 2.20, we have

〈X,Y 〉 =
∑
i,j

gij(c)ξ
iηj ,

〈X,∇Y 〉 =
∑
i,`

gi`(c)ξ
i
(
η̇` + Γ`jk(c)η

j ċk
)
,

〈∇X,Y 〉 =
∑
j,`

g`j(c)
(
ξ̇` + Γ`ik(c)ξ

iċk
)
ηj .
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Here we have dropped the argument t in each term. Hence it follows from
equation (2.13) in Remark 2.15 that

0 =
d

dt
〈X,Y 〉 − 〈X,∇Y 〉 − 〈∇X,Y 〉

=
∑
i,j

(
gij ξ̇

iηj + gijξ
iη̇j +

∑
k

∂gij
∂xk

ξiηj ċk

)
−
∑
i,`

gi`ξ
iη̇` −

∑
i,j,k,`

gi`Γ
`
jkξ

iηj ċk

−
∑
j,`

g`j ξ̇
`ηj −

∑
i,j,k,`

g`jΓ
`
ikξ

iηj ċk

=
∑
i,j,k

(
∂gij
∂xk

−
∑
`

gi`Γ
`
jk −

∑
`

gj`Γ
`
ik

)
ξiηj ċk.

Since this equation holds for all smooth maps c : I → Ω and ξ, η : I → Rm
we obtain that the Γkij satisfy the second equation in (2.26). That they are
symmetric in i and j is obvious.

To prove that (2.26) is equivalent to (2.27) we define

Γkij :=
m∑
`=1

gk`Γ
`
ij . (2.28)

Then equation (2.26) is equivalent to

Γkij = Γkji,
∂gij
∂xk

= Γijk + Γjik. (2.29)

and equation (2.27) is equivalent to

Γkij =
1

2

(
∂gki
∂xj

+
∂gkj
∂xi

− ∂gij
∂xk

)
. (2.30)

If the Γkij are given by (2.30) then they obviously satisfy Γkij = Γkji and

2Γijk + 2Γjik =
∂gij
∂xk

+
∂gik
∂xj

−
∂gjk
∂xi

+
∂gji
∂xk

+
∂gjk
∂xi

− ∂gik
∂xj

= 2
∂gij
∂xk

.

Conversely, if the Γkij satisfy (2.29) then we have

∂gij
∂xk

= Γijk + Γjik,

∂gki
∂xj

= Γkij + Γikj = Γkij + Γijk,

∂gkj
∂xi

= Γkji + Γjki = Γkij + Γjik.
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Taking the sum of the last two minus the first of these equations we obtain

∂gki
∂xj

+
∂gkj
∂xi

− ∂gij
∂xk

= 2Γkij .

Thus we have proved that (2.29) is equivalent to (2.30) and hence (2.26) is
equivalent to (2.27). This proves the theorem.

Exercise 2.28. Let Ω ⊂ Rm be an open set and g = (gij) : Ω → Rm×m
be a smooth map with values in the space of positive definite symmetric
matrices. Consider the energy functional

E(c) :=

∫ 1

0
L(c(t), ċ(t)) dt

on the space of paths c : [0, 1]→ Ω, where L : Ω× Rm → R is defined by

L(x, ξ) :=
1

2

m∑
i,j=1

ξigij(x)ξj . (2.31)

The Euler–Lagrange equations of this variational problem have the form

d

dt

∂L

∂ξk
(c(t), ċ(t)) =

∂L

∂xk
(c(t), ċ(t)), k = 1, . . . ,m. (2.32)

Prove that the Euler–Lagrange equations (2.32) are equivalent to the geo-
desic equations (2.22), where the Γkij : Ω→ R are given by (2.27).

Exercise 2.29. Consider the case m = 2. Let Ω ⊂ R2 be an open set and
λ : Ω→ (0,∞) be a smooth function. Suppose that the metric g : Ω→ R2×2

is given by

g(x) =

(
λ(x) 0

0 λ(x)

)
.

Compute the Christoffel symbols Γkij via (2.27).

Exercise 2.30. Let φ : S2 \{(0, 0, 1)} → C be the stereographic projection,
given by

φ(p) :=

(
p1

1− p3
,

p2

1− p3

)
Prove that the metric g : R2 → R2×2 has the form g(x) = λ(x)1l where the
function λ : R2 → (0,∞) is given by

λ(x) :=
4

(1 + |x|2)2

for x = (x1, x2) ∈ R2.
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2.4 The geodesic flow

2.4.1 The second fundamental form

Let M ⊂ Rn be an m-dimensional submanifold. We explain how geodesics
can be viewed as integral curves of a vector field on the tangent bundle TM .
This requires some preparation. Recall that, for each p ∈M , the orthogonal
projection Π(p) ∈ Rn×n of Rn onto the tangent space TpM is characterized
by the equations

Π(p)2 = Π(p) = Π(p)T , im Π(p) = TpM (2.33)

and that the resulting map Π : M → Rn×n is smooth (see Theorem 1.100
and Corollary 1.101). Differentiating this map at a point p ∈ M we obtain
a linear map

dΠ(p) : TpM → Rn×n

which, as usual, is defined by

dΠ(p)v :=
d

dt

∣∣∣∣
t=0

Π(γ(t)) ∈ Rn×n

for v ∈ TpM , where γ : R → M is chosen such that γ(0) = p and γ̇(0) = v
(see Definition 1.31). We emphasize that the expression dΠ(p)v is a matrix
and can therefore be multiplied by a vector in Rn.

Lemma 2.31. For all p ∈M and v, w ∈ TpM we have(
dΠ(p)v

)
w =

(
dΠ(p)w

)
v ∈ TpM⊥.

Proof. Choose a smooth path γ : R → M and a vector field X : R → Rn
along γ such that γ(0) = p, γ̇(0) = v, and X(0) = w. For example we can
choose X(t) := Π(γ(t))w. Then we have

X(t) = Π(γ(t))X(t)

for every t ∈ R. Differentiating this equation we obtain

Ẋ(t) = Π(γ(t))Ẋ(t) +
(
dΠ(γ(t))γ̇(t)

)
X(t). (2.34)

Hence (
dΠ(γ(t))γ̇(t)

)
X(t) =

(
1l−Π(γ(t))

)
Ẋ(t) ∈ Tγ(t)M

⊥ (2.35)

for every t ∈ R and, with t = 0, we obtain (dΠ(p)v)w ∈ TpM⊥.
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Now choose a smooth map R2 →M : (s, t) 7→ γ(s, t) satisfying

γ(0, 0) = p,
∂γ

∂s
(0, 0) = v,

∂γ

∂t
(0, 0) = w,

(for example by doing this in local coordinates) and denote

X(s, t) :=
∂γ

∂s
(s, t) ∈ Tγ(s,t)M, Y (s, t) :=

∂γ

∂t
(s, t) ∈ Tγ(s,t)M.

Then ∂Y
∂s = ∂2γ

∂s∂t = ∂X
∂t and hence, using (2.35), we obtain(
dΠ(γ)

∂γ

∂t

)
∂γ

∂s
=

(
dΠ(γ)

∂γ

∂t

)
X

=
(
1l−Π(γ)

)∂X
∂t

=
(
1l−Π(γ)

)∂Y
∂s

=

(
dΠ(γ)

∂γ

∂s

)
Y

=

(
dΠ(γ)

∂γ

∂s

)
∂γ

∂t
.

With s = t = 0 we obtain (dΠ(p)w) v = (dΠ(p)v)w. This proves the
lemma.

Definition 2.32. The collection of symmetric bilinear maps

hp : TpM × TpM → TpM
⊥,

defined by
hp(v, w) := (dΠ(p)v)w = (dΠ(p)w)v (2.36)

for p ∈M and v, w ∈ TpM is called the second fundamental form on M .
The first fundamental form on M is the family of inner products on the
tangent spaces TpM induced by the Euclidean inner product on Rn.

Example 2.33. Let M ⊂ Rm+1 be an m-manifold and ν : M → Sm be
a Gauss map so that TpM = ν(p)⊥ for every p ∈ M . (See Example 2.9.)
Then Π(p) = 1l− ν(p)ν(p)T and hence

hp(v, w) = −ν(p)〈dν(p)v, w〉

for p ∈M and v, w ∈ TpM .
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Exercise 2.34. Choose a splitting Rn = Rm×Rn−m and write the elements
of Rn as tuples (x, y) = (x1, . . . , xm, y1, . . . , yn−m) Let M ⊂ Rn be a smooth
m-dimensional submanifold such that p = 0 ∈M and

T0M = Rm × {0}, T0M
⊥ = {0} × Rn−m.

By the implicit function theorem, there are open neighborhoods Ω ⊂ Rm
and V ⊂ Rn−m of zero and a smooth map f : Ω→ V such that

M ∩ (Ω× V ) = graph(f) = {(x, f(y)) |x ∈ Ω} .

Thus f(0) = 0 and df(0) = 0. Prove that the second fundamental form
hp : TpM × TpM → TpM

⊥ is given by the second derivatives of f , i.e.

hp(v, w) =

0,
m∑

i,j=1

∂2f

∂xi∂xj
(0)viwj


for v, w ∈ TpM = Rm × {0}).

Exercise 2.35. Let M ⊂ Rn be an m-manifold. Fix a point p ∈ M and a
unit tangent vector v ∈ TpM so that |v| = 1 and define

L := {p+ tv + w | t ∈ R, w ⊥ TpM} .

Let γ : (−ε, ε) → M ∩ L be a smooth curve such that γ(0) = p, γ̇(0) = v,
and |γ̇(t)| = 1 for all t. Prove that

γ̈(0) = hp(v, v).

Draw a picture of M and L in the case n = 3 and m = 2.

Equation (2.34) in the proof of Lemma 2.31 shows that the derivative of
a vector field X along a curve γ is given by Gauss–Weingarten formula

Ẋ(t) = ∇X(t) + hγ(t)(γ̇(t), X(t)). (2.37)

Here the first summand is tangent to M and the second summand is orthog-
onal to the tangent space of M at γ(t). Applying the Gauss–Weingarten
formula to the vector field X = γ̇ we obtain

γ̈ = ∇γ̇ + hγ(γ̇, γ̇). (2.38)

By definition γ is a geodesic if and only if ∇γ̇ = 0 and, by equation (2.38),
this means that γ satisfies the equation

γ̈ = hγ(γ̇, γ̇). (2.39)
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2.4.2 The tangent bundle of the tangent bundle

The tangent bundle TM is a smooth 2m-dimensional manifold in Rn × Rn.
The tangent space of TM at a point (p, v) ∈ TM can be expressed in terms
of the second fundamental form as

T(p,v)TM =
{

(p̂, v̂) ∈ Rn × Rn
∣∣ p̂ ∈ TpM,

(
1l−Π(p)

)
v̂ = hp(p̂, v)

}
. (2.40)

By the Gauss–Weingarten formula the derivative of a curve t 7→ (γ(t), X(t))
in TM satisfies

(
1l−Π(γ(t))

)
Ẋ(t) = hγ(t)(γ̇(t), X(t)) for every t. This proves

the inclusion “⊂” in (2.40). Equality follows from the fact that both sides
of the equation are 2m-dimensional linear subspaces of Rn × Rn. Now it
follows from (2.40) that the formula

Y (p, v) := (v, hp(v, v)) ∈ T(p,v)TM

for p ∈M and v ∈ TpM defines a vector field on TM . By (2.38) the integral
curves of Y have the form (γ, γ̇), where γ : I →M is a geodesic. Hence, using
Theorem 1.52, we obtain another proof of Corollary 2.22 which asserts that,
for every p ∈ M and every v ∈ TpM , there is a geodesic γ : (−ε, ε) → M ,
for some ε > 0, satisfying γ(0) = p and γ̇(0) = v. In fact, we also obtain
smooth dependence of the geodesic on the initial condition.

2.4.3 The exponential map

In general the geodesic through p in the direction v ∈ TpM can be defined
on a maximal existence interval

Ip,v :=
⋃{

I ⊂ R
∣∣∣∣ I is an open interval containing 0 and there is a

geodesic γ : I →M satisfying γ(0) = p, γ̇(0) = v

}
.

Define the set Vp ⊂ TpM by

Vp := {v ∈ TpM | 1 ∈ Ip,v} . (2.41)

The exponential map
expp : Vp →M

of M at p assigns to every tangent vector v ∈ Vp the point expp(v) := γ(1),
where γ : Ip,v →M is the unique geodesic satisfying γ(0) = p and γ̇(0) = v.
It follows from Theorem 1.54 that the disjoint union of the Vp is an open
subset of TM and that the exponential map⋃

p∈M
{p} × Vp →M : (p, v) 7→ expp(v)

is smooth.
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p

M

Figure 2.7: The exponential map.

Lemma 2.36. Let p ∈M and v ∈ Vp. Then

Ip,v = {t ∈ R | tv ∈ Vp}

and the geodesic γ : Ip,v →M with γ(0) = p and γ̇(0) = v is given by

γ(t) = expp(tv), t ∈ Ip,v.

Proof. Let γ : Ip,v →M be the unique geodesic with γ(0) = p and γ̇(0) = v.
Fix a nonzero real number λ and define the map γλ : λ−1Ip,v →M by

γλ(t) := γ(λt).

Then γ̇λ(t) = λγ̇(λt) and γ̈λ(t) = λ2γ̈(λt). Hence

∇γ̇λ(t) = Π(γλ(t))γ̈λ(t) = λ2Π(γ(λt))γ̈(λt) = λ2∇γ̇(λt) = 0

for every t ∈ λ−1Ip,v. Hence γλ is a geodesic and γλ(0) = p and γ̇λ(0) = λv.
In particular, we have λ−1Ip,v ⊂ Ip,λv. Interchanging the roles of v and λv
we obtain λ−1Ip,v = Ip,λv. Thus

λ ∈ Ip,v ⇐⇒ 1 ∈ Ip,λv ⇐⇒ λv ∈ Vp

and γ(λ) = γλ(1) = expp(λv) for λ ∈ Ip,v. This proves the lemma.

Corollary 2.37. The map expp : Vp → M is smooth and its derivative at
the origin is

d expp(0) = id : TpM → TpM.

Proof. The set Vp is an open subset of the linear subspace TpM ⊂ Rn, with
respect to the relative topology, and hence is a manifold. The tangent space
of Vp at each point is TpM . That the exponential map is smooth follows
from Theorem 1.54. By Lemma 2.36 its derivative at the origin is

d expp(0)v =
d

dt

∣∣∣∣
t=0

expp(tv) = γ̇(0) = v,

where γ : Ip,v → M is once again the unique geodesic through p in the
direction v. This proves the corollary.
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Corollary 2.38. Let p ∈M and, for r > 0, denote

Br(p) := {v ∈ TpM | |v| < r} .

If r > 0 is sufficiently small then Br(p) ⊂ Vp, the set

Ur(p) := expp(Br(p))

is an open subset of M , and the restriction of the exponential map to Br(p)
is a diffeomorphism from Br(p) to Ur(p).

Proof. This follows from Corollary 2.37 and Theorem 1.34.

Definition 2.39. Let M ⊂ Rn be a smooth m-manifold. The injectivity
radius of M at p is the supremum of all r > 0 such that the restriction
of the exponential map expp to Br(p) is a diffeomorphism onto its image
Ur(p) := expp(Br(p)). It will be denoted by

inj(p) := inj(p;M) := sup

{
r > 0

∣∣∣ expp : Br(p)→ Ur(p)

is a diffeomorphism

}
.

The injectivity radius of M is the infimum of the injectivity radii of M
at p over all p ∈M . It will be denoted by

inj(M) := inf
p∈M

inj(p;M).

2.4.4 Examples and exercises

Example 2.40. The exponential map on Rm is given by

expp(v) = p+ v

for p, v ∈ Rm. For every p ∈ Rm this map is a diffeomorphism from
TpRm = Rm to Rm and hence the injectivity radius of Rm is infinity.

Example 2.41. The exponential map on Sm is given by

expp(v) = cos(|v|)p+
sin(|v|)
|v|

v

for every p ∈ Sm and every nonzero tangent vector v ∈ TpSm = p⊥. (See
Exercise 2.23.) The restriction of this map to the open ball of radius r in
TpM is a diffeomorphism onto its image if and only if r ≤ π. Hence the
injectivity radius of Sm at every point is π.
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Example 2.42. Consider the orthogonal group O(n) ⊂ Rn×n with the
standard inner product

〈v, w〉 := trace(vTw)

on Rn×n. The orthogonal projection Π(g) : Rn×n → TgO(n) is given by

Π(g)v :=
1

2
(v − gvT g)

and the second fundamental form by hg(v, v) = −gvT v. Hence a curve
γ : R→ O(n) is a geodesic if and only if γT γ̈ + γ̇T γ̇ = 0 or, equivalently,
γT γ̇ is constant. So geodesics in O(n) have the form γ(t) = g exp(tξ) for
g ∈ O(n) and ξ ∈ o(n). It follows that the exponential map is given by

expg(v) = g exp(g−1v) = exp(vg−1)g

for g ∈ O(n) and v ∈ TgO(n). In particular, for g = 1l the exponential map
exp1l : o(n)→ O(n) agrees with the exponential matrix.

Exercise 2.43. What is the injectivity radius of the 2-torus T2 = S1 × S1,
the punctured 2-plane R2 \ {(0, 0)}, and the orthogonal group O(n)?

2.4.5 Geodesics minimize the length

Theorem 2.44. Let M ⊂ Rn be a smooth m-manifold, fix a point p ∈ M ,
and let r > 0 be smaller than the injectivity radius of M at p. Let v ∈ TpM
such that |v| < r. Then

d(p, q) = |v| , q := expp(v),

and a curve γ ∈ Ωp,q has minimal length L(γ) = |v| if and only if there is a
smooth map β : [0, 1]→ [0, 1] satisfying β(0) = 0, β(1) = 1, β̇ ≥ 0 such that

γ(t) = expp(β(t)v).

Lemma 2.45 (Gauss Lemma). Let M , p, and r be as in Theorem 2.44.
Let I ⊂ R be an interval and w : I → Vp be a smooth map whose norm
|w(t)| =: r is constant. Define

α(s, t) := expp(sw(t))

for (s, t) ∈ R× I with sw(t) ∈ Vp. Then〈
∂α

∂s
,
∂α

∂t

〉
≡ 0.

Thus the geodesics through p are orthogonal to the boundaries of the embed-
ded balls Ur(p) in Corollary 2.38 (see Figure 2.8).
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U

p

r

Figure 2.8: The Gauss Lemma.

Proof. For every t ∈ I we have α(0, t) = expp(0) = p and so the assertion
holds for s = 0: 〈

∂α

∂s
(0, t),

∂α

∂t
(0, t)

〉
= 0.

Moreover, each curve s 7→ α(s, t) is a geodesic, i.e.

∇s
∂α

∂s
= Π(α)

∂2α

∂s2
≡ 0.

By Theorem 2.17, the function s 7→
∣∣∂α
∂s (s, t)

∣∣ is constant for every t, so that∣∣∣∣∂α∂s (s, t)

∣∣∣∣ =

∣∣∣∣∂α∂s (0, t)

∣∣∣∣ = |w(t)| = r

for all s and t. This implies

∂

∂s

〈
∂α

∂s
,
∂α

∂t

〉
=

〈
∇s
∂α

∂s
,
∂α

∂t

〉
+

〈
∂α

∂s
,∇s

∂α

∂t

〉
=

〈
∂α

∂s
,Π(α)

∂2α

∂s∂t

〉
=

〈
Π(α)

∂α

∂s
,
∂2α

∂s∂t

〉
=

〈
∂α

∂s
,
∂2α

∂s∂t

〉
=

1

2

∂

∂t

∣∣∣∣∂α∂s
∣∣∣∣2

= 0.

Since the function 〈∂α∂s ,
∂α
∂t 〉 vanishes for s = 0 we obtain〈

∂α

∂s
(s, t),

∂α

∂t
(s, t)

〉
= 0

for all s and t. This proves the lemma.
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Proof of Theorem 2.44. Let r > 0 be as in Corollary 2.38 and let v ∈ TpM
such that 0 < |v| =: ε < r. Denote q := expp(v) and let γ ∈ Ωp,q. Assume
first that

γ(t) ∈ expp
(
Bε(p)

)
= U ε ∀ t ∈ [0, 1].

Then there is a unique smooth function [0, 1] → TpM : t 7→ v(t) such that
|v(t)| ≤ ε and γ(t) = expp(v(t)) for every t. The set

I := {t ∈ [0, 1] | γ(t) 6= p} = {t ∈ [0, 1] | v(t) 6= 0} ⊂ (0, 1]

is open in the relative topology of (0, 1]. Thus I is a union of open intervals
in (0, 1) and one half open interval containing 1. Define β : [0, 1] → [0, 1]
and w : I → TpM by

β(t) :=
|v(t)|
ε

, w(t) :=
v(t)

β(t)
.

Then β is continuous, both β and w are smooth on I, β(0) = 0, β(1) = 1,
w(1) = v, and

|w(t)| = ε, γ(t) = expp(β(t)w(t)) ∀ t ∈ I.

We prove that L(γ) ≥ ε. To see this let α : [0, 1] × I → M be the map of
Lemma 2.45:

α(s, t) := expp(sw(t)).

Then γ(t) = α(β(t), t) and hence

γ̇(t) = β̇(t)
∂α

∂s
(β(t), t) +

∂α

∂t
(β(t), t)

for every t > 0. Hence it follows from Lemma 2.45 that

|γ̇(t)|2 = β̇(t)2

∣∣∣∣∂α∂s (β(t), t)

∣∣∣∣2 +

∣∣∣∣∂α∂t (β(t), t)

∣∣∣∣2 ≥ β̇(t)2ε2

for every t ∈ I. Hence

L(γ) =

∫ 1

0
|γ̇(t)| =

∫
I
|γ̇(t)| dt ≥ ε

∫
I

∣∣∣β̇(t)
∣∣∣ dt ≥ ε∫

I
β̇(t) dt = ε.

The last equation follows by applying the fundamental theorem of calculus
to each interval in I and using the fact that β(0) = 0 and β(1) = 1. If
L(γ) = ε we must have

∂α

∂t
(β(t), t) = 0, β̇(t) ≥ 0 ∀ t ∈ I.
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Thus I is a single half open interval containing 1 and on this interval the
condition ∂α

∂t (β(t), t) = 0 implies ẇ(t) = 0. Since w(1) = v we have w(t) = v
for every t ∈ I. Hence γ(t) = expp(β(t)v) for every t ∈ [0, 1]. It follows
that β is smooth on the closed interval [0, 1] (and not just on I). Thus we
have proved that every γ ∈ Ωp,q with values in U ε has length L(γ) ≥ ε with
equality if and only if γ is a reparametrized geodesic. But if γ ∈ Ωp,q does not
take values only in U ε, there must be a T ∈ (0, 1) such that γ([0, T ]) ⊂ U ε
and γ(T ) ∈ ∂Uε. Then L(γ|[0,T ]) ≥ ε, by what we have just proved, and
L(γ|[T,1]) > 0 because the restriction of γ to [T, 1] cannot be constant; so in
this case we have L(γ) > ε. This proves the theorem.

The next corollary gives a first answer to our problem of finding length
minimizing curves. It asserts that geodesics minimize the length locally.

Corollary 2.46. Let M ⊂ Rn be a smooth m-manifold, I ⊂ R be an open
interval, and γ : I → M be a geodesic. Fix a point t0 ∈ I. Then there is a
constant ε > 0 such that

t0 − ε < s < t < t0 + ε =⇒ L(γ|[s,t]) = d(γ(s), γ(t)).

Proof. Since γ is a geodesic its derivative has constant norm

|γ̇(t)| ≡ c

(see Theorem 2.17). Choose δ > 0 so small that the interval [t0 − δ, t0 + δ]
is contained in I. Then there is a constant r > 0 such that r ≤ inj(γ(t))
whenever |t− t0| ≤ δ. Choose ε > 0 such that

ε < δ, 2εc < r.

If t0 − ε < s < t < t0 + ε then

γ(t) = expγ(s) ((t− s)γ̇(s))

and
|(t− s)γ̇(s)| = |t− s| c < 2εc < r ≤ inj(γ(s)).

Hence it follows from Theorem 2.44 that

L(γ|[s,t]) = |t− s| c = d(γ(s), γ(t)).

This proves the corollary.

Exercise 2.47. How large can you choose the constant ε in Corollary 2.46
in the case M = S2? Compare this with the injectivity radius.
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2.4.6 Convexity

Definition 2.48. Let M ⊂ Rn be a smooth m-dimensional manifold. A sub-
set U ⊂M is called geodesically convex if, for any two points p0, p1 ∈ U ,
there is a unique geodesic γ : [0, 1]→ U such that γ(0) = p0 and γ(1) = p1.

Exercise 2.49. (a) Find a geodesically convex set U in a manifold M and
points p0, p1 ∈ U such that the unique geodesic γ : [0, 1]→ U with γ(0) = p0

and γ(1) = p1 has length L(γ) > d(p0, p1).

(b) Find a set U in a manifold M such that any two points in U can be
connected by a minimal geodesic in U , but U is not geodesically convex.

Theorem 2.50 (Convex neighborhoods). Let M ⊂ Rn be a smooth m-
dimensional submanifold and fix a point p0 ∈ M . Let φ : U → Ω be any
coordinate chart on an open neighborhood U ⊂ M of p0 with values in an
open set Ω ⊂ Rm. Then the set

Ur := {p ∈ U | |φ(p)− φ(p0)| < r}

is geodesically convex for r > 0 sufficiently small.

Proof. Assume without loss of generality that φ(p0) = 0. Let Γkij : Ω → R
be the Christoffel symbols of the coordinate chart and, for x ∈ Ω, define the
quadratic function Qx : Rm → R by

Qx(ξ) :=

m∑
k=1

(
ξk
)2

+
m∑

i,j,k=1

xkΓkij(x)ξiξj .

Then Q0(ξ) = |ξ|2 and so Qx continues to be positive definite for |x| suf-
ficiently small. In other words there is a constant ρ > 0 such that, for all
x, ξ ∈ Rm, we have

|x| ≤ ρ, ξ 6= 0 =⇒ x ∈ Ω, Qx(ξ) > 0.

Let γ : [0, 1] → Uρ be a geodesic and define c(t) := φ(γ(t)) for 0 ≤ t ≤ 1.
Then |c(t)| ≤ ρ for every t and, by Corollary 2.21, c satisfies the differential
equation c̈k +

∑
i,j Γkij(c)ċ

iċj = 0. Hence

d2

dt2
|c|2

2
=

d

dt
〈ċ, c〉 = |ċ|2 + 〈c̈, c〉 = Qc(ċ) ≥ 0

and so the function t 7→ |φ(γ(t))|2 is convex.
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Now choose δ > 0 and r0 > 0 so small that, for all p, q ∈M , we have

p ∈ Ur0 , d(p, q) < δ =⇒ q ∈ Uρ, (2.42)

p ∈ Uρ =⇒ δ < inj(p), (2.43)

p, q ∈ Ur0 =⇒ d(p, q) < δ. (2.44)

We prove that Ur is geodesically convex for 0 < r ≤ r0. Fix two points
p, q ∈ Ur. Then p, q ∈ Uρ by (2.42) and, by (2.43) and (2.44), we have

d(p, q) < δ < inj(p).

Hence, by Theorem 2.44, there is a vector v ∈ TpM such that |v| = d(p, q)
and expp(v) = q. Define

γ(t) := expp(tv), 0 ≤ t ≤ 1.

Then γ is a geodesic with endpoints γ(0) = p and γ(1) = q. Moreover, by
Theorem 2.44, we have

d(p, γ(t)) = t |v| = td(p, q) < δ

for 0 ≤ t ≤ 1 and hence γ(t) ∈ Uρ by (2.42). This implies that the function
t 7→ |φ(γ(t))|2 is convex and therefore

|φ(γ(t))|2 ≤ (1− t) |φ(γ(p))|2 + t |φ(γ(q))|2 ≤ r2

for 0 ≤ t ≤ 1. Hence γ([0, 1]) ⊂ Ur.
We prove that there is no other geodesic from p to q whose image is

contained in Ur. To see this, let γ′ : [0, 1]→ Ur be any geodesic connecting
p to q. Then there is a vector v′ ∈ TpM such that

expp(v
′) = q, γ′(t) = expp(tv

′)

for 0 ≤ t ≤ 1. Since γ′(t) ∈ Ur ⊂ Ur0 it follows from (2.43) and (2.44) that

d(p, γ′(t)) < δ < inj(p)

for all t. If |v′| ≥ inj(p) then there is a t ∈ [0, 1] such that δ < t |v′| < inj(p)
and then, by Theorem 2.44, we have

d(p, γ′(t)) = d(p, expp(tv
′)) = t

∣∣v′∣∣ > δ,

a contradiction. Hence |v′| < inj(p). Since

expp(v
′) = q = expp(v)

it then follows from the definition of the injectivity radius that v′ = v and
so γ′(t) = γ(t) for all t. This proves the theorem.
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Remark 2.51. Let M ⊂ Rn be an m-dimensional submanifold. Fix a point
p ∈M and a real number 0 < r < inj(p) and denote

Ωr := {x ∈ Rm | |x| < r} , Ur := {q ∈M | d(p, q) < r} .

By Corollary 2.38 and Theorem 2.44 the map

expp : {v ∈ TpM | |v| < r} → Ur

is a diffeomorphism. Hence any orthonormal basis e1, . . . , em of TpM gives
rise to a coordinate chart

φ : Ur → Ωr, φ−1(x) := expp

(
m∑
i=1

xiei

)

This coordinate chart sends geodesics through p to straight lines through
the origin. One calls the components x1, . . . , xm of φ geodesically normal
coordinates at p.

Exercise 2.52. By Theorem 2.50 the set Ur in Remark 2.51 is geodesically
convex for r sufficiently small. How large can you choose r in the cases

M = S2, M = T2 = S1 × S1, M = R2, M = R2 \ {0}.

Compare this with the injectivity radius. If the set Ur in these examples is
geodesically convex, does it follows that every geodesic in Ur is minimizing?

2.5 The Hopf–Rinow theorem

For a Riemannian manifold there are different notions of completeness. First
there is a distance function d : M ×M → [0,∞) defined by (2.3) so that
we can speak of completeness of the metric space (M,d) in the sense that
every Cauchy sequence converges. Second there is the question if geodesics
through any point in any direction exist for all time; if so we call a Rieman-
nian manifold geodesically complete. The remarkable fact is that these two
rather different notions of completeness are actually equivalent and that,
in the complete case, any two points in M can be connected by a shortest
geodesic. This is the content of the Hopf–Rinow theorem. We will spell out
the details of the proof for embedded manifolds and leave it to the reader
(as a straight forward exercise) to extend the proof to the intrinsic setting.
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Definition 2.53. Let M ⊂ Rn be an m-dimensional manifold. Given a
point p ∈ M we say that M is geodesically complete at p if, for every
v ∈ TpM , there is a geodesic γ : R→ M (on the entire real axis) satisfying
γ(0) = p and γ̇(0) = v (or equivalently Vp = TpM where Vp ⊂ TpM is
defined by (2.41)). M is called geodesically complete if it is geodesically
complete at every point p ∈M .

Definition 2.54. Let (M,d) be a metric space. A subset A ⊂ M is called
bounded if

sup
p∈A

d(p, p0) <∞

for some (and hence every) point p0 ∈M .

Example 2.55. A manifold M ⊂ Rn can be contained in a bounded subset
of Rn and still not be bounded with respect to the metric (2.3). An example
is the 1-manifold M =

{
(x, y) ∈ R2 | 0 < x < 1, y = sin(1/x)

}
.

Exercise 2.56. Let (M,d) be a metric space. Prove that every compact
subset K ⊂ M is closed and bounded. Find an example of a metric space
that contains a closed and bounded subset that is not compact.

Theorem 2.57 (Completeness). Let M ⊂ Rn be a connected m-dimen-
sional manifold and let d : M ×M → [0,∞) be the distance function defined
by (2.1), (2.2), and (2.3). Then the following are equivalent.

(i) There is a point p ∈M such that M is geodesically complete at p.

(ii) M is geodesically complete.

(iii) (M,d) is a complete metric space.

(iv) Every closed and bounded subset of M is compact.

Theorem 2.58 (Hopf–Rinow). Let M ⊂ Rn be a connected m-manifold
and let p ∈ M . Assume M is geodesically complete at p. Then, for every
q ∈M , there is a geodesic γ : [0, 1]→M such that

γ(0) = p, γ(1) = q, L(γ) = d(p, q).

Lemma 2.59. Let X be a vector field on M and γ : (0, T ) → M be an
integral curve of X such that the limit

p0 = lim
t→0

γ(t)

exists. Define γ0 : [0, T )→M by

γ0(t) :=

{
p0, for t = 0,
γ(t), for 0 < t < T.

Then γ0 is differentiable at t = 0 and γ̇0(0) = X(p0).
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Proof. Fix a constant ε > 0, choose ρ > 0 so small that

p ∈M, |p− p0| ≤ ρ =⇒ |X(p)−X(p0)| ≤ ε,

and choose δ > 0 so small that

0 < t ≤ δ =⇒ |γ(t)− p0| ≤ ρ.

Then, for 0 < s < t ≤ δ, we have

|γ(t)− γ(s)− (t− s)X(p0)| =

∣∣∣∣∫ t

s
(γ̇(r)−X(p0)) dr

∣∣∣∣
=

∣∣∣∣∫ t

s
(X(γ(r))−X(p0)) dr

∣∣∣∣
≤

∫ t

s
|X(γ(r))−X(p0)| dr

≤ (t− s)ε
≤ tε.

Taking the limit s→ 0 we obtain∣∣∣∣γ(t)− p0

t
−X(p0)

∣∣∣∣ = lim
s→0

|γ(t)− γ(s)− (t− s)X(p0)|
t

≤ ε

for 0 < t < δ. This proves the lemma.

Theorem 2.58 implies Theorem 2.57. We prove that (iv) implies (iii). Thus
we assume that every closed and bounded subset of M is compact and choose
a Cauchy sequence pi ∈M . Choose i0 such that, for all i, j ∈ N, we have

i, j ≥ i0 =⇒ d(pi, pj) ≤ 1,

and define
c := max

1≤i≤i0
d(p1, pi) + 1.

Then, for i ≥ i0, we have

d(p1, pi) ≤ d(p1, pi0) + d(pi0 , pi) ≤ d(p1, pi0) + 1 ≤ c.

Thus d(p1, pi) ≤ c for every i ∈ N. Hence the set {pi | i ∈ I} is bounded and
so is its closure. By (iv) this implies that the sequence pi has a convergent
subsequence. Since pi is a Cauchy sequence, this implies that pi converges.
Thus we have proved that (iv) implies (iii).
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We prove that (iii) implies (ii). Assume, by contradiction, that M is not
geodesically complete. Then there is a point p ∈ M and a tangent vector
v ∈ TpM such that the maximal existence interval Ip,v is not equal to R.
Replacing v by −v, if necessary, we may assume that there is a T > 0 such
that [0, T ) ⊂ Ip,v and T /∈ Ip,v. Let γ : Ip,v → M be the geodesic satisfying
γ(0) = p and γ̇(0) = v. Then

|γ̇(t)| = |v|

for every t ∈ [0, T ) and hence

d(γ(s), γ(t)) ≤ L(γ|[s,t]) ≤ (t− s) |v|

for 0 < s < t < T . By (iii) this implies that the limit

p1 := lim
t→T

γ(t)

exists in M . Now choose a compact neighborhood K ⊂M of p1 and assume,
without loss of generality, that γ(t) ∈ K for 0 ≤ t < T . Then there is a
constant c > 0 such that

|hq(w,w)| ≤ c |w|2

for all q ∈ K and w ∈ TqM . Hence

|γ̈(t)| =
∣∣hγ(t)(γ̇(t), γ̇(t))

∣∣ ≤ c |γ̇(t)|2 = c |v|2 , 0 ≤ t < T.

This in turn implies

|γ̇(s)− γ̇(t)| ≤
∫ t

s
|γ̈(r)| dr ≤ (t− s)c |v|2

for 0 < s < t < T . It follows that the limit

v1 := lim
t→T

γ̇(t)

exists in Rn. Since γ(t) converges to p1 as t tends to T , we have

v1 = lim
t→T

Π(γ(t))γ̇(t) = Π(p1)v1 ∈ Tp1M.

Thus (γ(t), γ̇(t)) converges to (p1, v1) ∈ TM as t tends to T . Since (γ, γ̇)
is an integral curve of a vector field on TM , it follows from Lemma 2.59
that γ extends to a geodesic on the interval [0, T + ε) for some ε > 0.
This contradicts our assumption and proves that (iii) implies (ii). That (ii)
implies (i) is obvious.
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We prove that (i) implies (iv). Let K ⊂ M be a closed and bounded
subset. Then

r := sup
q∈K

d(p0, q) <∞.

Hence it follows from Theorem 2.58 that, for every q ∈ K there is a tangent
vector v ∈ Tp0M such that |v| = d(p0, q) ≤ r and expp0(v) = q. Thus

K ⊂ expp0(Br(p0)), Br(p0) = {v ∈ Tp0M | |v| ≤ r} .

Consider the set

K̃ :=
{
v ∈ Tp0M | |v| ≤ r, expp0(v) ∈ K

}
.

This is a closed and bounded subset of the Euclidean space Tp0M . Hence

K̃ is compact and K is its image under the exponential map. Since the
exponential map expp0 : Tp0M → M is continuous it follows that K is
compact. Thus (i) implies (iv) and this proves the theorem.

Lemma 2.60. Let M ⊂ Rn be a connected m-manifold and p ∈M . Suppose
ε > 0 is smaller than the injectivity radius of M at p and denote

Σ1(p) := {v ∈ TpM | |v| = 1} , Sε(p) :=
{
p′ ∈M | d(p, p′) = ε

}
.

Then the map
Σ1(p)→ Sε(p) : v 7→ expp(εv)

is a diffeomorphism and, for all q ∈M , we have

d(p, q) > ε =⇒ d(Sε(p), q) = d(p, q)− ε.

Proof. By Theorem 2.44 we have d(p, expp(v)) = |v| for every v ∈ TpM with
|v| ≤ ε and d(p, p′) > ε for every p′ ∈M \

{
expp(v) | v ∈ TpM, |v| ≤ ε

}
. This

shows that Sε(p) = expp(εΣ1(p)) and, since ε is smaller than the injectivity
radius, the map Σ1(p) → Sε(p) : v 7→ expp(εv) is a diffeomorphism. To
prove the second assertion let q ∈M such that

r := d(p, q) > ε.

Fix a constant δ > 0 and choose a smooth curve γ : [0, 1] → M such that
γ(0) = p, γ(1) = q, and L(γ) ≤ r + δ. Choose t0 > 0 such that γ(t0) is
the last point of the curve on Sε(p), i.e. γ(t0) ∈ Sε(p) and γ(t) /∈ Sε(p) for
t0 < t ≤ 1. Then

d(γ(t0), q) ≤ L(γ|[t0,1]) = L(γ)− L(γ|[0,t0]) ≤ L(γ)− ε ≤ r + δ − ε.
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This shows that
d(Sε(p), q) ≤ r + δ − ε

for every δ > 0 and therefore

d(Sε(p), q) ≤ r − ε.

Moreover,
d(p′, q) ≥ d(p, q)− d(p, p′) = r − ε

for every p′ ∈ Sε(p). Hence d(Sε(p), q) = r − ε as claimed.

Proof of Theorem 2.58. By assumption M ⊂ Rn is a connected submani-
fold, and p ∈M is given such that the exponential map

expp : TpM →M

is defined on the entire tangent space at p. Fix a point q ∈M \ {p} so that

0 < r := d(p, q) <∞.

Choose a constant ε > 0 smaller than the injectivity radius of M at p and
smaller than r. Then, by Lemma 2.60, we have

d(Sε(p), q) = r − ε.

Hence there is a tangent vector v ∈ TpM such that

d(expp(εv), q) = r − ε, |v| = 1.

Define the curve γ : [0, r]→M by

γ(t) := expp(tv).

Claim. For every t ∈ [0, r] we have

d(γ(t), q) = r − t.

In particular, γ(r) = q and L(γ) = r = d(p, q).

Consider the subset

I := {t ∈ [0, r] | d(γ(t), q) = r − t} ⊂ [0, r].

This set is nonempty, because ε ∈ I, it is obviously closed, and

t ∈ I =⇒ [0, t] ⊂ I. (2.45)
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Namely, if t ∈ I and 0 ≤ s ≤ t then

d(γ(s), q) ≤ d(γ(s), γ(t)) + d(γ(t), q) ≤ t− s+ r − t = r − s

and
d(γ(s), q) ≥ d(p, q)− d(p, γ(s)) ≥ r − s.

Hence d(γ(s), q) = r − s and hence s ∈ I. This proves (2.45).

γ

ε
ε

exp     (  w)ε
(t)

p
q

γ

γ(t)

S  (  (t))ε

ε
r−t−

Figure 2.9: The proof of the Hopf–Rinow theorem.

We prove that I is open (in the relative topology of [0, r]). Let t ∈ I
be given with t < r. Choose a constant ε > 0 smaller than the injectivity
radius of M at γ(t) and smaller than r − t. Then, by Lemma 2.60 with p
replaced by γ(t), we have

d(Sε(γ(t)), q) = r − t− ε.

Next we choose w ∈ Tγ(t)M such that

|w| = 1, d(expγ(t)(εw), q) = r − t− ε.

Then

d(γ(t− ε), expγ(t)(εw)) ≥ d(γ(t− ε), q)− d(expγ(t)(εw), q)

= (r − t+ ε)− (r − t− ε)
= 2ε.

The converse inequality is obvious, because both points have distance ε to
γ(t) (see Figure 2.9). Thus we have proved that

d(γ(t− ε), expγ(t)(εw)) = 2ε.

Since γ(t − ε) = expγ(t)(−εγ̇(t)) it follows from Lemma 2.61 below that
w = γ̇(t). Hence expγ(t)(sw) = γ(t+ s) and this implies that

d(γ(t+ ε), q) = r − t− ε.



2.5. THE HOPF–RINOW THEOREM 121

Thus t + ε ∈ I and, by (2.45), we have [0, t + ε] ∈ I. Thus we have proved
that I is open. In other words, I is a nonempty subset of [0, r] which is
both open and closed, and hence I = [0, r]. This proves the claim and the
theorem.

Lemma 2.61 (Curve Shortening Lemma). Let M ⊂ Rn be an m-mani-
fold and p ∈M . Let ε > 0 be smaller than the injectivity radius of M at p.
Then, for all v, w ∈ TpM , we have

|v| = |w| = ε, d(expp(v), expp(w)) = 2ε =⇒ v + w = 0.

w

v

Figure 2.10: Two unit tangent vectors.

Proof. We will prove that, for all v, w ∈ TpM , we have

lim
δ→0

d(expp(δv), expp(δw))

δ
= |v − w| . (2.46)

Assume this holds and suppose, by contradiction, that we have two tangent
vectors v, w ∈ TpM satisfying

|v| = |w| = 1, v + w 6= 0, d(expp(εv), expp(εw)) = 2ε.

Then |v − w| < 2 (Figure 2.10). Thus by (2.46) there is a δ > 0 such that

δ < ε, d(expp(δv), expp(δw)) < 2δ.

The triangle inequality gives

d(expp(εv), expp(εw)) ≤ d(expp(εv), expp(δv))

+d(expp(δv), expp(δw))

+d(expp(δw), expp(εw))

< ε− δ + 2δ + ε− δ
= 2ε,

contradicting our assumption.
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It remains to prove (2.46). For this we use the ambient space Rn and
observe that

lim
δ→0

d(expp(δv), expp(δw))

δ

= lim
δ→0

d(expp(δv), expp(δw))∣∣expp(δv)− expp(δw)
∣∣
∣∣expp(δv)− expp(δw)

∣∣
δ

= lim
δ→0

∣∣expp(δv)− expp(δw)
∣∣

δ

= lim
δ→0

∣∣∣∣expp(δv)− p
δ

−
expp(δw)− p

δ

∣∣∣∣
= |v − w| .

Here the second equality follows from Lemma 2.7.

2.6 Riemannian metrics

We wish to carry over the fundamental notions of differential geometry to the
intrinsic setting. First we need a notion of the length of a tangent vector
to define the length of a curve via (2.1). Second we must introduce the
covariant derivative of a vector field along a curve. With this understood all
the definitions, theorems, and proofs in this chapter carry over in an almost
word by word fashion to the intrinsic setting.

2.6.1 Riemannian metrics

We will always consider norms that are induced by inner products. But in
general there is no ambient space that can induce an inner product on each
tangent space. This leads to the following definition.

Definition 2.62. Let M be a smooth m-manifold. A Riemannian metric
on M is a collection of inner products

TpM × TpM → R : (v, w) 7→ gp(v, w),

one for every p ∈M , such that the map

M → R : p 7→ gp(X(p), Y (p))

is smooth for every pair of vector fields X,Y ∈ Vect(M). We will also
denote it by 〈v, w〉p and drop the subscript p if the base point is understood
from the context. A smooth manifold equipped with a Riemannian metric is
called a Riemannian manifold.
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Example 2.63. If M ⊂ Rn is a smooth submanifold then a Riemannian
metric on M is given by restricting the standard inner product on Rn to
the tangent spaces TpM ⊂ Rn. This is the first fundamental form of an
embedded manifold.

More generally, assume that M is a Riemannian m-manifold in the in-
trinsic sense of Definition 2.62 with an atlas A = {Uα, φα}α∈A. Then the
Riemannian metric g determines a collection of smooth functions

gα = (gα,ij)
m
i,j=1 : φα(Uα)→ Rm×m,

one for each α ∈ A, defined by

ξT gα(x)η := gp(v, w), φα(p) = x, dφα(p)v = ξ, dφα(p)w = η, (2.47)

for x ∈ φα(Uα) and ξ, η ∈ Rm. Each matrix gα(x) is symmetrix and positive
definite. Note that the tangent vectors v and w in (2.47) can also be written
in the form v = [α, ξ]p and w = [α, η]p. Choosing standard basis vectors
ξ = ei and η = ej in Rm we obtain

[α, ei]p = dφα(p)−1ei =:
∂

∂xi
(p)

and hence

gα,ij(x) =

〈
∂

∂xi
(φ−1
α (x)),

∂

∂xj
(φ−1
α (x))

〉
.

For different coordinate charts the maps gα and gβ are related through the
transition map φβα := φβ ◦ φ−1

α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) via

gα(x) = dφβα(x)T gβ(φβα(x))dφβα(x) (2.48)

for x ∈ φα(Uα ∩ Uβ). Equation (2.48) can also be written in the shorthand
notation gα = φ∗βαgβ for α, β ∈ A.

Exercise 2.64. Every collection of smooth maps gα : φα(Uα)→ Rm×m with
values in the set of positive definite symmetric matrices that satisfies (2.48)
for all α, β ∈ A determines a global Riemannian metric via (2.47).

In this intrinsic setting there is no canonical metric on M (such as the
metric induced by Rn on an embedded manifold). In fact, it is not completely
obvious that a manifold admits a Riemannian metric and this is the content
of the next lemma.
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Lemma 2.65. Every paracompact Hausdorff manifold admits a Riemannian
metric.

Proof. Let m be the dimension of M and let A = {Uα, φα}α∈A be an atlas
on M . By Theorem 1.149 there is a partition of unity {θα}α∈A subordinate
to the open cover {Uα}α∈A. Now there are two equivalent ways to construct
a Riemannian metric on M .

The first method is to carry over the standard inner product on Rm to
the tangent spaces TpM for p ∈ Uα via the coordinate chart φα, multiply
the resulting Riemannian metric on Uα by the compactly supported function
θα, extend it by zero to all of M , and then take the sum over all α. This
leads to the following formula. The inner product of two tangent vectors
v, w ∈ TpM is defined by

〈v, w〉p :=
∑
p∈Uα

θα(p)〈dφα(p)v, dφα(p)w〉, (2.49)

where the sum runs over all α ∈ A with p ∈ Uα and the inner product is
the standard inner product on Rm. Since supp(θα) ⊂ Uα for each α and the
sum is locally finite we find that the function M → R : p 7→ 〈X(p), Y (p)〉p is
smooth for every pair of vector fields X,Y ∈ Vect(M). Moreover, the right
hand side of (2.49) is symmetric in v and w and is positive for v = w 6= 0
because each summand is nonnegative and each summand with θα(p) > 0 is
positive. Thus equation (2.49) defines a Riemannian metric on M .

The second method is to define the functions gα : φα(Uα)→ Rm×m by

gα(x) :=
∑
γ∈A

θγ(φ−1
α (x))dφγα(x)Tdφγα(x) (2.50)

for x ∈ φα(Uα) where each summand is defined on φα(Uα ∩ Uγ) and is
understood to be zero for x /∈ φα(Uα ∩ Uγ). We leave it to the reader to
verify that these functions are smooth and satisfy the condition (2.48) for
all α, β ∈ A. Moreover, the formulas (2.49) and (2.50) determine the same
Riemannian metric on M . (Prove this!) This proves the lemma.

Once our manifold M is equipped with a Riemannian metric we can
define the length of a curve γ : [0, 1] → M by the formula (2.1) and it
is invariant under reparametrization as before (see Remark 2.2). Also the
distance function d : M ×M → R is defined by the same formula (2.3). We
prove that it still defines a metric on M and that this metric induces the
same topology as the given atlas, as in the case of embedded manifolds in
Euclidean space.
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Lemma 2.66. Let M be a connected smooth Riemannian manifold and let
d : M ×M → [0,∞) be the function defined by (2.1), (2.2), and (2.3). Then
d is a metric and induces the same topology as the smooth structure.

Proof. We prove the following.

Claim. Fix a point p0 ∈M and let φ : U → Ω be a coordinate chart onto an
open subset Ω ⊂ Rm such that p0 ∈ U . Then there is an open neighborhood
V ⊂ U of p0 and constants δ, r > 0 such that

δ |φ(p)− φ(p0)| ≤ d(p, p0) ≤ δ−1 |φ(p)− φ(p0)| (2.51)

for every p ∈ V and d(p, p0) ≥ δr for every p ∈M \ V .

The claim shows that d(p, p0) > 0 for every p ∈ M \ {p0} and hence d
satisfies condition (i) in Lemma 2.4. The proofs of (ii) and (iii) remain
unchanged in the intrinsic setting and this shows that d defines a metric on
M . Moreover, it follows from the claim that a sequence pν ∈ M satisfies
limν→∞ d(pν , p0) = 0 if and only if pν ∈ U for ν sufficiently large and
limν→∞ |φ(pν)− φ(p0)| = 0. In other words, pν converges to p0 with respect
to the metric d if and only if pν converges to p0 in the manifold topology.
This implies that the topology induced by d coincides with the original
topology of M . (See Exercise 2.68 below.)

To prove the claim we denote the inverse of the coordinate chart φ by
ψ := φ−1 : Ω→M and define the map g = (gij)

m
i,j=1 : Ω→ Rm×m by

gij(x) :=

〈
∂ψ

∂xi
(x),

∂ψ

∂xj
(x)

〉
ψ(x)

for x ∈ Ω. Then a smooth curve γ : [0, 1]→ U has the length

L(γ) =

∫ T

0

√
ċ(t)T g(c(t))ċ(t) dt, c(t) := φ(γ(t)). (2.52)

Let x0 := φ(p0) ∈ Ω and choose r > 0 such that Br(x0) ⊂ Ω. Then there is
a constant δ ∈ (0, 1] such that

δ |ξ| ≤
√
ξT g(x)ξ ≤ δ−1 |ξ| (2.53)

for all x ∈ Br(x0) and ξ, η ∈ Rm. Define the open set V ⊂ U by

V := φ−1(Br(x0)).
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Now let p ∈ V and denote x := φ(p) ∈ Br(x0). Then, for every smooth
curve γ : [0, 1]→ V with γ(0) = p0 and γ(1) = p, the curve c := φ ◦ γ takes
values in Br(x0) and satisfies c(0) = x0 and c(1) = x. Hence, by (2.52)
and (2.53), we have

L(γ) ≥ δ
∫ 1

0
|ċ(t)| dt ≥ δ

∣∣∣∣∫ 1

0
ċ(t) dt

∣∣∣∣ = δ |x− x0| .

If γ : [0, 1] → M is a smooth curve with endpoints γ(0) = p0 and γ(1) = p
whose image is not entirely contained in V then there is a time T ∈ (0, 1] such
that γ(t) ∈ V for 0 ≤ t < T and γ(T ) ∈ ∂V . Hence c(t) := φ(γ(t)) ∈ Br(x0)
for 0 ≤ t < T and |c(T )− x0| = r. Hence the same argument shows that

L(γ) ≥ δr.

This shows that d(p0, p) ≥ δr for p ∈ M \ V and d(p0, p) ≥ δ |φ(p)− φ(p0)|
for p ∈ V . If p ∈ V , x := φ(p), and c(t) := x0 + t(x− x0) then γ := ψ ◦ c is
a smooth curve in V with endpoints γ(0) = p0 and γ(1) = p and, by (2.52)
and (2.53), we have

L(γ) ≤ δ−1

∫ 1

0
|ċ(t)| dt = δ−1 |x− x0| .

This proves the claim and the lemma.

Exercise 2.67. Choose a coordinate chart φ : U → Ω with φ(p0) = 0 such
that the metric in local coordinates satisfies

gij(0) = δij .

Refine the estimate (2.51) in the proof of Lemma 2.66 and show that

lim
p,q→p0

d(p, q)

|φ(p)− φ(q)|
= 1.

This is the intrinsic analogue of Lemma 2.7. Use this to prove that equa-
tion (2.46) continues to hold for all Riemannian manifolds, i.e.

lim
δ→0

d(expp(δv), expp(δw))

δ
= |v − w|

for p ∈M and v, w ∈ TpM . Extend Lemma 2.61 to the intrinsic setting.



2.6. RIEMANNIAN METRICS 127

Exercise 2.68. Let M be a manifold with an atlas A = {Uα, φα}α∈A and
let d : M ×M → [0,∞) be any metric on M . Prove that the following are
equivalent.

(a) For every point p0 ∈M , every sequence pν ∈M , and every α ∈M with
p0 ∈ Uα we have

lim
ν→∞

d(pν , p0) = 0 ⇐⇒ pν ∈ Uα for ν sufficiently large and
limν→∞ |φα(pν)− φα(p0)| = 0.

(b) For every subset W ⊂M we have

W is d-open ⇐⇒ φα(Uα ∩W ) is open in Rm for all α ∈ A.

Condition (b) asserts that d induces the topology on M determined by the
manifold structure via (1.53).

Example 2.69 (Fubini-Study metric). The complex projective space
CPn carries a natural Riemannian metric, defined as follows. Identify CPn

with the quotient of the unit sphere S2n+1 ⊂ Cn+1 by the diagonal action
of the circle S1:

CPn = S2n+1/S1.

Then the tangent space of the equivalence class

[z] = [z0 : · · · : zn] ∈ CPn

of a point z = (z0, . . . , zn) ∈ S2n+1 can be identified with the orthogonal
complement of Cz in Cn+1. Now choose the inner product on T[z]CPn to
be the one inherited from the standard inner product on Cn+1 via this
identification. The resulting metric on CPn is called the Fubini–Study
metric. Exercise: Prove that the action of U(n + 1) on Cn+1 induces a
transitive action of the quotient group

PSU(n+ 1) := U(n+ 1)/S1

by isometries. If z ∈ S1 prove that the unitary matrix

g := 2zz∗ − 1l

descends to an isometry φ on CPn with fixed point p := [z] and dφ(p) = −id.
Show that, in the case n = 1, the pullback of the Fubini–Study metric on CP1

under the stereographic projection

S2 \ {(0, 0, 1)} → CP1 \ {[0 : 1]} : (x1, x2, x3) 7→
[
1 :

x1 + ix2

1− x3

]
is one quarter of the standard metric on S2.
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Example 2.70. Think of the complex Grassmannian Gk(Cn) of k-planes
in Cn as a quotient of the space

Fk(Cn) :=
{
D ∈ Cn×k |D∗D = 1l

}
of unitary k-frames in Cn by the right action of the unitary group U(k).
The space Fk(Cn) inherits a Riemannian metric from the ambient Euclidean
space Cn×k. Show that the tangent space of of Gk(Cn) at a point Λ = imD,
with D ∈ Fk(Cn) can be identified with the space

TΛGk(Cn) =
{
D̂ ∈ Cn×k |D∗D̂ = 0

}
.

Define the inner product on this tangent space to be the restriction of the
standard inner product on Cn×k to this subspace. Exercise: Prove that
the unitary group U(n) acts on Gk(Cn) by isometries.

2.6.2 Covariant derivatives

A subtle point in this discussion is how to extend the notion of covariant
derivative to general Riemannian manifolds. In this case the idea of project-
ing the derivative in the ambient space orthogonally onto the tangent space
has no obvious analogue. Instead we shall see how the covariant derivatives
of vector fields along curves can be characterized by several axioms and
these can be used to define the covariant derivative in the intrinsic setting.
An alternative, but somewhat less satisfactory, approach is to carry over
the formula for the covariant derivative in local coordinates to the intrinsic
setting and show that the result is independent of the choice of the coor-
dinate chart. Of course, these approaches are equivalent and lead to the
same result. We formulate them as a series of exercises. The details are
straightforward and can be safely left to the reader.

Let M be a Riemannian m-manifold with an atlas A = {Uα, φα}α∈A
and suppose that the Riemannian metric is in local coordinates given by

gα = (gα,ij)
m
i,j=1 : φα(Uα)→ Rm×m

for α ∈ A. These functions satisfy (2.48) for all α, β ∈ A.

Definition 2.71. Let f : N → M be a smooth map between manifolds. A
vector field along f is a collection of tangent vectors X(q) ∈ Tf(q)M, one
for each q ∈ N , such that the map N → TM : q 7→ (f(q), X(q)) is smooth.
The space of vector fields along f will be denoted by Vect(f).
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As before we will not distinguish in notation between the collection of
tangent vectors X(q) ∈ Tf(q)M and the associated map N → TM and
denote them both by X.

Remark 2.72 (Levi-Civita connection). There is a unique collection of
linear operators

∇ : Vect(γ)→ Vect(γ)

(called the covariant derivative), one for every smooth curve γ : I → M
on an open interval I ⊂ R, satisfying the following axioms.

(Leibnitz rule) For every smooth curve γ : I →M , every smooth function
λ : I → R, and every vector field X ∈ Vect(γ), we have

∇(λX) = λ̇X + λ∇X. (2.54)

(Chain rule) Let Ω ⊂ Rn be an open set, c : I → Ω be a smooth curve,
γ : Ω → M be a smooth map, and X be a smooth vector field along γ.
Denote by∇iX the covariant derivative of X along the curve xi 7→ γ(x) (with
the other coordinates fixed). Then ∇iX is a smooth vector field along γ and
the covariant derivative of the vector field X ◦ c ∈ Vect(γ ◦ c) is

∇(X ◦ c) =
n∑
j=1

ċj(t)∇jX(c(t)). (2.55)

(Riemannian) For any two vector fields X,Y ∈ Vect(γ) we have

d

dt
〈X,Y 〉 = 〈∇X,Y 〉+ 〈X,∇Y 〉. (2.56)

(Torsion free) Let I, J ⊂ R be open intervals and γ : I × J → M be
a smooth map. Denote by ∇s the covariant derivative along the curve
s 7→ γ(s, t) (with t fixed) and by ∇t the covariant derivative along the curve
t 7→ γ(s, t) (with s fixed). Then

∇s∂tγ = ∇t∂sγ. (2.57)

Exercise 2.73. Prove that the covariant derivatives of vector fields along
curves in an embedded manifold M ⊂ Rn satisfy the axioms of Remark 2.72.
Prove the assertion of Remark 2.72. Hint: Use Theorem 2.27.
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Exercise 2.74. The Christoffel symbols of the Riemannian metric are
the functions

Γkα,ij : φα(Uα)→ R.

defined by

Γkα,ij :=
m∑
`=1

gk`α
1

2

(
∂gα,`i
∂xj

+
∂gα,`j
∂xi

− ∂gα,ij
∂x`

)
(see Theorem 2.27). Prove that they are related by the equation

∑
k

∂φk
′
βα

∂xk
Γkα,ij =

∂2φk
′
βα

∂xi∂xj
+
∑
i′,j′

(
Γk
′
β,i′j′ ◦ φβα

) ∂φi′βα
∂xi

∂φj
′

βα

∂xj
.

for all α, β ∈ A.

Exercise 2.75. Denote ψα := φ−1
α : φα(Uα)→M . Prove that the covariant

derivative of a vector field

X(t) =
m∑
i=1

ξiα(t)
∂ψα
∂xi

(cα(t))

along γ = ψα ◦ cα : I →M is given by

∇X(t) =

m∑
k=1

ξ̇kα(t) +

m∑
i,j=1

Γkα,ij(c(t))ξ
i
α(t)ċjα(t)

 ∂ψα
∂xk

(cα(t)). (2.58)

Prove that ∇X is independent of the choice of the coordinate chart.

2.6.3 Geodesics

With the covariant derivative understood, we can again define geodesics
on M as smooth curves γ : I →M that satisfy the equation ∇γ̇ = 0. Then
all the results we have proved about geodesics will translate word for word to
general manifolds. In particular, geodesics are critical points of the energy
functional on the space of paths with fixed endpoints, through each point
and in each direction there is a unique geodesic on some time interval, and
a manifold is complete as a metric space if and only if the geodesics through
some (and hence every) point in M exist in each direction for all time.

Exercise 2.76. The real projective space RPn inherits a Riemannian metric
from Sn as it is a quotient of Sn by an isometric involution. Prove that each
geodesic in Sn with its standard metric descends to a geodesic in RPn.
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Exercise 2.77. Let f : S3 → S2 be the Hopf fibration defined by

f(z, w) =
(
|z|2 − |w|2 , 2Re z̄w, 2Im z̄w

)
Prove that the image of a great circle in S3 is a nonconstant geodesic in S2

if and only if it is orthogonal to the fibers of f , which are also great circles.
Here we identify S3 with the unit sphere in C2. (See also Exercise 1.84.)

Exercise 2.78. Prove that a nonconstant geodesic γ : R→ S2n+1 descends
to a nonconstant geodesic in CPn with the Fubini–Study metric (see Exam-
ple 2.69) if and only if γ̇(t) ⊥ Cγ(t) for every t ∈ R.

Exercise 2.79. Consider the manifold

Fk(Rn) :=
{
D ∈ Rn×k

∣∣DTD = 1l
}

of orthonormal k-frames in Rn, equipped with the Riemannian metric in-
herited from the standard inner product

〈X,Y 〉 := trace(XTY )

on the space of real n× k-matrices.

(a) Prove that

TDFk(Rn) =
{
X ∈ Rn×k

∣∣DTX +XTD = 0
}
,

TDFk(Rn)⊥ =
{
DA

∣∣A = AT ∈ Rk×k
}
.

and that the orthogonal projection Π(D) : Rn×k → TDFk(Rn) is given by

Π(D)X = X − 1

2
D
(
DTX +XTD

)
.

(b) Prove that the second fundamental form of Fk(Rn) is given by

hD(X)Y = −1

2
D
(
XTY + Y TX

)
for D ∈ Fk(Rn) and X,Y ∈ TDFk(Rn).

(c) Prove that a smooth map R → Fk(Rn) : t 7→ D(t) is a geodesic if and
only if it satisfies the differential equation

D̈ = −DḊT Ḋ. (2.59)

Prove that the function DT Ḋ is constant for every geodesic in Fk(Rn).
Compare this with Example 2.42.



132 CHAPTER 2. GEODESICS

Exercise 2.80. Let Gk(Rn) = Fk(Rn)/O(k) be the real Grassmannian of
k-dimensional subspaces in Rn, equipped with the Riemannian metric of
Example 2.70, adapted to the real setting. Prove that a geodesics

R→ Fk(Rn) : t 7→ D(t)

descends to a nonconstant geodesic in Gk(Rn) if and only if

DT Ḋ ≡ 0, Ḋ 6≡ 0.

Deduce that the exponential map on Gk(Rn) is given by

expΛ(Λ̂) = im

(
D cos

((
D̂T D̂

)1/2
)

+ D̂
(
D̂T D̂

)−1/2
sin

((
D̂T D̂

)1/2
))

for Λ ∈ Fk(Rn) and Λ̂ ∈ TΛFk(Rn) \ {0}. Here we dentify the tangent
space TΛFk(Rn) with the space of linear maps from Λ to Λ⊥, and choose
the matrices D ∈ Fk(Rn) and D̂ ∈ Rn×k such that

Λ = imD, DT D̂ = 0, Λ̂ ◦D = D̂ : Rk → Λ⊥ = kerDT .

Prove that the group O(n) acts on Gk(Rn) by isometries. Which subgroup
acts trivially?

Exercise 2.81. Carry over Exercises 2.79 and 2.80 to the complex Grass-
mannian Gk(Cn). Prove that the group U(n) acts on Gk(Cn) by isometries.
Which subgroup acts trivially?



Chapter 3

The Levi-Civita connection

The covariant derivative of a vector field along a curve was introduced in
Section 2.2. For a submanifold of Euclidean space it is given by the orthogo-
nal projection of the derivative in the ambient space onto the tangent space.
In Section 2.3 we have seen that the covariant derivative is determined by
the Christoffel symbols in local coordinates and thus can be carried over to
the intrinsic setting. It takes the form of a family of linear operators

∇ : Vect(γ)→ Vect(γ),

one for every smooth curve γ : I → M , and these operators are uniquely
characterized by the axioms of Remark 2.72 in Section 2.6. This family
of linear operators is the Levi-Civita connection. It can be extended in a
natural manner to vector fields along any smooth map with values in M
and, in particular, to vector fields along the identity map, i.e. to the space
of vector fields on M . However, in this chapter we will focus attention on the
covariant derivatives of vector fields along curves, show how they give rise
to parallel transport, examine the frame bundle, discuss motions without
“sliding, twisting, and wobbling”, and prove the development theorem.

3.1 Parallel transport

Let M ⊂ Rn be a smooth m-manifold. Then each tangent space of M is an
m-dimensional real vector space and hence is isomorphic to Rm. Thus any
two tangent spaces TpM and TqM are of course isomorphic to each other.
While there is no canonical isomorphism from TpM to TqM we shall see
that every smooth curve γ in M connecting p to q induces an isomorphism
between the tangent spaces via parallel transport of tangent vectors along γ.

133
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Definition 3.1. Let I ⊂ R be an interval and γ : I →M be a smooth curve.
A vector field X along γ is called parallel if ∇X(t) = 0 for every t ∈ I.

Example 3.2. Assume m = k so that M ⊂ Rm is an open set. Then a
vector field along a smooth curve γ : I →M is a smooth map X : I → Rm.
Its covariant derivative is equal to the ordinary derivative ∇X(t) = Ẋ(t)
and hence X is is parallel if and only it is constant.

In general, a vector field X along a smooth curve γ : I → M is parallel
if and only if Ẋ(t) is orthogonal to Tγ(t)M for every t and, by the Gauss–
Weingarten formula (2.37), we have

∇X = 0 ⇐⇒ Ẋ = hγ(γ̇, X).

The next theorem shows that any given tangent vector v0 ∈ Tγ(t0)M extends
uniquely to a parallel vector field along γ.

Theorem 3.3. Let I ⊂ R be an interval and γ : I →M be a smooth curve.
Let t0 ∈ I and v0 ∈ Tγ(t0)M be given. Then there is a unique parallel vector
field X ∈ Vect(γ) such that X(t0) = v0.

Proof. Choose a basis e1, . . . , em of the tangent space Tγ(t0)M and let

X1, . . . , Xm ∈ Vect(γ)

be vector fields along γ such that

Xi(t0) = ei, i = 1, . . . ,m.

(For example choose Xi(t) := Π(γ(t))ei.) Then the vectors Xi(t0) are lin-
early independent. Since linear independence is an open condition there is a
constant ε > 0 such that the vectors X1(t), . . . , Xm(t) ∈ Tγ(t)M are linearly
independent for every t ∈ I0 := (t0 − ε, t0 + ε) ∩ I. Since Tγ(t)M is an
m-dimensional real vector space this implies that the vectors Xi(t) form a
basis of Tγ(t)M for every t ∈ I0. We express the vector ∇Xi(t) ∈ Tγ(t)M in

this basis and denote the coefficients by aki (t) so that

∇Xi(t) =

m∑
k=1

aki (t)Xk(t).

The resulting functions aki : I0 → R are smooth. Likewise, if X : I → Rn is
any vector field along γ then there are smooth functions ξi : I0 → R such
that

X(t) =

m∑
i=1

ξi(t)Xi(t) for all t ∈ I0.
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The derivative of X is given by

Ẋ(t) =
m∑
i=1

(
ξ̇i(t)Xi(t) + ξi(t)Ẋi(t)

)
and the covariant derivative by

∇X(t) =
m∑
i=1

(
ξ̇i(t)Xi(t) + ξi(t)∇Xi(t)

)
=

m∑
i=1

ξ̇i(t)Xi(t) +
m∑
i=1

ξi(t)
m∑
k=1

aki (t)Xk(t)

=
m∑
k=1

(
ξ̇k(t) +

m∑
i=1

aki (t)ξ
i(t)

)
Xk(t)

for t ∈ I0. Hence ∇X(t) = 0 if and only if

ξ̇(t) +A(t)ξ(t) = 0, A(t) :=

 a1
1(t) · · · a1

m(t)
...

...
am1 (t) · · · amm(t)

 .

Thus we have translated the equation ∇X = 0 over the interval I0 into
a time dependent linear ordinary differential equation. By a theorem in
Analysis II [12] this equation has a unique solution for any initial condition
at any point in I0. Thus we have proved that every t0 ∈ I is contained in an
interval I0 ⊂ I, open in the relative topology of I, such that, for every t1 ∈ I0

and every v1 ∈ Tγ(t1)M , there is a unique parallel vector field X : I0 → Rn
along γ|I0 satisfying X(t1) = v1. We formulate this condition on the interval
I0 as a logical formula:

∀ t1 ∈ I0 ∀ v1 ∈ Tγ(t1)M ∃! X ∈ Vect(γ|I0) 3 ∇X = 0, X(t1) = v1. (3.1)

If two intervals I0, I1 ⊂ I satisfy this condition and have nonempty intersec-
tion then their union I0 ∪ I1 also satisfies (3.1). (Prove this!) Now define

J :=
⋃
{I0 ⊂ I | I0 is an I-open interval, I0 satisfies (3.1), t0 ∈ I0} .

This interval J satisfies (3.1). Moreover, it is nonempty and, by definition,
it is open in the relative topology of I. We prove that it is also closed in the
relative topology of I. Thus let (tν)ν∈N be a sequence in J converging to a
point t∗ ∈ I. By what we have proved above, there is a constant ε > 0 such
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that the interval I∗ := (t∗ − ε, t∗ + ε) ∩ I satisfies (3.1). Since the sequence
(tν)ν∈N converges to t∗ there is a ν such that tν ∈ I∗. Since tν ∈ J there is
an interval I0 ⊂ I, open in the relative topology of I, that contains t0 and tν
and satisfies (3.1). Hence the interval I0∪I∗ is open in the relative topology
of I, contains t0 and t∗, and satisfies (3.1). This shows that t∗ ∈ J . Thus
we have proved that the interval J is nonempty and open and closed in the
relative topology of I. Hence J = I and this proves the theorem.

Let I ⊂ R be an interval and γ : I →M be a smooth curve. For t0, t ∈ I
we define the map

Φγ(t, t0) : Tγ(t0)M → Tγ(t)M

by Φγ(t, t0)v0 := X(t) where X ∈ Vect(γ) is the unique parallel vector field
along γ satisfying X(t0) = v0. The collection of maps Φγ(t, t0) for t, t0 ∈ I
is called parallel transport along γ. Recall the notation

γ∗TM =
{

(s, v) | s ∈ I, v ∈ Tγ(s)M
}

for the pullback tangent bundle. This set is a smooth submanifold of I×Rn.
(See Theorem 1.100 and Corollary 1.102.) The next theorem summarizes
the properties of parallel transport. In particular, the last assertion shows
that the covariant derivative can be recovered from the parallel transport
maps.

Theorem 3.4 (Parallel Transport). Let γ : I → M be a smooth curve
on an interval I ⊂ R.

(i) The map Φγ(t, s) : Tγ(s)M → Tγ(t)M is linear for all s, t ∈ I.

(ii) For all r, s, t ∈ I we have

Φγ(t, s) ◦ Φγ(s, r) = Φγ(t, r), Φγ(t, t) = id.

(iii) For all s, t ∈ I and all v, w ∈ Tγ(s)M we have

〈Φγ(t, s)v,Φγ(t, s)w〉 = 〈v, w〉.

Thus Φγ(t, s) : Tγ(s)M → Tγ(t)M is an orthogonal transformation.

(iv) If J ⊂ R is an interval and α : J → I is a smooth map then, for all
s, t ∈ J , we have

Φγ◦α(t, s) = Φγ(α(t), α(s)).

(v) The map I × γ∗TM → γ∗TM : (t, (s, v)) 7→ (t,Φγ(t, s)v) is smooth.

(vi) For all X ∈ Vect(γ) and t, t0 ∈ I we have

d

dt
Φγ(t0, t)X(t) = Φγ(t0, t)∇X(t).
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Proof. Assertion (i) is obvious because the sum of two parallel vector fields
along γ is again parallel and the product of a parallel vector field with a
constant real number is again parallel. Assertion (ii) follows directly from
the uniqueness statement in Theorem 3.3.

We prove (iii). Fix a number s ∈ I and two tangent vectors

v.w ∈ Tγ(s)M.

Define the vector fields X,Y ∈ Vect(γ) along γ by

X(t) := Φγ(t, s)v, Y (t) := Φγ(t, s)w.

By definition of Φγ these vector fields are parallel. Hence

d

dt
〈X,Y 〉 = 〈∇X,Y 〉+ 〈X,∇Y 〉 = 0.

Hence the function I → R : t 7→ 〈X(t), Y (t)〉 is constant and this proves (iii).
We prove (iv). Fix an element s ∈ J and a tangent vector v ∈ Tγ(α(s))M .

Define the vector field X along γ by

X(t) := Φγ(t, α(s))v

for t ∈ I. Thus X is the unique parallel vector field along γ that satisfies

X(α(s)) = v.

Denote
γ̃ := γ ◦ α : J →M, X̃ := X ◦ α : I → Rn

Then X̃ is a vector field along γ̃ and, by the chain rule, we have

d

dt
X̃(t) =

d

dt
X(α(t)) = α̇(t)Ẋ(α(t)).

Projecting orthogonally onto the tangent space Tγ(α(t))M we obtain

∇X̃(t) = α̇(t)∇X(α(t)) = 0

for every t ∈ J . Hence X̃ is the unique parallel vector field along γ̃ that
satisfies X̃(s) = v. Thus

Φγ̃(t, s)v = X̃(t) = X(α(t)) = Φγ(α(t), α(s))v.

This proves (iv).
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We prove (v). Fix a point t0 ∈ I, choose an orthonormal basis e1, . . . , em
of Tγ(t0)M , and denote

Xi(t) := Φγ(t, t0)ei

for t ∈ I and i = 1, . . . ,m. Thus Xi ∈ Vect(γ) is the unique parallel vector
field along γ such that Xi(t0) = ei. Then by (iii) we have

〈Xi(t), Xj(t)〉 = δij

for all i, j ∈ {1, . . . ,m} and all t ∈ I. Hence the vectors X1(t), . . . , Xm(t)
form an orthonormal basis of Tγ(t)M for every t ∈ I. This implies that, for
each s ∈ I and each tangent vector v ∈ Tγ(s)M , we have

v =

m∑
i=1

〈Xi(s), v〉Xi(s).

Since each vector field Xi is parallel it satisfies Xi(t) = Φγ(t, s)Xi(s). Hence

Φγ(t, s)v =

m∑
i=1

〈Xi(s), v〉Xi(t) (3.2)

for all s, t ∈ I and v ∈ Tγ(s)M . This proves (v)

We prove (vi). Let X1, . . . , Xm ∈ Vect(γ) be as in the proof of (v). Thus
every vector field X along γ can be written in the form

X(t) =
m∑
i=1

ξi(t)Xi(t), ξi(t) := 〈Xi(t), X(t)〉.

Since the vector fields Xi are parallel we have

∇X(t) =
m∑
i=1

ξ̇i(t)Xi(t)

for all t ∈ I. Hence

Φγ(t0, t)X(t) =
m∑
i=1

ξi(t)Xi(t0), Φγ(t0, t)∇X(t) =
m∑
i=1

ξ̇i(t)Xi(t0).

Evidently, the derivative of the first sum with respect to t is equal to the
second sum. This proves (vi) and the theorem.
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Remark 3.5. For s, t ∈ I we can think of the linear map

Φγ(t, s)Π(γ(s)) : Rn → Tγ(t)M ⊂ Rn

as a real n×n matrix. The formula (3.2) in the proof of (v) shows that this
matrix can be expressed in the form

Φγ(t, s)Π(γ(s)) =
m∑
i=1

Xi(t)Xi(s)
T ∈ Rn×n.

The right hand side defines a smooth matrix valued function on I × I and
this is equivalent to the assertion in (v).

Remark 3.6. It follows from assertions (ii) and (iii) in Theorem 3.4 that

Φγ(t, s)−1 = Φγ(s, t) = Φγ(t, s)∗

for all s, t ∈ I. Here the linear map Φγ(t, s)∗ : Tγ(t)M → Tγ(s)M is under-
stood as the adjoint operator of Φγ(t, s) : Tγ(s)M → Tγ(t)M with respect to
the inner products on the two subspaces of Rn inherited from the Euclidean
inner product on the ambient space.

Exercise 3.7. Carry over the proofs of Theorems 3.3 and 3.4 to the intrinsic
setting.

The two theorems in this section carry over verbatim to any smooth
vector bundle E ⊂ M × Rn over a manifold. As in the case of the tangent
bundle one can define the covariant derivative of a section of E along γ as
the orthogonal projection of the ordinary derivative in the ambient space Rn
onto the fiber Eγ(t). Instead of parallel vector fields one then speaks about
horizontal sections and one proves as in Theorem 3.3 that there is a unique
horizontal section along γ through any point in any of the fibers Eγ(t0). This
gives parallel transport maps from Eγ(s) to Eγ(t) for any pair s, t ∈ I and
Theorem 3.4 carries over verbatim to all vector bundles E ⊂ M × Rn. We
spell this out in more detail in the case where E = TM⊥ ⊂ M × Rn is the
normal bundle of M .

Let γ : I →M is a smooth curve in M . A normal vector field along
γ is a smooth map Y : I → Rn such that Y (t) ⊥ Tγ(t)M for every t ∈ M .
The set of normal vector fields along γ will be denoted by

Vect⊥(γ) :=
{
Y : I → Rn |Y is smooth and Y (t) ⊥ Tγ(t)M for all t ∈ I

}
.

This is again a real vector space. The covariant derivative of a normal
vector field Y ∈ Vect⊥(γ) at t ∈ I is defined as the orthogonal projection of
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the ordinary derivative onto the orthogonal complement of Tγ(t)M and will
be denoted by

∇⊥Y (t) :=
(
1l−Π(γ(t))

)
Ẏ (t). (3.3)

Thus the covariant derivative defines a linear operator

∇⊥ : Vect⊥(γ)→ Vect⊥(γ).

There is a version of the Gauss–Weingarten formula for the covariant deriva-
tive of a normal vector field. This is the content of the next lemma.

Lemma 3.8. Let M ⊂ Rn be a smooth m-manifold. For p ∈ M and
u ∈ TpM define the linear map hp(u) : TpM → TpM

⊥ by

hp(u)v := hp(u, v) =
(
dΠ(p)u

)
v (3.4)

for v ∈ TpM . Then the following holds.

(i) The adjoint operator hp(u)∗ : TpM
⊥ → TpM is given by

hp(u)∗w =
(
dΠ(p)u

)
w, w ∈ TpM⊥. (3.5)

(ii) If I ⊂ R is an interval, γ : I →M is a smooth curve, and Y ∈ Vect⊥(γ)
then the derivative of Y satisfies the Gauss–Weingarten formula

Ẏ (t) = ∇⊥Y (t)− hγ(t)(γ̇(t))∗Y (t). (3.6)

Proof. Since Π(p) ∈ Rn×n is a symmetric matrix for every p ∈ M so is the
matrix dΠ(p)u for every p ∈M and every u ∈ TpM . Hence

〈v, hp(u)∗w〉 = 〈hp(u)v, w〉 =
〈(
dΠ(p)u

)
v, w

〉
=
〈
v,
(
dΠ(p)u

)
w
〉

for every v ∈ TpM and every w ∈ TpM⊥. This proves (i).
To prove (ii) we observe that, for Y ∈ Vect⊥(γ) and t ∈ I, we have

Π(γ(t))Y (t) = 0.

Differentiating this identity we obtain

Π(γ(t))Ẏ (t) +
(
dΠ(γ(t))γ̇(t)

)
Y (t) = 0

and hence

Ẏ (t) = Ẏ (t)−Π(γ(t))Ẏ (t)−
(
dΠ(γ(t))γ̇(t)

)
Y (t)

= ∇⊥Y (t)− hγ(t)(γ̇(t))∗Y (t)

for t ∈ I. Here the last equation follows from (i) and the definition of ∇⊥.
This proves the lemma.
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Theorem 3.3 and its proof carry over to the normal bundle TM⊥. Thus,
if γ : I → M is a smooth curve then, for all s ∈ I and w ∈ Tγ(s)M

⊥,

there is a unique normal vector field Y ∈ Vect⊥(γ) such that ∇⊥Y ≡ 0 and
Y (s) = w. This gives rise to parallel transport maps

Φ⊥γ (t, s) : Tγ(s)M
⊥ → Tγ(t)M

⊥

defined by Φ⊥γ (t, s)w := Y (t) for s, t ∈ I and w ∈ Tγ(s)M
⊥, where Y is

the unique normal vector field along γ satisfying ∇⊥Y ≡ 0 and Y (s) = w.
These parallel transport maps satisfy exactly the same conditions that have
been spelled out in Theorem 3.4 for the tangent bundle and the proof carries
over verbatim to the present setting.

3.2 The frame bundle

3.2.1 Frames of a vector space

Let V be an m-dimensional real vector space. A frame of V is a basis
e1, . . . , em of V . It determines a vector space isomorphism e : Rm → V via

eξ :=
m∑
i=1

ξiei, ξ = (ξ1, . . . , ξm) ∈ Rm.

Conversely, each isomorphism e : Rm → V determines a basis e1, . . . , em
of V via ei = e(0, . . . , 0, 1, 0 . . . , 0), where the coordinate 1 appears in the
ith place. The set of vector space isomorphisms from Rm to V will be
denoted by

Liso(Rm, V ) := {e : Rm → V | e is a vector space isomorphism} .

The general linear group GL(m) = GL(m,R) (of nonsingular real m ×m-
matrices) acts on this space by composition on the right via

GL(m)× Liso(Rm, V )→ Liso(Rm, V ) : (a, e) 7→ a∗e := e ◦ a.

This is a contravariant group action in that

a∗b∗e = (ba)∗e, 1l∗e = e

for a, b ∈ GL(m) and e ∈ Liso(Rm, V ). Moreover, the action is free, i.e. for
all a ∈ GL(m) and e ∈ Liso(Rm, V ), we have

a∗e = e ⇐⇒ a = 1l.
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It is transitive in that for all e, e′ ∈ Liso(Rm, V ) there is a group element
a ∈ GL(m) such that e′ = a∗e. Thus we can identify the space Liso(Rm, V )
with the group GL(m) via the bijection

GL(m)→ Liso(Rm, V ) : a 7→ a∗e0

induced by a fixed element e0 ∈ Liso(Rm, V ). This identification is not
canonical; it depends on the choice of e0. The space Liso(Rm, V ) admits a
bijection to a group but is not itself a group.

3.2.2 The frame bundle

Now let M ⊂ Rn be a smooth m-dimensional submanifold. The frame
bundle of M is the set

F(M) := {(p, e) | p ∈M, e ∈ Liso(Rm, TpM)} . (3.7)

We can think of a frame e ∈ Liso(Rm, TpM) as a linear map from Rm to Rn
whose image is TpM and hence as a n×m-matrix (of rank m). The basis of
TpM associated to a frame is given by the columns of the matrix e ∈ Rn×m.
Thus the frame bundle of an embedded manifold M ⊂ Rn is a submanifold
of the Euclidean space Rn × Rn×m.

The frame bundle F(M) is equipped with a natural projection

π : F(M)→M

which sends to each pair (p, e) ∈ F(M) to the base boint π(p, e) := p. The
fiber of F(M) over p ∈M is the set

F(M)p :=
{
e ∈ Rn×m | (p, e) ∈ F(M)

}
= Liso(Rm, TpM)

The frame bundle admits a right action of the group GL(m) via

GL(m)×F(M)→ F(M) : (a, (p, e)) 7→ a∗(p, e) := (p, a∗e).

This group action preserves the fibers of the frame bundle and its action on
each fiber F(M)p = Liso(Rm, TpM) is free and transitive. Thus each fiber
of F(M) can be identified with the group GL(m) but the fibers of F(M)
are not themselves groups.

Lemma 3.9. F(M) is a smooth manifold of dimension m + m2 and the
projection π : F(M)→M is a submersion.
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Proof. Let p0 ∈ M , choose a local coordinate chart φ : U → Ω on an open
neighborhood U ⊂M of p0 with values in an open set Ω ⊂ Rm, and denote
its inverse by ψ := φ−1 : Ω→ U. Define the open set Ũ ⊂ F(M) by

Ũ := π−1(U) = {(p, e) ∈ F(M) | p ∈ U} = (U × Rn×m) ∩ F(M)

and the map ψ̃ : Ω×GL(m)→ Ũ by

ψ̃(x, a) :=
(
ψ(x), dψ(x) ◦ a

)
for x ∈ Ω and a ∈ GL(m). Then ψ̃ is a diffeomorphism from the open subset
Ω̃ := Ω ×GL(m) of Rm × Rm×m to the relatively open subset Ũ of F(M).
Its inverse φ̃ := ψ̃−1 : Ũ → Ω̃ is given by

φ̃(p, e) =
(
φ(p), dφ(p) ◦ e

)
for p ∈ U and e ∈ Liso(Rm, TpM). It is indeed smooth and is the desired
coordinate chart on F(M). Thus we have proved that F(M) is a smooth
manifold of dimension m+m2.

We prove that the projection π : F(M) → M is a submersion. Let
(p0, e0) ∈ F(M) and v0 ∈ Tp0M . Then there is a smooth curve γ : R → M
such that γ(0) = p0 and γ̇(0) = v0. For t ∈ R define

e(t) := Φγ(t, 0) ◦ e0 : Rm → Tγ(t)M.

Then e(t) ∈ Liso(Rm, Tγ(t)M) and the map β : R → F(M) defined by
β(t) := (γ(t), e(t)) is a smooth curve in F(M) satisfying π(β(t)) = γ(t).
Differentiating this equation at t = 0 we obtain

dπ(p0, e0)(v0, ė(0)) = v0.

Thus we have proved that the linear map dπ(p0, e0) : T(p0,e0)F(M)→ Tp0M
is surjective for every pair (p0, e0) ∈ F(M). Hence π is a submersion, as
claimed. This proves the lemma.

The frame bundle F(M) is a principal bundle over M with struc-
ture group GL(m). More generally, a principal bundle over a mani-
fold B with structure group G is a smooth manifold P equipped with
a surjective submersion π : P → B and a smooth contravariant action
G × P → P : (g, p) 7→ pg by a Lie group G such that π(pg) = π(p) for all
p ∈ P and g ∈ G and such that the group G acts freely and transitively
on the fiber Pb = π−1(b) for each b ∈ B. In this manuscript we shall only
be concerned with the frame bundle of a manifold M and the orthonormal
frame bundle.
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3.2.3 The orthonormal frame bundle

The orthonormal frame bundle of M is the set

O(M) :=
{

(p, e) ∈ Rn × Rn×m | p ∈M, im e = TpM, eT e = 1lm×m
}
.

If we denote by

ei := e(0, . . . , 0, 1, 0, . . . , 0)

the basis of TpM induced by the isomorphism e : Rm → TpM then we have

eT e = 1l ⇐⇒ 〈ei, ej〉 = δij ⇐⇒ e1, . . . , em is an
orthonormal basis.

Thus O(M) is the bundle of orthonormal frames of the tangent spaces TpM
or the bundle of orthogonal isomorphisms e : Rm → TpM . It is a principal
bundle over M with structure group O(m).

Exercise 3.10. Prove that O(M) is a submanifold of F(M) and that the
obvious projection π : O(M) → M is a submersion. Prove that the action
of GL(m) on F(M) restricts to an action of the orthogonal group O(m) on
O(M) whose orbits are the fibers

O(M)p :=
{
e ∈ Rn×m

∣∣ (p, e) ∈ O(M)
}

=
{
e ∈ Liso(Rm, TpM)

∣∣ eT e = 1l
}
.

Hint: If φ : U → Ω is a coordinate chart on M with inverse ψ : Ω→ U then
ex := dψ(x)(dψ(x)Tdψ(x))−1/2 : Rm → Tψ(x)M is an orthonormal frame of
the tangent space Tψ(x)M for every x ∈ Ω.

3.2.4 The tangent bundle of the frame bundle

We have seen in Lemma 3.9 that the frame bundle F(M) is a smooth sub-
manifold of Rn × Rn×m. Next we examine the tangent space of F(M) at a
point (p, e) ∈ F(M). By Definition 1.21, this tangent space is given by

T(p,e)F(M) =

(γ̇(0), ė(0))

∣∣∣∣∣
R→ F(M) : t 7→ (γ(t), e(t))
is a smooth curve satisfying
γ(0) = p and e(0) = e

 .

It is convenient to consider two kinds of curves in F(M), namely vertical
curves with constant projections to M and horizontal lifts of curves in M .
We denote by L(Rm, TpM) the space of linear maps from Rm to TpM .
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Definition 3.11. Let γ : R→M be a smooth curve. A curve β : R→ F(M)
is called a lift of γ if

π ◦ β = γ.

Any such lift has the form β(t) = (γ(t), e(t)) with e(t) ∈ Liso(Rm, Tγ(t)M).
The associated curve of frames e(t) of the tangent spaces Tγ(t)M is called
a moving frame along γ. A curve β(t) = (γ(t), e(t)) ∈ F(M) is called
horizontal or a horizontal lift of γ if the vector field X(t) := e(t)ξ along
γ is parallel for every ξ ∈ Rm. Thus a horizontal lift of γ has the form

β(t) = (γ(t),Φγ(t, 0)e)

for some e ∈ Liso(Rm, Tγ(0)M).

Lemma 3.12. (i) The tangent space of F(M) at (p, e) ∈ F(M) is the direct
sum

T(p,e)F(M) = H(p,e) ⊕ V(p,e)

of the horizontal space

H(p,e) :=
{

(v, hp(v)e)
∣∣ v ∈ TpM} (3.8)

and the vertical space

V(p,e) := {0} × L(Rm, TpM). (3.9)

(ii) The vertical space V(p,e) is the kernel of the linear map

dπ(p, e) : T(p,e)F(M)→ TpM.

(iii) A curve β : R→ F(M) is horizontal if and only if it is tangent to the
horizontal spaces, i.e. β̇(t) ∈ Hβ(t) for every t ∈ R.

(iv) If β : R→ F(M) is a horizontal curve so is a∗β for every a ∈ GL(m).

Proof. If β : R→ F(M) is a vertical curve with π◦β ≡ p then β(t) = (p, e(t))
where e(t) ∈ Liso(Rm, TpM). Hence ė(0) ∈ L(Rm, TpM). Conversely, for
every ê ∈ L(Rm, TpM), the curve

R→ L(Rm, TpM) : t 7→ e(t) := e+ tê

takes values in the open set Liso(Rm, TpM) for t sufficiently small and sat-
isfies ė(0) = ê. This shows that V(p,e) ⊂ T(p,e)F(M).
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Now fix a tangent vector v ∈ TpM , let γ : R → M be a smooth curve
satisfying γ(0) = p and γ̇(0) = v, and let β : R → F(M) be the horizontal
lift of γ with β(0) = (p, e). Then

β(t) = (γ(t), e(t)), e(t) := Φγ(t, 0)e.

Fix a vector ξ ∈ Rm and consider the vector field

X(t) := e(t)ξ = Φγ(t, 0)eξ

along γ. This vector field is parallel and hence, by the Gauss–Weingarten
formula, it satisfies

ė(0)ξ = Ẋ(0) = hγ(0)(γ̇(0), X(0)) = hp(v)eξ.

Here we have used (3.4). Thus we have obtained the formula

γ̇(0) = v, ė(0) = hp(v)e

for the derivative of the horizontal lift of γ. This shows that the horizontal
space H(p,e) is contained in the tangent space T(p,e)F(M). Since

dimH(p,e) = m, dimV(p,e) = m2, dimT(p,e)F(M) = m+m2,

assertion (i) follows.
To prove (ii) we observe that

V(p,e) ⊂ ker dπ(p, e)

and that dπ(p, e) : T(p,e)F(M)→ TpM is surjective, by Lemma 3.9. Hence

dim ker dπ(p, e) = dimT(p,e)F(M)− dimTpM = m2 = dimV(p,e)

and this proves (ii).
We have already seen that every horizontal curve β : R→ F(M) satisfies

β̇(t) ∈ Hβ(t) for every t ∈ R. Conversely, if β(t) = (γ(t), e(t)) is a smooth

curve in F(M) satisfying β̇(t) ∈ Hβ(t) then

ė(t) = hγ(t)(γ̇(t))e(t)

for every t ∈ R. By the Gauss–Weingarten formula this implies that the
vector field X(t) = e(t)ξ along γ is parallel for every ξ ∈ Rm and hence the
curve β is horizontal. This proves (iii).

Assertion (iv) follows from (iii) and the fact that the horizontal tangent
bundle H ⊂ TF(M) is invariant under the induced action of the group
GL(m) on TF(M). This proves the lemma.
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p(M)F

π

M p

(p,e)

(M)F

= π
−1
(p)

Figure 3.1: The frame bundle.

The reason for the terminology introduced in Definition 3.11 is that one
draws the extremely crude picture of the frame bundle displayed in Fig-
ure 3.1. One thinks of F(M) as “lying over” M . One would then represent
the equation γ = π ◦ β by the following commutative diagram:

F(M)

π

��
R

β
88pppppppppppp γ //M

;

hence the word “lift”. The vertical space is tangent to the vertical line in
Figure 3.1 while the horizontal space is transverse to the vertical space. This
crude imagery can be extremely helpful.

Exercise 3.13. The group GL(m) acts on F(M) by diffeomorphisms. Thus
for each a ∈ GL(m) the map

F(M)→ F(M) : (p, e) 7→ a∗(p, e)

is a diffeomorphism of F(M). The derivative of this diffeomorphism is a
diffeomorphism of the tangent bundle TF(M) and this is called the induced
action of GL(m) on TF(M). Prove that the horizontal and vertical sub-
bundles are invariant under the induced action of GL(m) on TF(M).

Exercise 3.14. Prove that H(p,e) ⊂ T(p,e)O(M) and that

T(p,e)O(M) = H(p,e) ⊕ V ′(p,e), V ′(p,e) := V(p,e) ∩ T(p,e)O(M),

for every (p, e) ∈ O(M).
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3.2.5 Basic vector fields

Every ξ ∈ Rm determines a vector field Bξ ∈ Vect(F(M)) defined by

Bξ(p, e) :=
(
eξ, hp(eξ)e

)
(3.10)

for (p, e) ∈ F(M). This vector field is horizontal, i.e.

Bξ(p, e) ∈ H(p,e),

and projects to eξ, i.e.
dπ(p, e)Bξ(p, e) = eξ

for all (p, e) ∈ F(M). These two conditions determine the vector field Bξ
uniquely. It is called the basic vector field corresponding to ξ.

Theorem 3.15. Let M ⊂ Rn be a smooth m-manifold. Then the following
are equivalent.

(i) M is geodesically complete.

(ii) The vector field Bξ ∈ Vect(F(M)) is complete for every ξ ∈ Rm.

(iii) For every interval I ⊂ R, every smooth map ξ : I → Rm, every t0 ∈ I,
and every (p0, e0) ∈ F(M) there is a smooth curve β : I → F(M) satisfying
the differential equation

β̇(t) = Bξ(t)(β(t)) ∀ t ∈ I, β(t0) = (p0, e0). (3.11)

Proof. That (iii) implies (ii) is obvious. Just take I = R and let ξ : R→ Rm
be a constant map.

We prove that (ii) implies (i). Let p0 ∈M and v0 ∈ Tp0M be given. Let
e0 ∈ Liso(Rm, Tp0M) be any isomorphism and choose ξ ∈ Rm such that

e0ξ = v0.

By (ii) the vector field Bξ has a unique integral curve β : R → F(M) with
β(0) = (p0, e0). Write β in the form β(t) = (γ(t), e(t)). Then

γ̇(t) = e(t)ξ, ė(t) = hγ(t)(e(t)ξ)e(t),

and hence

γ̈(t) = ė(t)ξ = hγ(t)(e(t)ξ)e(t)ξ = hγ(t)(γ̇(t), γ̇(t)).

By the Gauss–Weingarten formula, this implies ∇γ̇(t) = 0 for every t and
so γ : R → M is a geodesic satisfying γ(0) = p0 and γ̇(0) = e0ξ = v0. This
shows that M is geodesically complete.
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We prove that (i) implies (iii). Thus we assume that T > t0 is such that
T ∈ I and the solution of (3.11) exists on the interval [t0, T ) but cannot be
extended to [t0, T + ε) for any ε > 0. We shall use the metric completeness
of M to prove the existence of the limit

(p1, e1) = lim
t→T
t<T

β(T ) ∈ F(M) (3.12)

and this implies, by Lemma 2.59, that the solution can be extended to the
interval [t0, T ], a contradiction. To prove the existence of the limit (3.12)
we write β(t) =: (γ(t), e(t)) so that γ and e satisfy the equations

γ̇(t) = e(t)ξ(t), ė(t) = hγ(t)(γ̇(t))e(t), γ(0) = p0, e(0) = e0. (3.13)

on the half-open interval [t0, T ). In particular, ė(t)η is orthogonal to Tγ(t)M
and e(t)ζ ∈ Tγ(t)M for all η, ζ ∈ Rm and t ∈ [t0, T ). Hence

d

dt
〈e(t)η, e(t)ζ〉 = 〈ė(t)η, e(t)ζ〉+ 〈e(t)η, ė(t)ζ〉 = 0. (3.14)

In particular, the function t 7→ |e(t)η| is constant. This implies

‖e(t)‖ := sup
η 6=0

|e(t)η|
|η|

= sup
η 6=0

|e0η|
|η|

= ‖e0‖ (3.15)

and thus

|γ̇(t)| = |e(t)ξ(t)| ≤ ‖e0‖ |ξ(t)| ≤ ‖e0‖ sup
t0≤s≤T

|ξ(s)| =: cT (3.16)

for t0 ≤ t < T . With the metric d : M ×M → [0,∞) defined by (2.3) we
obtain

d(γ(s), γ(t)) ≤ L(γ|[s,t]) ≤ (t− s)cT
for t0 < s < t < T . Since (M,d) is a complete metric space it follows
that γ(t) converges to some point p1 ∈ M as t tends to T . Thus there is a
constant c > 0 such that∥∥hγ(t)(v)

∥∥ := sup
06=u∈TpM

|hp(v)u|
|u|

≤ c |v| (3.17)

for t0 ≤ t < T . Combining (3.13), (3.15), (3.16), and (3.17) we obtain

‖ė(t)‖ =
∥∥hγ(t)(γ̇(t))e(t)

∥∥
≤

∥∥hγ(t)(γ̇(t))
∥∥ ‖e(t)‖

=
∥∥hγ(t)(γ̇(t))

∥∥ ‖e0‖
≤ c |γ̇(t)| ‖e0‖
≤ ccT ‖e0‖ .
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This implies
‖e(t)− e(s)‖ ≤ ccT ‖e0‖ (t− s)

for t0 < s < t < T . Hence e(t) converges to a matrix e1 ∈ Rn×m as t tends
to T . The image of this limit matrix is contained in Tp1M because

Π(p1)e1 = lim
t→T

Π(γ(t))e(t) = lim
t→T

e(t) = e1.

Moreover, the matrix e1 is invertible because the function t 7→ e(t)T e(t) is
constant, by (3.14), and hence the matrix

eT1 e1 = lim
t→T

e(t)T e(t) = eT0 e0

is positive definite. Thus β(t) converges to an element (p1, e1) ∈ F(M) as
t ∈ [t0, T ) tends to T and so, by Lemma 2.59, the solution β extends to the
interval [t0, T + ε) for some ε > 0. A similar argument gives a contradiction
in the case T < t0 and this proves the theorem.

Exercise 3.16 (Basic vector fields in the intrinsic setting). Let M
be a Riemannian m-manifold with an atlas A = {Uα, φα}α∈A. Prove that
the frame bundle (3.7) admits the structure of a smooth manifold with the
open cover Ũα := π−1(Uα) and coordinate charts

φ̃α : Ũα → φα(Uα)×GL(m)

given by
φ̃α(p, e) := (φα(p), dφα(p)e) .

Prove that the derivatives of the horizontal curves in Definition 3.11 form a
horizontal subbundle H ⊂ F(M) whose fibers H(p,e) can in local coordinates
be described as follows. Let

x := φα(p), a := dφα(p)e ∈ GL(m).

and (x̂, â) ∈ Rm × Rm×m. This pair has the form

(x̂, â) = dφ̃α(p, e)(p̂, ê), (p̂, ê) ∈ H(p,e),

if and only if

âk` = −
m∑

i,j=1

Γkα,ij(x)x̂iaj`

for k, ` = 1, . . . ,m, where the functions Γkα,ij : φα(Uα)→ R are the Christof-
fel symbols. Show that, for every ξ ∈ Rm there is a unique horizontal vector
field Bξ ∈ Vect(F(M)) such that dπ(p, e)Bξ(p, e) = eξ for (p, e) ∈ F(M).

Exercise 3.17. Extend Theorem 3.15 to the intrinsic setting.
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3.3 Motions and developments

Our aim in this sections is to define motion without sliding, twisting, or
wobbling. This is the motion that results when a heavy object is rolled,
with a minimum of friction, along the floor. It is also the motion of the large
snowball a child creates as it rolls it into the bottom part of a snowman.

We shall eventually justify mathematically the physical intuition that
either of the curves of contact in such ideal rolling may be specified arbi-
trarily; the other is then determined uniquely. Thus for example the heavy
object may be rolled along an arbitrary curve on the floor; if that curve is
marked in wet ink another curve will be traced in the object. Conversely if
a curve is marked in wet ink on the object, the object may be rolled so as
to trace a curve on the floor. However, if both curves are prescribed, it will
be necessary to slide the object as it is being rolled if one wants to keep the
curves in contact.

We assume throughout this section that M and M ′ are two m-dimensio-
nal submanifolds of Rn. Objects on M ′ will be denoted by the same letter
as the corresponding objects on M with primes affixed. Thus for example
Π′(p′) ∈ Rn×n denotes the orthogonal projection of Rn onto the tangent
space Tp′M

′, ∇′ denotes the covariant derivative of a vector field along a
curve in M ′, and Φ′γ′ denotes parallel transport along a curve in M ′.

3.3.1 Motion

Definition 3.18. A motion of M along M ′ (on an interval I ⊂ R) is
a triple (Ψ, γ, γ′) of smooth maps

Ψ : I → O(n), γ : I →M, γ′ : I →M ′

such that
Ψ(t)Tγ(t)M = Tγ′(t)M

′ ∀ t ∈ I.
Note that a motion also matches normal vectors, i.e.

Ψ(t)Tγ(t)M
⊥ = Tγ′(t)M

′⊥ ∀ t ∈ I.

Remark 3.19. Associated to a motion (Ψ, γ, γ′) of M along M ′ is a family
of (affine) isometries ψt : Rn → Rn defined by

ψt(p) := γ′(t) + Ψ(t)
(
p− γ(t)

)
(3.18)

for t ∈ I and p ∈ Rn. These isometries satisfy

ψt(γ(t)) = γ′(t), dψt(γ(t))Tγ(t)M = Tγ′(t)M
′ ∀ t ∈ I.
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Remark 3.20. There are three operations on motions.

Reparametrization. If (Ψ, γ, γ′) is a motion of M along M ′ on an interval
I ⊂ R and α : J → I is a smooth map between intervals then the triple
(Ψ ◦ α, γ ◦ α, γ′ ◦ α) is a motion of M along M ′ on the interval J .

Inversion. If (Ψ, γ, γ′) is a motion of M along M ′ then (Ψ−1, γ, γ) is a
motion of M ′ along M .

Composition. If (Ψ, γ, γ′) is a motion of M along M ′ on an interval I
and (Ψ′, γ′, γ′′) is a motion of M ′ along M ′′ on the same interval, then
(Ψ′Ψ, γ, γ′′) is a motion of M along M ′′.

We now give the three simplest examples of “bad” motions; i.e. motions
which do not satisfy the concepts we are about to define. In all three of
these examples, p is a point of M and M ′ is the affine tangent space to M
at p:

M ′ := p+ TpM = {p+ v | v ∈ TpM} .

Example 3.21 (Pure sliding). Take a nonzero tangent vector v ∈ TpM
and let

γ(t) := p, γ′(t) = p+ tv, Ψ(t) := 1l.

Then γ̇(t) = 0, γ̇′(t) = v 6= 0, and so Ψ(t)γ̇(t) 6= γ̇′(t). (See Figure 3.2.)

M

p
M’

Figure 3.2: Pure sliding.

Example 3.22 (Pure twisting). Let γ and γ′ be the constant curves
γ(t) = γ′(t) = p and take Ψ(t) to be the identity on TpM

⊥ and any curve
of rotations on the tangent space TpM . As a concrete example with m = 2
and n = 3 one can take M to be the sphere of radius one centered at the
point (0, 1, 0) and p to be the origin:

M :=
{

(x, y, z) ∈ R3 |x2 + (y − 1)2 + z2 = 1
}
, p := (0, 0, 0).

Then M ′ is the (x, z)-plane and A(t) is any curve of rotations in the (x, z)-
plane, i.e. about the y-axis TpM

⊥. (See Figure 3.3.)
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M

p
M’

Figure 3.3: Pure twisting.

Example 3.23 (Pure wobbling). This is the same as pure twisting except
that Ψ(t) is the identity on TpM and any curve of rotations on TpM

⊥. As
a concrete example with m = 1 and n = 3 one can take M to be the circle
of radius one in the (x, y)-plane centered at the point (0, 1, 0) and p to be
the origin:

M :=
{

(x, y, 0) ∈ R3 |x2 + (y − 1)2 = 1
}
, p := (0, 0, 0).

Then M ′ is the x-axis and Ψ(t) is any curve of rotations in the (y, z)-plane,
i.e. about the axis M ′. (See Figure 3.4.)

M

pM’

Figure 3.4: Pure wobbling.

3.3.2 Sliding

When a train slides on the track (e.g. in the process of stopping suddenly),
there is a terrific screech. Since we usually do not hear a screech, this means
that the wheel moves along without sliding. In other words the velocity of
the point of contact in the train wheel M equals the velocity of the point
of contact in the track M ′. But the track is not moving; hence the point of
contact in the wheel is not moving. One may explain the paradox this way:
the train is moving forward and the wheel is rotating around the axle. The
velocity of a point on the wheel is the sum of these two velocities. When
the point is on the bottom of the wheel, the two velocities cancel.

Definition 3.24. A motion (Ψ, γ, γ′) is without sliding if

Ψ(t)γ̇(t) = γ̇′(t)

for every t.
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Here is the geometric picture of the no sliding condition. As explained
in Remark 3.19 we can view a motion as a smooth family of isometries

ψt(p) := γ′(t) + Ψ(t)
(
p− γ(t)

)
acting on the manifold M with γ(t) ∈M being the point of contact with M ′.
Differentiating the curve t 7→ ψt(p) which describes the motion of the point
p ∈M in the space Rn we obtain

d

dt
ψt(p) = γ̇′(t)−Ψ(t)γ̇(t) + Ψ̇(t)

(
p− γ(t)

)
.

Taking p = γ(t0) we find

d

dt

∣∣∣∣
t=t0

ψt(γ(t0)) = γ̇′(t0)−Ψ(t0)γ̇(t0).

This expression vanishes under the no sliding condition. In general the
curve t 7→ ψt(γ(t0)) will be non-constant, but (when the motion is without
sliding) its velocity will vanish at the instant t = t0; i.e. at the instant when
it becomes the point of contact. In other words the motion is without sliding
if and only if the point of contact is motionless.

We remark that if the motion is without sliding we have:∣∣γ̇′(t)∣∣ = |Ψ(t)γ̇(t)| = |γ̇(t)|

so that the curves γ and γ′ have the same arclength:∫ t1

t0

∣∣γ̇′(t)∣∣ dt =

∫ t1

t0

|γ̇(t)| dt

on any interval [t0, t1] ⊂ I. Hence any motion with γ̇ = 0 and γ̇′ 6= 0 is not
without sliding (such as the example of pure sliding above).

Exercise 3.25. Give an example of a motion where |γ̇(t)| = |γ̇′(t)| for every
t but which is not without sliding.

Example 3.26. We describe mathematically the motion of the train wheel.
Let the center of the wheel move right parallel to the x-axis at height one
and the wheel have radius one and make one revolution in 2π units of time.
Then the track M ′ is the x-axis and we take

M :=
{

(x, y) ∈ R2 |x2 + (y − 1)2 = 1
}
.
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Choose

γ(t) := (cos(t− π/2), 1 + sin(t− π/2))

= (sin(t), 1− cos(t)),

γ′(t) := (t, 0),

and define Ψ(t) ∈ GL(2) by

Ψ(t) :=

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

The reader can easily verify that this is a motion without sliding. A fixed
point p0 on M , say p0 = (0, 0), sweeps out a cycloid with parametric equa-
tions

x = t− sin(t), y = 1− cos(t).

(Check that (ẋ, ẏ) = (0, 0) when y = 0; i.e. for t = 2nπ.)

Remark 3.27. These same formulas give a motion of a sphere M rolling
without sliding along a straight line in a plane M ′. Namely in coordinates
(x, y, z) the sphere has equation

x2 + (y − 1)2 + z2 = 1,

the plane is y = 0 and the line is the x-axis. The z-coordinate of a point is
unaffected by the motion. Note that the curve γ′ traces out a straight line
in the plane M ′ and the curve γ traces out a great circle on the sphere M .

Remark 3.28. The operations of reparametrization, inversion, and com-
position respect motion without sliding; i.e. if (Ψ, γ, γ′) and (Ψ′, γ′, γ′′) are
motions without sliding on an interval I and α : J → I is a smooth map
between intervals, then the motions (Ψ ◦ α, γ ◦ α, γ′ ◦ α), (Ψ−1, γ′, γ), and
(Ψ′Ψ, γ, γ′′) are also without sliding. The proof is immediate from the defi-
nition.

3.3.3 Twisting and wobbling

A motion (Ψ, γ, γ′) on an intervall I ⊂ R transforms vector fields along γ
into vector fields along γ′ by the formula

X ′(t) = (ΨX)(t) := Ψ(t)X(t) ∈ Tγ′(t)M ′

for t ∈ I and X ∈ Vect(γ); so X ′ ∈ Vect(γ′).
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Lemma 3.29. Let (Ψ, γ, γ′) be a motion of M along M ′ on an interval
I ⊂ R. Then the following are equivalent.

(i) The instantaneous velocity of each tangent vector is normal, i.e. for t ∈ I

Ψ̇(t)Tγ(t)M ⊂ Tγ′(t)M ′
⊥
.

(ii) Ψ intertwines covariant differentiation, i.e. for X ∈ Vect(γ)

∇′(ΨX) = Ψ∇X.

(iii) Ψ transforms parallel vector fields along γ into parallel vector fields
along γ′, i.e. for X ∈ Vect(γ)

∇X = 0 =⇒ ∇′(ΨX) = 0.

(iv) Ψ intertwines parallel transport, i.e. for s, t ∈ I and v ∈ Tγ(s)M

Ψ(t)Φγ(t, s)v = Φ′γ′(t, s)Ψ(s)v.

A motion that satisfies these conditions is called without twisting.

Proof. We prove that (i) is equivalent to (ii). A motion satisfies the equation

Ψ(t)Π(γ(t)) = Π′(γ′(t))Ψ(t)

for every t ∈ I. This restates the condition that Ψ(t) maps tangent vectors
of M to tangent vectors of M ′ and normal vectors of M to normal vectors
of M ′. Differentiating the equation X ′(t) = Ψ(t)X(t) we obtain

Ẋ ′(t) = Ψ(t)Ẋ(t) + Ψ̇(t)X(t).

Applying Π′(γ′(t)) this gives

∇′X ′ = Ψ∇X + Π′(γ′)Ψ̇X.

Hence (ii) holds if and only if Π′(γ′(t))Ψ̇(t) = 0 for every t ∈ I. Thus we
have proved that (i) is equivalent to (ii). That (ii) implies (iii) is obvious.

We prove that (iii) implies (iv). Let t0 ∈ I and v0 ∈ Tγ(t0)M . Define
X ∈ Vect(γ) by X(t) := Φγ(t, t0)v0 and let X ′ := ΨX ∈ Vect(γ′) Then
∇X = 0, hence by (iii) ∇′X ′ = 0, and hence

X ′(t) = Φ′γ′(t, s)X
′(t0) = Φ′γ′(t, s)Ψ(t0)v0.

Since X ′(t) = Ψ(t)X(t) = Ψ(t)Φγ(t, t0)v0, this implies (iv).
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We prove that (iv) implies (ii). Let X ∈ Vect(γ) and X ′ := ΨX ∈
Vect(γ′). By (iv) we have

Φ′γ′(t0, t)X
′(t) = Ψ(t0)Φγ(t0, t)X(t).

Differentiating this equation with respect to t at t = t0 and using Theo-
rem 3.4, we obtain ∇′X ′(t0) = Ψ(t0)∇X(t0). This proves the lemma.

Lemma 3.30. Let (Ψ, γ, γ′) be a motion of M along M ′ on an interval
I ⊂ R. Then the following are equivalent.

(i) The instantaneous velocity of each normal vector is tangent, i.e. for t ∈ I

Ψ̇(t)Tγ(t)M
⊥ ⊂ Tγ′(t)M ′.

(ii) Ψ intertwines normal covariant differentiation, i.e. for Y ∈ Vect⊥(γ)

∇′⊥(ΨY ) = Ψ∇⊥Y.

(iii) Ψ transforms parallel normal vector fields along γ into parallel normal
vector fields along γ′, i.e. for Y ∈ Vect⊥(γ)

∇⊥Y = 0 =⇒ ∇′⊥(ΨY ) = 0.

(iv) Ψ intertwines parallel transport of normal vector fields, i.e. for s, t ∈ I
and w ∈ Tγ(s)M

⊥

Ψ(t)Φ⊥γ (t, s)w = Φ′
⊥
γ′(t, s)Ψ(s)w.

A motion that satisfies these conditions is called without wobbling.

The proof of Lemma 3.30 is analogous to that of Lemma 3.29 and will
be omitted.

In summary a motion is without twisting iff tangent vectors at the point
of contact are rotating towards the normal space and it is without wobbling
iff normal vectors at the point of contact are rotating towards the tangent
space. In case m = 2 and n = 3 motion without twisting means that the
instantaneous axis of rotation is parallel to the tangent plane.

Remark 3.31. The operations of reparametrization, inversion, and compo-
sition respect motion without twisting, respectively without wobbling; i.e. if
(Ψ, γ, γ′) and (Ψ′, γ′, γ′′) are motions without twisting, respectively without
wobbling, on an interval I and α : J → I is a smooth map between intervals,
then the motions (Ψ ◦α, γ ◦α, γ′ ◦α), (Ψ−1, γ′, γ), and (Ψ′Ψ, γ, γ′′) are also
without twisting, respectively without wobbling.
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Remark 3.32. Let I ⊂ R be an interval and t0 ∈ I. Given curves γ : I →M
and γ′ : I →M ′ and an orthogonal matrix Ψ0 ∈ O(n) such that

Ψ0Tγ(t0)M = Tγ′(t0)M
′

there is a unique motion (Ψ, γ, γ′) of M along M ′ (with the given γ and γ′)
without twisting or wobbling satisfying the initial condition:

Ψ(t0) = Ψ0.

Indeed, the path of matrices Ψ : I → O(n) is uniquely determined by the
conditions (iv) in Lemma 3.29 and Lemma 3.30. It is given by the explicit
formula

Ψ(t)v = Φ′γ′(t, t0)Ψ0Φγ(t0, t)Π(γ(t))v

+ Φ′
⊥
γ′(t, t0)Ψ0Φ⊥γ (t0, t)

(
v −Π(γ(t))v

) (3.19)

for t ∈ I and v ∈ Rn. We prove below a somewhat harder result where the
motion is without twisting, wobbling, or sliding. It is in this situation that
γ and γ′ determine one another (up to an initial condition).

Remark 3.33. We can now give another interpretation of parallel trans-
port. Given γ : R→M and v0 ∈ Tγ(t0)M take M ′ to be an affine subspace of
the same dimension as M. Let (Ψ, γ, γ′) be a motion of M along M ′ without
twisting (and, if you like, without sliding or wobbling). Let X ′ ∈ Vect(γ′)
be the constant vector field along γ′ (so that ∇′X ′ = 0) with value

X ′(t) = Ψ0v0, Ψ0 := Ψ(t0).

Let X ∈ Vect(γ) be the corresponding vector field along γ so that

Ψ(t)X(t) = Ψ0v0

Then X(t) = Φγ(t, t0)v0. To put it another way, imagine that M is a ball. To
define parallel transport along a given curve γ roll the ball (without sliding)
along a plane M ′ keeping the curve γ in contact with the plane M ′. Let γ′

be the curve traced out in M ′. If a constant vector field in the plane M ′ is
drawn in wet ink along the curve γ′ it will mark off a (covariant) parallel
vector field along γ in M .

Exercise 3.34. Describe parallel transport along a great circle in a sphere.
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3.3.4 Development

A development is an intrinsic version of motion without sliding or twisting.

Definition 3.35. A development of M along M ′ (on an interval I)
is a triple (Φ, γ, γ′) where γ : I →M and γ′ : I →M ′ are smooth paths and
Φ is a family of orthogonal isomorphisms

Φ(t) : Tγ(t)M → Tγ′(t)M
′

such that Φ intertwines parallel transport, i.e.

Φ(t)Φγ(t, s) = Φ′γ′(t, s)Φ(s)

for all s, t ∈ I, and
Φ(t)γ̇(t) = γ̇′(t)

for all t ∈ I. In particular, the family Φ of isomorphisms is smooth, i.e.
if X is a smooth vector field along γ then the formula X ′(t) := Φ(t)X(t)
defines a smooth vector field along γ′.

Lemma 3.36. Let I ⊂ R be an interval, γ : I → M and γ′ : I → M ′

be smooth curves, and Φ(t) : Tγ(t)M → Tγ′(t)M
′ be a family of orthogonal

isomorphisms parametrized by t ∈ I. Then the following are equivalent.

(i) (Φ, γ, γ′) is a development.

(ii) There exists a motion (Ψ, γ, γ′) without sliding and twisting such that
Φ(t) = Ψ(t)|Tγ(t)M for every t ∈ I.

(iii) There exists a motion (Ψ, γ, γ′) of M along M ′ without sliding, twisting,
and wobbling such that Φ(t) = Ψ(t)|Tγ(t)M for every t ∈ I.

Proof. That (iii) implies (ii) and (ii) implies (i) is obvious. To prove that (i)
implies (iii) choose any t0 ∈ I and any orthogonal matrix Ψ0 ∈ O(n) such
that Ψ0|Tγ(t0)M = Φ(t0) and define Ψ(t) : Rn → Rn by (3.19).

Remark 3.37. The operations of reparametrization, inversion, and compo-
sition yield developments when applied to developments; i.e. if (Φ, γ, γ′) is a
development of M along M ′, on an interval I, (Φ′, γ′, γ′′) is a development
of M ′ along M ′′ on the same interval I, and α : J → I is a smooth map of
intervals, then the triples

(Φ ◦ α, γ ◦ α, γ′ ◦ α), (Φ−1, γ′, γ)), (Φ′Φ, γ, γ′′)

are all developments.
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Theorem 3.38 (Development theorem). Let p0 ∈M , p′0 ∈M ′ and

Φ0 : Tp0M → Tp′0M
′

be an orthogonal isomorphism. Fix a smooth curve γ′ : R→M ′ and a time
t0 ∈ R such that γ′(t0) = p′0. Then the following holds.

(i) There exists a development (Φ, γ, γ′|I) on some open interval I ⊂ R
containing t0 that satisfies the initial condition

γ(t0) = p0, Φ(t0) = Φ0. (3.20)

(ii) Any two developments (Φ1, γ1, γ
′|I1) and (Φ2, γ2, γ

′|I2) as in (i) on two
intervals I1 and I2 agree on the intersection I1 ∩ I2, i.e. γ1(t) = γ2(t) and
Φ1(t) = Φ2(t) for every t ∈ I1 ∩ I2.

(iii) If M is complete then (i) holds with I = R.

Proof. Let γ : R→ M be any smooth map such that γ(t0) = p0 and define
Φ(t) : Tγ(t)M → Tγ′(t)M

′ by

Φ(t) := Φ′γ′(t, t0)Φ0Φγ(t0, t) (3.21)

This is an orthogonal transformation for every t and it intertwines parallel
transport. However, in general Φ(t)γ̇(t) will not be equal to γ̇′(t). To con-
struct a development that satisfies this condition, we choose an orthonormal
frame e0 : Rm → Tp0M and, for t ∈ R, define e(t) : Rm → Tγ(t0)M by

e(t) := Φγ(t, t0)e0. (3.22)

We can think of e(t) as a real k×m-matrix and the map R→ Rn×m : t 7→ e(t)
is smooth. In fact, the map t 7→ (γ(t), e(t)) is a smooth path in the frame
bundle F(M). Define the smooth map ξ : R→ Rm by

γ̇′(t) = Φ′γ′(t, t0)Φ0e0ξ(t). (3.23)

We prove the following

Claim: The triple (Φ, γ, γ′) is a development on an interval I ⊂ R if and
only if the path t 7→ (γ(t), e(t)) satisfies the differential equation

(γ̇(t), ė(t)) = Bξ(t)(γ(t), e(t)) (3.24)

for every t ∈ I, where Bξ(t) ∈ Vect(F(M)) denotes the basic vector field
associated to ξ(t) ∈ Rm (see equation (3.10)).
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The triple (Φ, γ, γ′) is a development on I if and only if Φ(t)γ̇(t) = γ̇′(t) for
every t ∈ I. By (3.21) and (3.23) this is equivalent to the condition

Φ′γ′(t, t0)Φ0Φγ(t0, t)γ̇(t) = γ̇′(t) = Φ′γ′(t, t0)Φ0e0ξ(t),

hence to
Φγ(t0, t)γ̇(t) = e0ξ(t),

and hence to
γ̇(t) = Φγ(t, t0)e0ξ(t) = e(t)ξ(t) (3.25)

for every t ∈ I. By (3.22) and the Gauss–Weingarten formula, we have

ė(t) = hγ(t)(γ̇(t))e(t)

for every t ∈ R. Hence it follows from (3.10) that (3.25) is equivalent
to (3.24). This proves the claim.

Assertions (i) and (ii) follow immediately from the claim. Assertion (iii)
follows from the claim and Theorem 3.15. This proves the theorem.

Remark 3.39. As any two developments (Φ1, γ1, γ
′|I1) and (Φ2, γ2, γ

′|I2)
on two intervals I1 and I2 satisfying the initial condition (3.20) agree on
I1 ∩ I2 there is a development defined on I1 ∪ I2. Hence there is a unique
maximally defined development (Φ, γ, γ′|I), defined on a maximal interval I,
associated to γ′, p0, Φ0.

Remark 3.40. The statement of Theorem 3.38 is ymmetric in M and M ′

as the operation of inversion carries developments to developments. Hence
given γ : R → M , p′0 ∈ M ′, t0 ∈ R, and Φ0 : Tγ(t0)M → Tp′0M

′, we may
speak of the development (Φ, γ, γ′) corresponding to γ with initial conditions
γ′(t0) = p′0 and Φ(t0) = Φ0.

Corollary 3.41. Let p0 ∈M , p′0 ∈M ′ and Ψ0 ∈ O(n) such that

Ψ0Tp0M = Tp′0M
′.

Fix a smooth curve γ′ : R → M ′ and a time t0 ∈ R such that γ′(t0) = p′0.
Then the following holds.

(i) There exists a motion (Ψ, γ, γ′|I) without sliding, twisting and wobbling
on some open interval I ⊂ R containing t0 that satisfies the initial condition
γ(t0) = p0 and Ψ(t0) = Ψ0.

(ii) Any two motions as in (i) on two intervals I1 and I2 agree on the
intersection I1 ∩ I2.

(iii) If M is complete then (i) holds with I = R.

Proof. Theorem 3.38 and Remark 3.32.
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Chapter 4

Curvature

4.1 Isometries

Let M and M ′ be submanifolds of Rn. An isometry is an isomorphism of
the intrinsic geometries of M and M ′. Recall the definition of the intrinsic
distance function d : M ×M → [0,∞) (in Section 2.1) by

d(p, q) := inf
γ∈Ωp,q

L(γ), L(γ) =

∫ 1

0
|γ̇(t)| dt

for p, q ∈M . Let d′ denote the intrinisic distance function on M ′.

Theorem 4.1 (Isometries). Let φ : M → M ′ be a bijective map. Then
the following are equivalent.

(i) φ intertwines the distance functions on M and M ′, i.e. for all p, q ∈M

d′(φ(p), φ(q)) = d(p, q)

(ii) φ is a diffeomorphism and dφ(p) : TpM → Tφ(p)M
′ is an orthogonal

isomorphism for every p ∈M .

(iii) φ is a diffeomorphism and L(φ ◦ γ) = L(γ) for every smooth curve
γ : [a, b]→M .

φ is called an isometry if it satisfies these equivalent conditions. In the
case M = M ′ the isometries φ : M → M form a group denoted by I(M)
and called the isometry group of M .

Lemma 4.2. For every p ∈ M there is a constant ε > 0 such that, for all
v, w ∈ TpM with 0 < |w| < |v| < ε, we have

d(expp(w), expp(v)) = |v| − |w| =⇒ w =
|w|
|v|
v. (4.1)

163
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Remark 4.3. It follows from the triangle inequality and Theorem 2.44 that

d(expp(v), expp(w)) ≥ d(expp(v), p)− d(expp(w), p) = |v| − |w|

whenever 0 < |w| < |v| < inj(p). Lemma 4.2 asserts that equality can only
hold when w is a positive multiple of v or, to put it differently, that the
distance between expp(v) and expp(w) must be strictly bigger that |v| − |w|
whenever w is not a positive multiple of v.

Proof of Lemma 4.2. As in Corollary 2.38 we denote

Bε(p) := {v ∈ TpM | |v| < ε} ,
Uε(p) := {q ∈M | d(p, q) < ε} .

By Theorem 2.44 and the definition of the injectivity radius, the exponential
map at p is a diffeomorphism expp : Bε(p) → Uε(p) for ε < inj(p). Choose
0 < r < inj(p). Then the closure of Ur(p) is a compact subset of M . Hence
there is a constant ε > 0 such that ε < r and ε < inj(p′) for every p′ ∈ Ur(p).
Since ε < r we have

ε < inj(p′) ∀ p′ ∈ Uε(p). (4.2)

Thus expp′ : Bε(p
′) → Uε(p

′) is a diffeomorphism for every p′ ∈ Uε(p).
Denote

p1 := expp(w), p2 := expp(v).

Then, by assumption, we have

d(p1, p2) = |v| − |w| < ε.

Since p1 ∈ Uε(p) it follows from our choice of ε that ε < inj(p1). Hence there
is a unique tangent vector v1 ∈ Tp1M such that

|v1| = d(p1, p2) = |v| − |w| , expp1(v1) = p2.

Following first the shortest geodesic from p to p1 and then the shortest
geodesic from p1 to p2 we obtain (after suitable reparametrization) a smooth
γ : [0, 2]→M such that

γ(0) = p, γ(1) = p1, γ(2) = p2,

and

L(γ|[0,1]) = d(p, p1) = |w| , L(γ|[1,2]) = d(p1, p2) = |v| − |w| .
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Thus L(γ) = |v| = d(p, p2). Hence, by Theorem 2.44, there is a smooth
function β : [0, 2]→ [0, 1] satisfying

β(0) = 0, β(2) = 1, β̇(t) ≥ 0, γ(t) = expp(β(t)v)

for every t ∈ [0, 2]. This implies

expp(w) = p1 = γ(1) = expp(β(1)v), 0 ≤ β(1) ≤ 1.

Since w and β(1)v are both elements of Bε(p) and expp is injective on Bε(p),
this implies w = β(1)v. Since β(1) ≥ 0 we have β(1) = |w| / |v|. This
proves (4.1) and the lemma.

Proof of Theorem 4.1. That (ii) implies (iii) follows from the definition of
the length of a curve. Namely

L(φ ◦ γ) =

∫ b

a

∣∣∣∣ ddtφ(γ(t))

∣∣∣∣ dt
=

∫ b

a
|dφ(γ(t))γ̇(t)| dt

=

∫ b

a
|γ̇(t)| dt

= L(γ).

In the third equation we have used (ii). That (iii) implies (i) follows imme-
diately from the definition of the intrinsic distance functions d and d′.

We prove that (i) implies (ii). Fix a point p ∈ M and choose ε > 0
so small that ε < inj(p) and that the assertion of Lemma 4.2 holds for the
point p′ := φ(p) ∈M ′. Then there is a unique homeomorphism

Φp : Bε(p)→ Bε(φ(p))

such that the following diagram commutes.

TpM ⊃ Bε(p)

expp

��

Φp // Bε(φ(p))

exp′
φ(p)

��

⊂ Tφ(p)M
′

M ⊃ Uε(p)
φ // Uε(φ(p)) ⊂ M ′

.

Here the vertical maps are diffeomorphisms and φ : Uε(p) → Uε(φ(p)) is a
homeomorphism by (i). Hence Φp : Bε(p)→ Bε(φ(p)) is a homeomorphism.
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Claim 1. The map Φp satisfies the following equations for every v ∈ Bε(p)
and every t ∈ [0, 1]:

exp′φ(p)(Φp(v)) = φ(expp(v)), (4.3)

|Φp(v)| = |v| , (4.4)

Φp(tv) = tΦp(v). (4.5)

Equation (4.3) holds by definition. To prove (4.4) we observe that, by The-
orem 2.44, we have

|Φp(v)| = d′(φ(p), exp′φ(p)(Φp(v)))

= d′(φ(p), φ(expp(v)))

= d(p, expp(v))

= |v| .

Here the second equation follows from (4.3) and the third equation from (i).
Equation (4.5) holds for t = 0 because Φp(0) = 0 and for t = 1 it is a
tautology. Hence assume 0 < t < 1. Then

d′(exp′φ(p)(Φp(tv)), exp′φ(p)(Φp(v))) = d′(φ(expp(tv)), φ(expp(v)))

= d(expp(tv), expp(v))

= |v| − |tv|
= |Φp(v)| − |Φp(tv)| .

Here the first equation follows from (4.3), the second equation from (i), the
third equation from Theorem 2.44 and the fact that |v| < inj(p), and the
last equation follows from (4.4). Since 0 < |Φp(tv)| < |Φp(v)| < ε we can
apply Lemma 4.2 and obtain

Φp(tv) =
|Φp(tv)|
|Φp(v)|

Φp(v) = tΦp(v).

This proves Claim 1.
By Claim 1, Φp extends to a bijective map Φp : TpM → Tφ(p)M

′ via

Φp(v) :=
1

δ
Φp(δv),

where δ > 0 is chosen so small that δ |v| < ε. The right hand side of
this equation is independent of the choice of δ. Hence the extension is well
defined. It is bijective because the original map Φp is a bijection from Bε(p)
to Bε(φ(p)). The reader may verify that the extended map satisfies the
conditions (4.4) and (4.5) for all v ∈ TpM and all t ≥ 0.
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Claim 2. The extended map Φp : TpM → Tφ(p)M
′ is linear and preserves

the inner product.

It follows from the equation (2.46) in the proof of Lemma 2.61 that

|v − w| = lim
t→0

d(expp(tv), expp(tw))

t

= lim
t→0

d′(φ(expp(tv)), φ(expp(tw)))

t

= lim
t→0

d′(exp′φ(p)(Φp(tv))), exp′φ(p)(Φp(tw))))

t

= lim
t→0

d′(exp′φ(p)(tΦp(v))), exp′φ(p)(tΦp(w))))

t
= |Φp(v)− Φp(w)| .

Here the second equation follows from (i), the third from (4.3), the fourth
from (4.4), and the last equation follows again from (2.46). By polarization
we obtain

2〈v, w〉 = |v|2 + |w|2 − |v − w|2

= |Φp(v)|2 + |Φp(w)|2 − |Φp(v)− Φp(w)|2

= 2〈Φp(v),Φp(w)〉.

Thus Φp preserves the inner product. Hence, for all v1, v2, w ∈ TpM , we
have

〈Φp(v1 + v2),Φp(w)〉 = 〈v1 + v2, w〉
= 〈v1, w〉+ 〈v2, w〉
= 〈Φp(v1),Φp(w)〉+ 〈Φp(v2),Φp(w)〉
= 〈Φp(v1) + Φp(v2),Φp(w)〉.

Since Φp is surjective, this implies

Φp(v1 + v2) = Φp(v1) + Φp(v2)

for all v1, v2 ∈ TpM . With v1 = v and v2 = −v we obtain

Φp(−v) = −Φp(v)

for every v ∈ TpM and by (4.5) this gives

Φp(tv) = tΦp(v)

for all v ∈ TpM and t ∈ R. This proves Claim 2.
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Claim 3. φ is smooth and dφ(p) = Φp.

By (4.3) we have

φ = exp′φ(p) ◦Φp ◦ exp−1
p : Uε(p)→ Uε(φ(p)).

Since Φp is linear, this shows that the restriction of φ to the open set Uε(p)
is smooth. Moreover, for every v ∈ TpM we have

dφ(p)v =
d

dt

∣∣∣∣
t=0

φ(expp(tv)) =
d

dt

∣∣∣∣
t=0

exp′φ(p)(tΦp(v)) = Φp(v).

Here we have used equations (4.3) and (4.5) as well as Lemma 2.36. This
proves Claim 3 and the theorem.

Exercise 4.4. Prove that every isometry ψ : Rn → Rn is an affine map

ψ(p) = Ap+ b

where A ∈ O(n) and b ∈ Rn. Thus ψ is a composition of translation and
rotation. Hint: Let e1, . . . , en be the standard basis of Rm. Prove that
any two vectors v, w ∈ Rn that satisfy |v| = |w| and |v − ei| = |w − ei| for
i = 1, . . . , n must be equal.

Remark 4.5. If ψ : Rn → Rn is an isometry of the ambient Euclidean space
with ψ(M) = M ′ then certainly φ := ψ|M is an isometry from M onto M ′.
On the other hand, if M is a plane manifold

M = {(0, y, z) ∈ R3 | 0 < y < π/2}

and M ′ is the cylindrical manifold

M ′ = {(x, y, z) ∈ R3 |x2 + y2 = 1, x > 0, y > 0}

Then the map φ : M →M ′ defined by

φ(0, y, z) := (cos(y), sin(y), z)

is an isometry which is not of the form φ = ψ|M . Indeed, an isometry of the
form φ = ψ|M necessarily preserves the second fundamental form (as well
as the first) in the sense that

dψ(p)hp(v, w) = h′ψ(p)(dψ(p)v, dψ(p)w)

for v, w ∈ TpM but in the example h vanishes identically while h′ does not.
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We may thus distinguish two fundamental question:

I. Given M and M ′ when are they extrinsically isomorphic, i.e. when is
there an ambient isometry ψ : Rn → Rn with ψ(M) = M ′?

II. Given M and M ′ when are they intrinsically isomorphic, i.e. when is
there an isometry φ : M →M ′ from M onto M ′?

As we have noted, both the first and second fundamental forms are
preserved by extrinsic isomorphisms while only the first fundamental form
need be preserved by an intrinsic isomorphism (i.e. an isometry).

A question which occurred to Gauss (who worked for a while as a car-
tographer) is this: Can one draw a perfectly accurate map of a portion of
the earth? (i.e. a map for which the distance between points on the map is
proportional to the distance between the corresponding points on the surface
of the earth). We can now pose this question as follows: Is there an isom-
etry from an open subset of a sphere to an open subset of a plane? Gauss
answered this question negatively by associating an invariant, the Gaussian
curvature K : M → R, to a surface M ⊂ R3. According to his Theorema
Egregium

K ′ ◦ φ = K

for an isometry φ : M → M ′. The sphere has positive curvature; the plane
has zero curvature; hence the perfectly accurate map does not exist. Our
aim is to explain these ideas.

We shall need a concept slightly more general than that of “isometry”.

Definition 4.6. A smooth map φ : M →M ′ is called a local isometry if
its derivative

dφ(p) : TpM → Tφ(p)M
′

is an orthogonal linear isomorphism for every p ∈M .

Remark 4.7. Let M ⊂ Rn and M ′ ⊂ Rm′ be manifolds and φ : M → M ′

be a map. The following are equivalent.

(i) φ is a local isometry.

(ii) For every p ∈ M there are open neighborhoods U ⊂ M and U ′ ⊂ M ′

such that the restriction of φ to U is an isometry from U onto U ′.

That (ii) implies (i) follows immediately from Theorem 4.1. On the other
hand (i) implies that dφ(p) is invertible so that (ii) follows from the inverse
function theorem.
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Example 4.8. The map

R→ S1 : θ 7→ eiθ

is a local isometry but not an isometry.

Exercise 4.9. Let M ⊂ Rn be a compact connected 1-manifold. Prove
that M is diffeomorphic to the circle S1. Define the length of a compact
connected Riemannian 1-manifold. Prove that two compact connected 1-
manifolds M,M ′ ⊂ Rn are isometric if and only if they have the same
length. Hint: Let γ : R → M be a geodesic with |γ̇(t)| ≡ 1. Show that
γ is not injective; otherwise construct an open cover of M without finite
subcover. If t0 < t1 with γ(t0) = γ(t1) show that γ̇(t0) = γ̇(t1); otherwise
show that γ(t0 + t) = γ(t1 − t) for all t and find a contradiction.

We close this section with a result which asserts that two local isometries
that have the same value and the same derivative at a single point must agree
everywhere, provided that the domain is connected.

Lemma 4.10. Let M ⊂ Rn and M ′ ⊂ Rn′ be smooth m-manifolds and
assume that M is connected. Let φ : M → M ′ and ψ : M → M ′ be local
isometries and let p0 ∈M such that

ψ(p0) = ψ(p0) =: p′0, dφ(p0) = dψ(p0) : Tp0M → Tp′0M
′.

Then φ(p) = ψ(p) for every p ∈M .

Proof. Define the set

M0 := {p ∈M |φ(p) = ψ(p), dφ(p) = dψ(p)} .

This set is obviously closed. We prove that M0 is open. Let p ∈ M0 and
choose U ⊂M and U ′ ⊂M ′ as in Remark 4.7 (ii). Denote

Φp := dφ(p) = dψ(p) : TpM → Tp′M
′, p′ := φ(p) = ψ(p)

The proof of Theorem 4.1 shows that there is a constant ε > 0 such that
Uε(p) ⊂ U , Uε(p

′) ⊂ U ′, and

q ∈ Uε(p) =⇒ φ(q) = exp′p′ ◦Φp ◦ exp−1
p (q) = ψ(q).

Hence Uε(p) ⊂ M0. Thus M0 is open, closed, and nonempty. Since M is
connected it follows that M0 = M and this proves the lemma.
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4.2 The Riemann curvature tensor

4.2.1 Definition and Gauss–Codazzi

Let M ⊂ Rn be a smooth manifold and γ : R2 → M be a smooth map.
Denote by (s, t) the coordinates on R2. Let Z ∈ Vect(γ) be a smooth vector
field along γ, i.e. Z : R2 → Rn is a smooth map such that Z(s, t) ∈ Tγ(s,t)M
for all s and t. The covariant partial derivatives of Z with respect to
the variables s and t are defined by

∇sZ := Π(γ)
∂Z

∂s
, ∇tZ := Π(γ)

∂Z

∂t
.

In particular ∂sγ = ∂γ/∂s and ∂tγ = ∂γ/∂t are vector fields along γ and we
have

∇s∂tγ −∇t∂sγ = 0

as both terms on the left are equal to Π(γ)∂s∂tγ. Thus ordinary partial
differentiation and covariant partial differentiation commute. The analogous
formula (which results on replacing ∂ by ∇ and γ by Z) is in general false.
Instead we have the following.

Definition 4.11. The Riemann curvature tensor assigns to each p ∈M
the bilinear map

Rp : TpM × TpM → L(TpM,TpM)

characterized by the equation

Rp(u, v)w =
(
∇s∇tZ −∇t∇sZ

)
(0, 0) (4.6)

for u, v, w ∈ TpM where γ : R2 →M is a smooth map and Z ∈ Vect(γ) is a
smooth vector field along γ such that

γ(0, 0) = p, ∂sγ(0, 0) = u, ∂tγ(0, 0) = v, Z(0, 0) = w. (4.7)

We must prove that R is well defined, i.e. that the right hand side of
equation (4.6) is independent of the choice of γ and Z. This follows from the
Gauss–Codazzi formula which we prove next. Recall that the second fun-
damental form can be viewed as a linear map hp : TpM → L(TpM,TpM

⊥)
and that, for u ∈ TpM , the linear map hp(u) ∈ L(TpM,TpM

⊥) and its dual
hp(u)∗ ∈ L(TpM

⊥, TpM) are given by

hp(u)v =
(
dΠ(p)u

)
v, hp(u)∗w =

(
dΠ(p)u

)
w

for v ∈ TpM and w ∈ TpM⊥.
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Theorem 4.12. The Riemann curvature tensor is well defined and given
by the Gauss–Codazzi formula

Rp(u, v) = hp(u)∗hp(v)− hp(v)∗hp(u) (4.8)

for u, v ∈ TpM .

Proof. Let u, v, w ∈ TpM and choose a smooth map γ : R2 → M and a
smooth vector field Z along γ such that (4.7) holds. Then, by the Gauss–
Weingarten formula (2.37), we have

∇tZ = ∂tZ − hγ(∂tγ)Z

= ∂tZ −
(
dΠ(γ)∂tγ

)
Z

= ∂tZ −
(
∂t
(
Π ◦ γ

))
Z.

Hence

∂s∇tZ = ∂s∂tZ − ∂s
((
∂t
(
Π ◦ γ

))
Z
)

= ∂s∂tZ −
(
∂s∂t

(
Π ◦ γ

))
Z −

(
∂t
(
Π ◦ γ

))
∂sZ

= ∂s∂tZ −
(
∂s∂t

(
Π ◦ γ

))
Z −

(
dΠ(γ)∂tγ

)(
∇sZ + hγ(∂sγ)Z

)
= ∂s∂tZ −

(
∂s∂t

(
Π ◦ γ

))
Z − hγ(∂tγ)∇sZ − hγ(∂tγ)∗hγ(∂sγ)Z.

Interchanging s and t and taking the difference we obtain

∂s∇tZ − ∂t∇sZ = hγ(∂sγ)∗hγ(∂tγ)Z − hγ(∂tγ)∗hγ(∂sγ)Z

+hγ(∂sγ)∇tZ − hγ(∂tγ)∇sZ.

Here the first two terms on the right are tangent to M and the last two
terms on the right are orthogonal to TγM . Hence

∇s∇tZ −∇t∇sZ = Π(γ)
(
∂s∇tZ − ∂t∇sZ

)
= hγ(∂sγ)∗hγ(∂tγ)Z − hγ(∂tγ)∗hγ(∂sγ)Z.

Evaluating the right hand side at s = t = 0 we find that(
∇s∇tZ −∇t∇sZ

)
(0, 0) = hp(u)∗hp(v)w − hp(v)∗hp(u)w.

This proves the Gauss–Codazzi equation and shows that the left hand side
is independent of the choice of γ and Z. This proves the theorem.
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4.2.2 The covariant derivative of a global vector field

So far we have only defined the covariant derivatives of vector fields along
curves. The same method can be applied to global vector fields. This leads
to the following definition.

Definition 4.13 (Covariant derivative). Let M ⊂ Rn be an m-dimen-
sional submanifold and X be a vector field on M . Fix a point p ∈ M and
a tangent vector v ∈ TpM . The covariant derivative of X at p in the
direction v is the tangent vector

∇vX(p) := Π(p)dX(p)v ∈ TpM,

where Π(p) ∈ Rn×n denotes the orthogonal projection onto TpM .

Remark 4.14. If γ : I → M is a smooth curve on an interval I ⊂ R and
X ∈ Vect(M) is a smooth vector field on M then X ◦ γ is a smooth vector
field along γ. The covariant derivative of X ◦ γ is related to the covariant
derivative of X by the formula

∇(X ◦ γ)(t) = ∇γ̇(t)X(γ(t)). (4.9)

Remark 4.15 (Gauss–Weingarten formula). Differentiating the equa-
tion X = ΠX (understood as a function from M to Rn) and using the
notation ∂vX(p) := dX(p)v for the derivative of X at p in the direction v
we obtain the Gauss–Weingarten formula for global vector fields:

∂vX(p) = ∇vX(p) + hp(v)X(p). (4.10)

Remark 4.16 (Levi-Civita connection). Differentiating a vector field
Y on M in the direction of another vector field X we obtain a vector field
∇XY ∈ Vect(M) defined by

(∇XY )(p) := ∇X(p)Y (p)

for p ∈M . This gives rise to a family of linear operators

∇X : Vect(M)→ Vect(M),

one for every vector field X ∈ Vect(M), and the assignment

Vect(M)→ L(Vect(M),Vect(M)) : X 7→ ∇X
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is itself a linear operator. This operator is called the Levi-Civita connec-
tion on the tangent bundle TM . It satisfies the conditions

∇fX(Y ) = f∇XY, (4.11)

∇X(fY ) = f∇XY + (LXf)Y (4.12)

LX〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, (4.13)

∇YX −∇XY = [X,Y ], (4.14)

for all X,Y, Z ∈ Vect(M) and f ∈ F (M), where LXf = df ◦ X and
[X,Y ] ∈ Vect(M) denotes the Lie bracket of the vector fields X and Y .
The next lemma asserts that the Levi-Civita connection is uniquely deter-
mined by (4.13) and (4.14).

Lemma 4.17 (Uniqueness Lemma). There is a unique linear operator

Vect(M)→ L(Vect(M),Vect(M)) : X 7→ ∇X

satisfying equations (4.13) and (4.14) for all X,Y, Z ∈ Vect(M).

Proof. Existence follows from the properties of the Levi-Civita connection.
We prove uniqueness. Let X 7→ DX be any linear operator from Vect(M)
to L(Vect(M),Vect(M)) that satisfies (4.13) and (4.14). Then we have

LX〈Y, Z〉 = 〈DXY,Z〉+ 〈Y,DXZ〉,
LY 〈X,Z〉 = 〈DYX,Z〉+ 〈X,DY Z〉,
−LZ〈X,Y 〉 = −〈DZX,Y 〉 − 〈X,DZY 〉.

Adding these three equations we find

LX〈Y,Z〉+ LY 〈Z,X〉 − LZ〈X,Y 〉
= 2〈DXY,Z〉+ 〈DYX −DXY, Z〉

+〈X,DY Z −DZY 〉+ 〈Y,DXZ −DXZ〉
= 2〈DXY,Z〉+ 〈[X,Y ], Z〉+ 〈X, [Z, Y ]〉+ 〈Y, [Z,X]〉.

The same equation holds for the Levi-Civita connection and hence

〈DXY,Z〉 = 〈∇XY,Z〉.

This implies DXY = ∇XY for all X,Y ∈ Vect(M).
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Remark 4.18 (The Levi-Civita connection in local coordinates).
Let φ : U → Ω be a coordinate chart on an open set U ⊂M with values in
an open set Ω ⊂ Rm. In such a coordinate chart a vector field X ∈ Vect(M)
is represented by a smooth map

ξ = (ξ1, . . . , ξm) : Ω→ Rm

defined by

ξ(φ(p)) = dφ(p)X(p)

for p ∈ U . If Y ∈ Vect(M) is represented by η then ∇XY is represented by
the function

(∇ξη)k :=

m∑
i=1

∂ηk

∂xi
ξi +

m∑
i,j=1

Γkijξ
iηj . (4.15)

Here the Γkij : Ω→ R are the Christoffel symbols defined by

Γkij :=

m∑
`=1

gk`
1

2

(
∂g`i
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
, (4.16)

where gij is the metric tensor and gij is the inverse matrix so that∑
j

gijg
jk = δki

(see Theorem 2.27). This formula can be used to prove the existence state-
ment in Lemma 4.17 and hence define the Levi-Civita connection in the
intrinsic setting.

Exercise 4.19. In the proof of Lemma 4.17 we did not actually use that the
operator DX : Vect(M)→ Vect(M) is linear nor that the operator X 7→ DX

is linear. Prove directly that if a map

DX : L(M)→ L(M)

satisfies (4.13) for all Y, Z ∈ Vect(M) then DX is linear. Prove that every
map

Vect(M)→ L(Vect(M),Vect(M)) : X 7→ DX

that satisfies (4.14) is linear.
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4.2.3 A global formula

Lemma 4.20. For X,Y, Z ∈ Vect(M) we have

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ +∇[X,Y ]Z. (4.17)

Proof. Fix a point p ∈ M . Then the right hand side of equation (4.17) at
p remains unchanged if we multiply each of the vector fields X,Y, Z by a
smooth function f : M → [0, 1] that is equal to one near p. Choosing f with
compact support we may therefore assume that the vector fields X and Y
are complete. Let φs denote the flow of X and ψt the flow of Y . Define the
map γ : R2 →M by

γ(s, t) := ψs ◦ ψt(p), s, t ∈ R.

Then

∂sγ = X(γ), ∂tγ = (φs∗Y )(γ).

Hence, by Remark 4.15, we have

∇s(Z ◦ γ) = (∇XZ) (γ), ∇t(Z ◦ γ) =
(
∇φs∗Y Z

)
(γ).

This implies

∇s∇t(Z ◦ γ) =
(
∇∂sγ∇φs∗Y Z

)
(γ) +

(
∇∂sφs∗Y Z

)
(γ).

Since
∂

∂s

∣∣∣∣
s=0

φs∗Y = [X,Y ]

and ∂sγ = X(γ) we obtain

∇s∇t(Z ◦ γ)(0, 0) = ∇X∇Y Z(p) +∇[X,Y ]Z(p),

∇t∇s(Z ◦ γ)(0, 0) = ∇Y∇XZ(p).

Hence

Rp(X(p), Y (p))Z(p) =
(
∇s∇t(Z ◦ γ)−∇t∇s(Z ◦ γ)

)
(0, 0)

= ∇X∇Y Z(p)−∇Y∇XZ(p) +∇[X,Y ]Z(p).

This proves the lemma.
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Remark 4.21. Equation (4.17) can be written succinctly as

[∇X ,∇Y ] +∇[X,Y ] = R(X,Y ). (4.18)

This can be contrasted with the equation

[LX ,LY ] + L[X,Y ] = 0 (4.19)

for the operator LX on the space of real valued functions on M .

Remark 4.22. Equation (4.17) can be used to define the Riemann cur-
vature tensor. To do this one must again prove that the right hand side
of equation (4.17) at p depends only on the values X(p), Y (p), Z(p) of the
vector fields X,Y, Z at the point p. For this it suffices to prove that the map

Vect(M)×Vect(M)×Vect(M)→ Vect(M) : (X,Y, Z) 7→ R(X,Y )Z

is linear over the Ring F (M) of smooth real valued functions on M , i.e.

R(fX, Y )Z = R(X, fY )Z = R(X,Y )fZ = fR(X,Y )Z (4.20)

for X,Y, Z ∈ Vect(M) and f ∈ F (M). The formula (4.20) follows easily
form the equations (4.11), (4.12), (4.19), and [X, fY ] = f [X,Y ]− (LXf)Y.
It follows from (4.20) that the right hand side of (4.17) at p depends only on
the vectors X(p), Y (p), Z(p). The proof requires two steps. One first shows
that if X vanishes near p then the right hand side of (4.17) vanishes at p
(and similarly for Y and Z). Just multiply X by a smooth function equal to
zero at p and equal to one on the support of X; then fX = X and hence the
vector field R(X,Y )Z = R(fX, Y )Z = fR(X,Y )Z vanishes at p. Second,
we choose a local frame E1, . . . , Em ∈ Vect(M), i.e. vector fields that form
a basis of TpM for each p in some open set U ⊂M . Then we may write

X =
m∑
i=1

ξiEi, Y =
m∑
j=1

ηjEj , Z =
m∑
k=1

ζkEk

in U . Using the first step and the F (M)-multilinearity we obtain

R(X,Y )Z =

m∑
i,j,k=1

ξiηjζkR(Ei, Ej)Ek

in U . If X ′(p) = X(p) then ξi(p) = ξ′i(p) so if X(p) = X ′(p), Y (p) = Y ′(p),
Z(p) = Z ′(p) then (R(X,Y )Z)(p) = (R(X ′, Y ′)Z ′)(p) as required.
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4.2.4 Symmetries

Theorem 4.23. The Riemann curvature tensor satisfies

R(Y,X) = −R(X,Y ) = R(X,Y )∗, (4.21)

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0, (4.22)

〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉, (4.23)

for X,Y, Z,W ∈ Vect(M). Equation (4.22) is the first Bianchi identity.

Proof. The first equation in (4.21) is obvious from the definition and the
second equation follows immediately from the Gauss–Codazzi formula (4.8).
Alternatively, we may choose a smooth map γ : R2 → M and two vector
fields Z,W along γ. Then

0 = ∂s∂t〈Z,W 〉 − ∂t∂s〈Z,W 〉
= ∂s〈∇tZ,W 〉+ ∂s〈Z,∇tW 〉 − ∂t〈∇sZ,W 〉 − ∂t〈Z,∇sW 〉
= 〈∇s∇tZ,W 〉+ 〈Z,∇s∇tW 〉 − 〈∇t∇sZ,W 〉 − 〈Z,∇t∇sW 〉
= 〈R(∂sγ, ∂tγ)Z,W 〉 − 〈Z,R(∂sγ, ∂tγ)W 〉.

This proof has the advantage that it carries over to the intrinsic setting. We
prove the first Bianchi identity using (4.14) and (4.17):

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y

= ∇X∇Y Z −∇Y∇XZ +∇[X,Y ]Z +∇Y∇ZX −∇Z∇YX +∇[Y,Z]X

+∇Z∇XY −∇X∇ZY +∇[Z,X]Y

= ∇[Y,Z]X −∇X [Y,Z] +∇[Z,X]Y −∇Y [Z,X] +∇[X,Y ]Z −∇Z [X,Y ]

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]].

The last term vanishes by the Jacobi identity. We prove (4.23) by combining
the first Bianchi identity with (4.21):

〈R(X,Y )Z,W 〉 − 〈R(Z,W )X,Y 〉
= −〈R(Y,Z)X,W 〉 − 〈R(Z,X)Y,W 〉 − 〈R(Z,W )X,Y 〉
= 〈R(Y,Z)W,X〉+ 〈R(Z,X)W,Y 〉+ 〈R(W,Z)X,Y 〉
= 〈R(Y,Z)W,X〉 − 〈R(X,W )Z, Y 〉
= 〈R(Y,Z)W,X〉 − 〈R(W,X)Y,Z〉.

Note that the first line is related to the last by a cyclic permutation. Re-
peating this argument we find

〈R(Y,Z)W,X〉 − 〈R(W,X)Y,Z〉 = 〈R(Z,W )X,Y 〉 − 〈R(X,Y )Z,W 〉.

combining these two identities we obtain (4.23). This proves the theorem
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Remark 4.24. We may think of a vector field X on M as a section of the
tangent bundle. This is reflected in the alternative notation

Ω0(M,TM) := Vect(M).

A 1-form on M with values in the tangent bundle is a collection of
linear maps A(p) : TpM → TpM , one for every p ∈ M , which is smooth
in the sense that for every smooth vector field X on M the assignment
p 7→ A(p)X(p) defines again a smooth vector field on M . We denote by

Ω1(M,TM)

the space of smooth 1-forms on M with values in TM . The covariant deriva-
tive of a vector field Y is such a 1-form with values in the tangent bundle
which assigns to every p ∈ M the linear map TpM → TpM : v 7→ ∇vY (p).
Thus we can think of the covariant derivative as a linear operator

∇ : Ω0(M,TM)→ Ω1(M,TM).

The equation (4.11) asserts that the operators X 7→ ∇X indeed determine
a linear operator from Ω0(M,TM) to Ω1(M,TM). Equation (4.12) as-
serts that this linear operator ∇ is a connection on the tangent bundle
of M . Equation (4.13) asserts that ∇ is a Riemannian connection and
equation (4.14) asserts that ∇ is torsion free. Thus Lemma 4.17 can be re-
stated as asserting that the Levi-Civita connection is the unique torsion
free Riemannian connection on the tangent bundle.

Exercise 4.25. Extend the notion of a connection to a general vector bun-
dle E, both as a collection of linear operators ∇X : Ω0(M,E) → Ω0(M,E),
one for every vector field X ∈ Vect(M), and as a linear operator

∇ : Ω0(M,E)→ Ω1(M,E)

satisfying the analogue of equation (4.12). Interpret this equation as a Leib-
nitz rule for the product of a function on M with a section of E. Show that
∇⊥ is a connection on TM⊥. Extend the notion of curvature to connections
on general vector bundles.

Exercise 4.26. Show that the field which assigns to each p ∈M the multi-
linear map R⊥p : TpM × TpM → L(TpM

⊥, TpM
⊥) characterized by

R⊥(∂sγ, ∂tγ)Y = ∇⊥s ∇⊥t Y −∇⊥t ∇⊥s Y

for γ : R2 →M and Y ∈ Vect⊥(γ) satisfies the equation

R⊥p (u, v) = hp(u)hp(v)∗ − hp(v)hp(u)∗

for p ∈M and u, v ∈ TpM .
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4.2.5 Examples and exercises

Example 4.27. Let G ⊂ O(n) be a Lie subgroup, i.e. a subgroup that is
also a submanifold. Consider the Riemannian metric on G induced by the
inner product

〈v, w〉 := trace(vTw) (4.24)

on the ambient space gl(n,R) = Rn×n. Let g := Lie(G) = T1lG be the Lie
algebra of G. Then the Riemann curvature tensor on G can be expressed in
terms of the Lie bracket (see item (d) below).

(a) The maps g 7→ ag, g 7→ ga, g 7→ g−1 are isometries of G for every a ∈ G.

(b) A smooth map γ : R→ G is a geodesic if and only if there exist matrices
g ∈ G and ξ ∈ g such that

γ(t) = g exp(tξ).

For G = O(n) we have seen this in Example 2.42 and the proof in the
general case is similar. Hence the exponential map exp : g → G defined by
the exponential matrix (as in Section 1.6) agrees with the time-1-map of the
geodesic flow (as in Section 2.4).

(c) Let γ : R→ G be a smooth curve and X ∈ Vect(γ) be a smooth vector
field along γ. Then the covariant derivative of X is given by

γ(t)−1∇X(t) =
d

dt
γ(t)−1X(t) +

1

2

[
γ(t)−1γ̇(t), γ(t)−1X(t)

]
. (4.25)

(Exercise: Prove equation (4.25). Hint: Since g ⊂ o(n) we have the
identity trace((ξη + ηξ)ζ) = 0 for all ξ, η, ζ ∈ g.)

(d) The Riemann curvature tensor on G is given by

g−1Rg(u, v)w = −1

4
[[g−1u, g−1v], g−1w]. (4.26)

Note that the first Bianchi identity is equivalent to the Jacobi identity.
(Exercise: Prove equation (4.26).)

Exercise 4.28. Prove that every Lie subgroup of O(n) is a closed subset
and hence is compact. Show that the inner product (4.24) on the Lie al-
gebra g = Lie(G) = T1lG of a Lie subgroup G ⊂ O(n) is invariant under
conjugation:

〈ξ, η〉 = 〈gξg−1, gηg−1〉
for all g ∈ G and all ξ, η ∈ g. Show that

〈[ξ, η], ζ〉 = 〈ξ, [η, ζ]〉

for all ξ, η, ζ ∈ g.
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Example 4.29. Let G ⊂ GL(n,R) be any Lie subgroup, not necessarily
contained in O(n), and let

g := Lie(G) = T1lG

be its Lie algebra. Fix any inner product on the Lie algebra g (not neces-
sarily invariant under conjugation) and consider the Riemannian metric on
G defined by

〈v, w〉g := 〈vg−1, wg−1〉

for v, w ∈ TgG. This metric is called right invariant.

(a) Define the linear map A : g→ End(g) by

〈A(ξ)η, ζ〉 =
1

2

(
〈ξ, [η, ζ]〉 − 〈η, [ζ, ξ]〉 − 〈ζ, [ξ, η]〉

)
for ξ, η, ζ ∈ g. Then A is the unique linear map that satisfies

A(ξ) +A(ξ)∗ = 0, A(η)ξ +A(ξ)η = [ξ, η]

for all ξ, η ∈ g. Here A(ξ)∗ denotes the adjoint operator with respect to the
given inner product on g. Note that A(ξ)η = −1

2 [ξ, η] whenever the inner
product on g is invariant under conjugation.

(b) Let γ : R→ G be a smooth curve and X ∈ Vect(γ) be a smooth vector
field along γ. Then the covariant derivative of X is given by

∇X =

(
d

dt
(Xγ−1) +A(γ̇γ−1)Xγ−1

)
γ.

(Exercise: Prove this.) Hence a smooth curve γ : R → G is a geodesic if
and only if it satisfies the equation

d

dt
(γ̇γ−1) +A(γ̇γ−1)γ̇γ−1 = 0.

(c) The Riemann curvature tensor on G is given by

(
Rg(u, v)w

)
g−1 =

(
A
([
ug−1, vg−1

])
+
[
A
(
ug−1

)
, A
(
vg−1

)])
wg−1

for g ∈ G and u, v, w ∈ TgG. (Exercise: Prove this.)
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4.3 Generalized Theorema Egregium

We will now show that geodesics, covariant differentiation, parallel trans-
port, and the Riemann curvature tensor are all intrinsic, i.e. they are in-
tertwined by isometries. In the extrinsic setting these results are somewhat
surprising since these objects are all defined using the second fundamental
form, whereas isometries need not preserve the second fundamental form in
any sense but only the first fundamental form.

Below we shall give a formula expressing the Gaussian curvature of a
surface M2 in R3 in terms of the Riemann curvature tensor and the first
fundamental form. It follows that the Gaussian curvature is also intrinsic.
This fact was called by Gauss the “Theorema Egregium” which explains the
title of this section.

4.3.1 Pushforward

We assume throughout this section that M ⊂ Rn and M ′ ⊂ Rn′ are smooth
submanifolds of the same dimension m. As in Section 4.1 we denote objects
on M ′ by the same letters as objects in M with primes affixed. In particular,
g′ denotes the first fundamental form on M ′ and R′ denotes the Riemann
curvature tensor on M ′.

Let φ : M →M ′ be a diffeomorphism. Using φ we can move objects on
M to M ′. For example the pushforward of a smooth curve γ : I →M is the
curve

φ∗γ := φ ◦ γ : I →M ′,

the pushforward of a smooth function f : M → R is the function

φ∗f := f ◦ φ−1 : M ′ → R,

the pushforward of a vector field X ∈ Vect(γ) along a curve γ : I →M is
the vector field φ∗X ∈ Vect(φ∗γ) defined by

(φ∗X)(t) := dφ(γ(t))X(t)

for t ∈ I, and the pushforward of a global vector field X ∈ V ect(M) is the
vector field φ∗X ∈ Vect(M ′) defined by

(φ∗X)(φ(p)) := dφ(p)X(p)

for p ∈M . Recall that the first fundamental form on M is the Riemannian
metric g defined as the restriction of the Euclidean inner product on the
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ambient space to each tangent space of M . It assigns to each p ∈ M the
bilinear map gp ∈ TpM × TpM → R given by

gp(u, v) = 〈u, v〉, u, v ∈ TpM.

Its pushforward is the Riemannian metric which assigns to each p′ ∈M ′ the
inner product (φ∗g)p′ : Tp′M

′ × Tp′M ′ → R defined by

(φ∗g)φ(p)(dφ(p)u, dφ(p)v) := gp (u, v)

for p := φ−1(p′) ∈ M and u, v ∈ TpM . The pushforward of the Riemann
curvature tensor is the tensor which assigns to each p′ ∈ M ′ the bilinear
map (φ∗R)p′ : Tp′M

′ × Tp′M ′ → L
(
Tp′M

′, Tp′M
′) , defined by

(φ∗R)φ(p)(dφ(p)u, dφ(p)v) := dφ(p)Rp (u, v) dφ(p)−1

for p := φ−1(p′) ∈M and u, v ∈ TpM .

4.3.2 Theorema Egregium

Theorem 4.30 (Theorema Egregium). The first fundamental form, co-
variant differentiation, geodesics, parallel transport, and the Riemann cur-
vature tensor are intrinsic. This means that for every isometry φ : M →M ′

the following holds.

(i) φ∗g = g′.

(ii) If X ∈ Vect(γ) is a vector field along a smooth curve γ : I →M then

∇′(φ∗X) = φ∗∇X (4.27)

and if X,Y ∈ Vect(M) are global vector fields then

∇′φ∗Xφ∗Y = φ∗(∇XY ). (4.28)

(iii) If γ : I →M is a geodesic then φ ◦ γ : I →M ′ is a geodesic.

(iv) If γ : I →M is a smooth curve then for all s, t ∈ I:

Φ′φ◦γ(t, s)dφ(γ(s)) = dφ(γ(t))Φγ(t, s). (4.29)

(v) φ∗R = R′.
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Proof. Assertion (i) is simply a restatement of Theorem 4.1. To prove (ii)
we choose a local smooth parametrization ψ : Ω→ U of an open set U ⊂M ,
defined on an open set Ω ⊂ Rm, so that ψ−1 : U → Ω is a coordinate chart.
Suppose without loss of generality that γ(t) ∈ U for all t ∈ I and define
c : I → Ω and ξ : I → Rm by

γ(t) = ψ(c(t)), X(t) =

m∑
i=1

ξi(t)
∂ψ

∂xi
(c(t)).

Recall from equations (2.20) and (2.21) that

∇X(t) =
m∑
k=1

ξ̇k(t) +

m∑
i,j=1

Γkij(c(t))ċ
i(t)ξj(t)

 ∂ψ

∂xk
(c(t)),

where the Christoffel symbols Γkij : Ω→ R are defined by

Π(ψ)
∂2ψ

∂xi∂xj
=

m∑
k=1

Γkij
∂ψ

∂xk
.

Now consider the same formula for φ∗X using the parametrization

ψ′ := φ ◦ ψ : Ω→ U ′ := φ(U) ⊂M ′.

The Christoffel symbols Γ′kij : Ω → R associated to this parametrization of

U ′ are defined by the same formula as the Γkij with ψ replaced by ψ′. But
the metric tensor for ψ agrees with the metric tensor for ψ′:

gij =

〈
∂ψ

∂xi
,
∂ψ

∂xj

〉
=

〈
∂ψ′

∂xi
,
∂ψ′

∂xj

〉
.

Hence it follows from Theorem 2.27 that Γ′kij = Γkij for all i, j, k. This implies
that the covariant derivative of φ∗X is given by

∇′(φ∗X) =

m∑
k=1

ξ̇k +

m∑
i,j=1

Γkij(c)ċ
iξj

 ∂ψ′

∂xk
(c)

= dφ(ψ(c))

m∑
k=1

ξ̇k +

m∑
i,j=1

Γkij(c)ċ
iξj

 ∂ψ

∂xk
(c)

= φ∗∇X.

This proves (4.27). Equation (4.28) follows immediately from (4.27) and
Remark 4.14.
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Here is a second proof of (ii). For every vector field X ∈ Vect(M) we
define the operator DX : Vect(M)→ Vect(M) by

DXY := φ∗ (∇φ∗Xφ∗Y ) .

Then, for all X,Y ∈ Vect(M), we have

DYX −DXY = φ∗ (∇φ∗Y φ∗X −∇φ∗Xφ∗Y ) = φ∗[φ∗X,φ∗Y ] = [X,Y ].

Moreover, it follows from (i) that

φ∗LX〈Y, Z〉 = Lφ∗X〈φ∗Y, φ∗Z〉
= 〈∇φ∗Xφ∗Y, φ∗Z〉+ 〈φ∗Y,∇φ∗Xφ∗Z〉
= 〈φ∗DXY, φ∗Z〉+ 〈φ∗Y, φ∗DXZ〉
= φ∗

(
〈DXY,Z〉+ 〈Y,DXZ〉

)
.

and hence LX〈Y,Z〉 = 〈DXY,Z〉 + 〈Y,DXZ〉 for all X,Y, Z ∈ Vect(M).
Thus the operator X 7→ DX satisfies (4.13) and (4.14) and, by Lemma 4.17,
it follows that DXY = ∇XY for all X,Y ∈ Vect(M). This completes the
second proof of (ii).

We prove (iii). Since φ preserves the first fundamental form it also
preserves the energy of curves, namely

E(φ ◦ γ) = E(γ)

for every smooth map γ : [0, 1]→M . Hence γ is a critical point of the energy
functional if and only if φ ◦ γ is a critical point of the energy functional.
Alternatively it follows from (ii) that

∇′
(
d

dt
φ ◦ γ

)
= ∇′φ∗γ̇ = φ∗∇γ̇

for every smooth curve γ : I →M . If γ is a geodesic the last term vanishes
and hence φ ◦ γ is a geodesic as well. As a third proof we can deduce (iii)
from the formula φ(expp(v)) = expφ(p)(dφ(p)v) in the proof of Theorem 4.1.

We prove (iv). For t0 ∈ I and v0 ∈ Tγ(t0)M define

X(t) := Φγ(t, t0)v0, X ′(t) := Φ′φ◦γ(t, t0)dφ(γ(t0))v0.

By (ii) the vector fields X ′ and φ∗X along φ ◦ γ are both parallel and they
agree at t = t0. Hence X ′(t) = φ∗X(t) for all t ∈ I and this proves (4.29).
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We prove (v). Fix a smooth map γ : R2 →M and a smooth vector field
Z along γ, and define γ′ = φ◦γ : R2 →M ′ and Z ′ := φ∗Z ∈ Vect(γ′). Then
it follows from (ii) that

R′(∂sγ
′, ∂tγ

′)Z ′ = ∇′s∇′tZ ′ −∇′t∇′sZ ′

= φ∗ (∇s∇tZ −∇t∇sZ)

= dφ(γ)R(∂sγ, ∂tγ)Z

= (φ∗R)(∂sγ
′, ∂tγ

′)Z ′.

This proves (v) and the theorem.

4.3.3 The Riemann curvature tensor in local coordinates

Given a local coordinate chart ψ−1 : U → Ω on an open set U ⊂ M with
values in an open set Ω ⊂ Rm, we define the vector fields E1, . . . , Em along
ψ by

Ei(x) :=
∂ψ

∂xi
(x) ∈ Tψ(x)M.

These vector fields form a basis of Tψ(x)M for every x ∈ Ω. The coefficients
gij : Ω→ R of the first fundamental form are

gij = 〈Ei, Ej〉 .

Recall from Theorem 2.27 that the Christoffel Γkij : Ω → R are the coeffi-
cients of the Levi-Civita connection, defined by

∇iEj =

m∑
k=1

ΓkijEk

and that they are given by the formula

Γkij :=
m∑
`=1

gk`
1

2

(
∂igi` + ∂jgi` − ∂`gij

)
.

Define the coefficients R`ijk : Ω→ R of the curvature tensor by

R(Ei, Ej)Ek =
m∑
`=1

R`ijkE`. (4.30)

These coefficients are given by

R`ijk := ∂iΓ
`
jk − ∂jΓ`ik +

m∑
ν=1

(
Γ`iνΓνjk − Γ`jνΓνik

)
. (4.31)
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The coefficients of the Riemann curvature tensor have the symmetries

Rijk` = −Rjik` = −Rij`k = Rk`ij , Rijk` :=
∑
ν

Rνijkgν`, (4.32)

and the first Bianchi identity has the form

R`ijk +R`jki +R`kij = 0. (4.33)

Warning: Care must be taken with the ordering of the indices. Some
authors use the notation R`kij for what we call R`ijk and R`kij for what we
call Rijk`.

Exercise 4.31. Prove equations (4.31), (4.32), and (4.33). Use (4.31) to
give an alternative proof of Theorem 4.30.

4.3.4 Gaussian curvature

As a special case we shall now consider a hypersurface M ⊂ Rm+1, i.e. a
smooth submanifold of codimension one. We assume that there is a smooth
map ν : M → Rm+1 such that, for every p ∈ M , we have ν(p) ⊥ TpM and
|ν(p)| = 1. Such a map always exists locally (see Example 2.9). Note that
ν(p) is an element of the unit sphere in Rm+1 for every p ∈ M and hence
we can regard ν as a map from M to Sm:

ν : M → Sm.

Such a map is called a Gauss map for M . Note that if ν : M → S2 is a
Gauss map so is −ν, but this is the only ambiguity when M is connected.
Differentiating ν at p ∈M we obtain a linear map

dν(p) : TpM → Tν(p)S
m = TpM

Here we use the fact that Tν(p)S
m = ν(p)⊥ and, by definition of the Gauss

map ν, the tangent space of M at p is also equal to ν(p)⊥. Thus dν(p) is
linear map from the tangent space of M at p to itself.

Definition 4.32. The Gaussian curvature of the hypersurface M is the
real valued function K : M → R defined by

K(p) := det
(
dν(p) : TpM → TpM

)
for p ∈ M . (Replacing ν by −ν has the effect of replacing K by (−1)mK;
so K is independent of the choice of the Gauss map when m is even.)
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Remark 4.33. Given a subset B ⊂ M the set ν(B) ⊂ Sm is often called
the spherical image of B. If ν is a diffeomorphism on a neighborhood of
B the change of variables formula for an integral gives∫

ν(B)
µS =

∫
B
|K|µM

where µM and µS denote the volume elements on M and Sm, respectively.
Introducing the notation AreaM (B) :=

∫
B µM we obtain the formula

|K(p)| = lim
B→p

AreaS(ν(B))

AreaM (B)
.

This says that the curvature at p is roughly the ratio of the (m-dimensional)
area of the spherical image ν(B) to the area ofB whereB is a very small open
neighborhood of p in M . The sign of K(p) is positive when the linear map
dν(p) : TpM → TpM preserves orientation and negative when it reverses
orientation.

Remark 4.34. We see that the Gaussian curvature is a natural general-
ization of Euler’s curvature for a plane curve. Indeed if M ⊂ R2 is a
1-manifold and p ∈M we can choose a curve γ = (x, y) : (−ε, ε)→M such
that γ(0) = p and |γ̇(s)| = 1 for every s. This curve parametrizes M by the
arclength and the unit normal vector pointing to the right with respect to
the orientation of γ is ν(x, y) = (ẏ,−ẋ). This is a local Gauss map and its
derivative (ÿ,−ẍ) is tangent to the curve. The inner product of the latter
with the unit tangent vector γ̇ = (ẋ, ẏ) is the Gaussian curvature. Thus

K :=
dx

ds

d2y

ds2
− dy

ds

d2x

ds2
=
dθ

ds

where s is the arclength parameter and θ is the angle made by the normal
(or the tangent) with some constant line. With this convention K is positive
at a left turn and negative at a right turn.

Exercise 4.35. The Gaussian curvature of a sphere of radius r is constant
and has the value r−m.

Exercise 4.36. Show that the Gaussian curvature of the surface z = x2−y2

is −4 at the origin.

We now restrict to the case of surfaces, i.e. of 2-dimensional submani-
folds of R3. Figure 4.1 illustrates the difference between positive and nega-
tive Gaussian curvature in dimension two.
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K > 0 K < 0K = 0

Figure 4.1: Positive and negative Gaussian curvature.

Theorem 4.37 (Gaussian curvature). Let M ⊂ R3 be a surface and fix
a point p ∈M . If u, v ∈ TpM is a basis then

K(p) =
〈R(u, v)v, u〉
|u|2|v|2 − 〈u, v〉2

. (4.34)

Moreover, for all u, v, w ∈ TpM , we have

R(u, v)w = −K(p)〈ν(p), u× v〉ν(p)× w. (4.35)

Proof. The orthogonal projection of R3 onto the tangent space TpM = ν(p)⊥

is given by the 3× 3-matrix

Π(p) = 1l− ν(p)ν(p)T .

Hence
dΠ(p)u = −ν(p)(dν(p)u)T −

(
dν(p)u

)
ν(p)T .

Here the first summand is the second fundamental form, which maps TpM
to TpM

⊥, and the second summand is its dual, which maps TpM
⊥ to TpM .

Thus

hp(v) = ν(p)
(
dν(p)v

)T
: TpM → TpM

⊥,

hp(u)∗ =
(
dν(p)u

)
ν(p)T : TpM

⊥ → TpM.

By the Gauss–Codazzi formula this implies

Rp(u, v)w = hp(u)∗hp(v)w − hp(v)∗hp(u)w

=
(
dν(p)u

)(
dν(p)v

)T
w −

(
dν(p)v

)(
dν(p)u

)T
w

= 〈dν(p)v, w〉dν(p)u− 〈dν(p)u,w〉dν(p)v

and hence

〈Rp(u, v)w, z〉 = 〈dν(p)u, z〉〈dν(p)v, w〉 − 〈dν(p)u,w〉〈dν(p)v, z〉. (4.36)
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Now fix four tangent vectors u, v, w, z ∈ TpM and consider the composition

R3 A−→ R3 B−→ R3 C−→ R3

of the linear maps

Aξ := ξ1ν(p) + ξ2u+ ξ3v,

Bη :=

{
dν(p)η, if η ⊥ ν(p),
η, if η ∈ Rν(p),

Cζ :=

 〈ζ, ν(p)〉
〈ζ, z〉
〈ζ, w〉

 .

This composition is represented by the matrix

CBA =

 1 0 0
0 〈dν(p)u, z〉 〈dν(p)v, z〉
0 〈dν(p)u,w〉 〈dν(p)v, w〉

 .

Hence, by (4.36), we have

〈Rp(u, v)w, z〉 = det(CBA)

= det(A) det(B) det(C)

= 〈ν(p), u× v〉K(p)〈ν(p), z × w〉
= −K(p)〈ν(p), u× v〉〈ν(p)× w, z〉.

This implies (4.35) and

〈Rp(u, v)v, u〉 = K(p)〈ν(p), u× v〉2

= K(p) |u× v|2

= K(p)
(
|u|2 |v|2 − 〈u, v〉2

)
.

This proves the theorem.

Corollary 4.38 (Theorema Egregium of Gauss). The Gaussian cur-
vature is intrinsic, i.e. if φ : M → M ′ is an isometry of surfaces in R3

then

K = K ′ ◦ φ : M → R.

Proof. Theorem 4.30 and Theorem 4.37.
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Exercise 4.39. For m = 1 the Gaussian curvature is clearly not intrinsic
as any two curves are locally isometric (parameterized by arclength). Show
that the curvature K(p) is intrinsic for even m while its absolute value |K(p)|
is intrinsic for odd m ≥ 3. Hint: We still have the equation (4.36) which,
for z = u and v = w, can be written in the form

〈Rp(u, v)v, u〉 = det

(
〈dν(p)u, u〉 〈dν(p)u, v〉
〈dν(p)v, u〉 〈dν(p)v, v〉

)
.

Thus, for an orthonormal basis v1, . . . , vm of TpM , the 2 × 2 minors of the
matrix

(〈dν(p)vi, vj〉)i,j=1,...,m

are intrinsic. Hence everything reduces to the following assertion.

Lemma. The determinant of an m×m matrix is an expression in its 2× 2
minors if m is even; the absolute value of the determinant is an expression
in the 2× 2 minors if m is odd and greater than or equal to 3.

The lemma is proved by induction on m. For the absolute value, note the
formula

det(A)m = det(det(A)I) = det(AB) = det(A) det(B)

for an m×m matrix A where B is the transposed matrix of cofactors.

4.3.5 Gaussian curvature in local coordinates

If M ⊂ Rn is a 2-manifold (not necessarily embedded in R3) we can use
equation (4.34) as the definition of the Gaussian curvature K : M → R. Let
ψ : Ω → U be a local parametrization of an open set U ⊂ M defined on
an open set Ω ⊂ R2. Denote the coordinates in R2 by (x, y) and define the
functions E,F,G : Ω→ R by

E := |∂xψ|2 , F := 〈∂xψ, ∂yψ〉, G := |∂yψ|2 .

We abbreviate

D := EG− F 2.
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Then the composition of the Gaussian curvature K : M → R with the
parametrization ψ is given by the explicit formula

K ◦ ψ =
1

D2
det

 E F ∂yF − 1
2∂xG

F G 1
2∂yG

1
2∂xE ∂xF − 1

2∂yE −1
2∂

2
yE + ∂x∂yF − 1

2∂
2
xG


− 1

D2
det

 E F 1
2∂yE

F G 1
2∂xG

1
2∂yE

1
2∂xG 0


= − 1

2
√
D

∂

∂x

(
E∂xG− F∂yE

E
√
D

)
+

1

2
√
D

∂

∂y

(
2E∂xF − F∂xE − E∂yE

E
√
D

)
.

This expression simplifies dramatically when F = 0 and we get

K ◦ ψ = − 1

2
√
EG

(
∂

∂x

∂xG√
EG

+
∂

∂y

∂yE√
EG

)
(4.37)

Exercise 4.40. Prove that the Riemannian metric

E = G =
4

(1 + x2 + y2)2
, F = 0,

on R2 has constant constant curvature K = 1 and the Riemannian metric

E = G =
4

(1− x2 − y2)2
, F = 0,

on the open unit disc has constant curvature K = −1.

4.4 The Cartan–Ambrose–Hicks theorem

In this section we address what might be called the “fundamental problem of
intrinsic differential geometry”: when are two manifolds isometric? In some
sense the theorem of this section answers that question (at least locally)
although the equivalent conditions given there are probably more difficult to
verify in most examples than the condition that there exist an isometry. We
begin with the observation that, by Lemma 4.10, an isometry φ : M → M ′

between connected manifolds, if it exists, is uniquely determined by its value
and derivative at a single point. In other words, there cannot be too many
isometries.
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4.4.1 Homotopy

Definition 4.41. Let M be a manifold and I = [a, b] be a compact interval.
A (smooth) homotopy of maps from I to M is a smooth map

γ : [0, 1]× I →M.

We often write
γλ(t) = γ(λ, t)

for λ ∈ [0, 1] and t ∈ I and call γ a (smooth) homotopy between γ0

and γ1. We say the homotopy has fixed endpoints if γλ(a) = γ0(a) and
γλ(b) = γ0(b) for all λ ∈ [0, 1]. (See Figure 4.2.)

We remark that a homotopy and a variation are essentially the same
thing, namely a curve of maps (curves). The difference is pedagogical. We
used the word “variation” to describe a curve of maps through a given
map; when we use this word we are going to differentiate the curve to find
a tangent vector (field) to the given map. The word “homotopy” is used
to describe a curve joining two maps; it is a global rather than a local
(infinitesimal) concept.

1
γ

γ
0

M

Figure 4.2: A homotopy with fixed endpoints.

Definition 4.42. The manifold M is called simply connected if for any
two curves γ0, γ1 : [a, b]→ M with γ0(a) = γ1(a) and γ0(b) = γ1(b) there is
a homotopy from γ0 to γ1 with endpoints fixed. (The idea is that the space
Ωp,q of curves from p to q is connected.)

Remark 4.43. Two smooth maps γ0, γ1 : [a, b] → M with the same end-
points can be connected by a continuous homotopy if and only if they can
be connected by a smooth homotopy. This follows from the Weierstrass
approximation theorem.

Remark 4.44. The topological space Ωp,q of all smooth maps γ : [0, 1]→M
with the endpoints p and q is connected for some pair of points p, q ∈ M if
and only if it is connected for every pair of points p, q ∈M . (Prove this!)
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Example 4.45. The Euclidean space Rm is simply connected, for any two
curves γ0, γ1 : [a, b] → Rm with the same endpoints can be joined by the
homotopy

γλ(t) := γ0(t) + λ(γ1(t)− γ0(t)).

The punctured plane C \ {0} is not simply connected, for the curves

γn(t) := e2πint, 0 ≤ t ≤ 1,

are not homotopic with fixed endpoints for distinct n.

Exercise 4.46. Prove that the m-sphere Sm is simply connected for m 6= 1.

4.4.2 The global C-A-H theorem

Theorem 4.47 (Global C-A-H theorem). Let M ⊂ Rn and M ′ ⊂ Rn′ be
connected, simply connected, complete m-manifolds. Let p0 ∈M , p′0 ∈M ′,
and Φ0 : Tp0M → Tp′0M

′ be an orthogonal linear isomorphism. Then the
following are equivalent.

(i) There is an isometry φ : M →M ′ satisfying

φ(p0) = p′0, dφ(p0) = Φ0. (4.38)

(ii) If (Φ, γ, γ′) is a development satisfying the initial condition

γ(0) = p0, γ′(0) = p′0, Φ(0) = Φ0 (4.39)

then
γ(1) = p0 =⇒ γ′(1) = p′0, Φ(1) = Φ0

(iii) If (Φ0, γ0, γ
′
0) and (Φ1, γ1, γ

′
1) are developments satisfying the initial

condition (4.39) then

γ0(1) = γ1(1) =⇒ γ′0(1) = γ′1(1).

(iv) If (Φ, γ, γ′) is a development satisfying (4.39) then Φ∗Rγ = R′γ′.

Lemma 4.48. If φ : M → M ′ is a local isometry satisfying (4.38) and
(Φ, γ, γ′) is a development satisfying the initial condition (4.39) then

γ′(t) = φ(γ(t)), Φ(t) = dφ(γ(t))

for every t.
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Example 4.49. Before giving the proof let us interpret the conditions in
case M and M ′ are two-dimensional spheres of radius r and r′ respectively in
three-dimensional Euclidean space R3. Imagine that the spheres are tangent
at p0 = p′0. Clearly the spheres will be isometric exactly when r = r′.
Condition (ii) says that if the spheres are rolled along one another without
sliding or twisting then the endpoint γ′(1) of one curve of contact depends
only on the endpoint γ(1) of the other and not on the intervening curve γ(t).
By Theorem 4.37 the Riemann curvature of a 2-manifold at p is determined
by the Gaussian curvature K(p); and for spheres we have K(p) = 1/r.

M

p
M’0

Figure 4.3: Diagram for Example 4.49.

Exercise 4.50. Let γ be the closed curve which bounds an octant as shown
in the diagram for Example 4.49. Find γ′.

Exercise 4.51. Show that in case M is two-dimensional, the condition
Φ(1) = Φ0 in Theorem 4.47 may be dropped from (ii).

Proof of Lemma 4.48. Let I ⊂ R be an interval containing zero and let
γ : I →M be a smooth curve such that γ(0) = p0. Define

γ′(t) := φ(γ(t)), Φ(t) := dφ(γ(t))

for t ∈ I. Then γ̇′ = Φγ̇ by the chain rule and, for every vector field X
along γ, we have

Φ∇X = ∇′(ΦX)

by Theorem 4.30. Hence it follows from Lemma 3.29 and Lemma 3.36
that (Φ, γ, γ′) is a development. Since (Φ, γ, γ′) satisfies the initial condi-
tion (4.39) the assertion follows from the uniqueness result for developments
in Theorem 3.38. This proves the lemma.
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Proof of Theorem 4.47. We first prove a slightly different theorem. Namely,
we weaken condition (i) to assert that φ is a local isometry (i.e. not neces-
sarily bijective), and prove that this weaker condition is equivalent to (ii),
(iii), and (iv) whenever M is connected and simply connected and M ′ is
complete. Thus we drop the hypotheses that M be complete and M ′ be
connected and simply connected.

We prove that (i) implies (ii). Given a development as in (ii) we have,
by Lemma 4.48,

γ′(1) = φ(γ(1)) = φ(p0) = p′0, Φ(1) = dφ(γ(1)) = dφ(p0) = Φ0,

as required.
We prove that (ii) implies (iii) when M ′ is complete. Choose develop-

ments (Φi, γi, γ
′
i) for i = 0, 1 as in (iii). Define a curve γ : [0, 1] → M by

“composition”

γ(t) :=

{
γ0(2t), 0 ≤ t ≤ 1/2,
γ1(2− 2t), 1/2 ≤ t ≤ 1,

so that γ is continuous and piecewise smooth and γ(1) = p0. By The-
orem 3.38 there is a development (Φ, γ, γ′) on the interval [0, 1] satisfy-
ing (4.39) (because M ′ is complete). Since γ(1) = p0 it follows from (ii)
that γ′(1) = p′0 and Φ(1) = Φ0. By the uniqueness of developments and the
invariance under reparametrization, we have

(Φ(t), γ(t), γ′(t)) =

{
(Φ0(2t), γ0(2t), γ′0(2t)), 0 ≤ t ≤ 1/2,
(Φ1(2− 2t), γ1(2− 2t), γ′1(2− 2t)), 1/2 ≤ t ≤ 1.

Hence γ′0(1) = γ′(1/2) = γ′1(1) as required.
We prove that (iii) implies (i) when M ′ is complete and M is connected.

We define φ : M → M ′ as follows. For p ∈ M we choose a smooth curve
γ : [0, 1] → M with γ(0) = p0 and γ(1) = p (because M is connected);
by Theorem 3.38 there is a development (Φ, γ, γ′) with γ′(0) = p′0 and
Φ(0) = Φ0 (because M ′ is complete); now define

φ(p) := γ′(1).

According to (iii) the point γ′(1) is independent of the choice of the curve γ;
thus φ is well defined. Moreover, by definition of φ, we have

φ(γ(t)) = γ′(t)

for 0 ≤ t ≤ 1. (Thus φ is smooth: see Exercise 4.55 below.) Differentiating
this equation we have

dφ(γ(t))γ̇(t) = γ̇′(t) = Φ(t)γ̇(t).
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But each Φ(t) is an orthogonal transformation so

|dφ(γ(t))γ̇(t)| = |Φ(t)γ̇(t)| = |γ̇(t)| .

Given p ∈M and v ∈ TpM we may always choose γ such that γ(1) = p and
γ̇(1) = v so that

|dφ(p)v| = |v| .

Hence φ is a local isometry as required.
We prove that (i) implies (iv). Given a development as in (ii) we have

γ′(t) = φ(γ(t)), Φ(t) = dφ(γ(t))

for every t, by Lemma 4.48. Hence it follows from Theorem 4.30 that

Φ(t)∗Rγ(t) = (φ∗R)γ′(t) = R′γ′(t)

for every t as required.
We prove that (iv) implies (iii) when M ′ is complete and M is simply

connected. Choose developments (Φi, γi, γ
′
i) for i = 0, 1 as in (iii). Since M

is simply connected there is a homotopy

[0, 1]× [0, 1]→M : (λ, t) 7→ γ(λ, t) = γλ(t)

from γ0 to γ1 with endpoints fixed. By Theorem 3.38 there is, for each λ, a
development (Φλ, γλ, γ

′
λ) on the interval [0, 1] with initial conditions

γ′λ(0) = p′0, Φλ(0) = Φ0

(because M ′ is complete). The proof of Theorem 3.38 also shows that γλ(t)
and Φλ(t) depend smoothly on both t and λ. We must prove that

γ′1(1) = γ′0(1).

To see this we will show that, for each fixed t, the curve

λ 7→ (Φλ(t), γλ(t), γ′λ(t))

is a development; then by the definition of development we have that the
curve λ 7→ γ′λ(1) is smooth and

∂λγ
′
λ(1) = Φλ(1)∂λγλ(1) = 0

as required.
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First choose a basis e1, . . . , em for Tp0M and extend to get vector fields
Ei ∈ Vect(γ) along the homotopy γ by imposing the conditions that the
vector fields t 7→ Ei(λ, t) be parallel, i.e.

∇tEi(λ, t) = 0, Ei(λ, 0) = ei. (4.40)

Then the vectors E1(λ, t), . . . Em(λ, t) form a basis of Tγλ(t)M for all λ and t.
Second, define the vector fields E′i along γ′ by

E′i(λ, t) := Φλ(t)Ei(λ, t) (4.41)

so that

∇′tE′i = 0.

Third, define the functions ξ1, . . . , ξm : [0, 1]2 → R by

∂tγ =:
m∑
i=1

ξiEi, ∂tγ
′ =

m∑
i=1

ξiE′i. (4.42)

Here the second equation follows from (4.41) and the fact that Φλ∂tγ = ∂tγ
′.

Now consider the vector fields

X ′ := ∂λγ
′, Y ′i := ∇′λE′i (4.43)

along γ′. They satisfy the equations

∇′tX ′ = ∇′t∂λγ′

= ∇′λ∂tγ′

= ∇′λ
( m∑
i=1

ξiE′i
)

=
m∑
i=1

(
∂λξ

iE′i + ξiY ′i
)

and

∇′tY ′i = ∇′t∇′λE′i −∇′λ∇′tE′i = R′(∂tγ
′, ∂λγ

′)E′i.

To sum up we have X ′(λ, 0) = Y ′i (λ, 0) = 0 and

∇′tX ′ =
m∑
i=1

(
∂λξ

iE′i + ξiY ′i
)
, ∇′tY ′i = R′(∂tγ

′, ∂λγ
′)E′i. (4.44)
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On the other hand, the vector fields

X ′ := Φλ∂λγ, Y ′i := Φλ∇λEi (4.45)

along γ′ satisfy the same equations, namely

∇′tX ′ = Φλ∇t∂λγ
= Φλ∇λ∂tγ

= Φλ∇λ

(
m∑
i=1

ξiEi

)

= Φλ

m∑
i=1

(
∂λξ

iEi + ξi∇λEi
)

=

m∑
i=1

(
∂λξ

iE′i + ξiY ′i
)

and

∇′tY ′i = Φλ

(
∇t∇λEi −∇λ∇tEi

)
= ΦλR(∂tγ, ∂λγ)Ei

= R′(Φλ∂tγ,Φλ∂λγ)ΦλEi

= R′(∂tγ
′, X ′)E′i.

Here the last but one equation follows from (iv).
Since the tuples (4.43) and (4.45) satisfy the same differential equa-

tion (4.44) and vanish at t = 0 they must agree. Hence

∂λγ
′ = Φλ∂λγ, ∇′λE′i = Φλ∇λEi

for i = 1, . . . ,m. This says that λ 7→ (Φλ(t), γλ(t), γ′λ(t)) is a development.
For t = 1 we obtain ∂λγ

′(λ, 1) = 0 as required.
Now the modified theorem (where φ is a local isometry) is proved. The

original theorem follows immediately. Condition (iv) is symmetric in M
and M ′; hence if we assume (iv) we have local isometries φ : M → M ′,
ψ : M ′ →M with

φ(p0) = p′0, dφ(p0) = Φ0, ψ(p′0) = p0, dψ(p′) = Φ−1
0 .

But then ψ ◦φ is a local isometry with ψ ◦φ(p0) = p0 and d(ψ ◦φ)(p0) = id.
Hence ψ ◦ φ is the identity. Similarly φ ◦ ψ is the identity so φ is bijective
(and ψ = φ−1) as required.
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Remark 4.52. The proof of Theorem 4.47 shows that the various implica-
tions in the weak version of the theorem (where φ is only a local isometry)
require the following conditions on M and M ′:

(i) always implies (ii), (iii), and (iv);

(ii) implies (iii) whenever M ′ is complete;

(iii) implies (i) whenever M ′ is complete and M is connected;

(iv) implies (iii) whenever M ′ is complete and M is simply connected.

4.4.3 The local C-A-H theorem

Theorem 4.53 (Local C-A-H Theorem). Let M and M ′ be smooth m-
manifolds, fix two points p0 ∈M and p′0 ∈M ′, and let Φ0 : Tp0M → Tp′0M

′

be an orthogonal linear isomorphism. Let r > 0 is smaller than the injectvity
radii of M at p0 and of M ′ at p′0 and denote

Ur := {p ∈M | d(p0, p) < r} , U ′r :=
{
p′ ∈M ′ | d′(p′0, p′) < r

}
.

Then the following are equivalent.

(i) There is an isometry φ : Ur → U ′r satisfying (4.38).

(ii) If (Φ, γ, γ′) is a development on an interval I ⊂ R with 0 ∈ I, satisfying
the initial condition (4.39) as well as

γ(I) ⊂ Ur, γ′(I) ⊂ U ′r,

then
γ(1) = p0 =⇒ γ′(1) = p′0, Φ(1) = Φ0.

(iii) If (Φ0, γ0, γ
′
0) and (Φ1, γ1, γ

′
1) are developments as in (ii) then

γ0(1) = γ1(1) =⇒ γ′0(1) = γ′1(1).

(iv) If v ∈ Tp0M with |v| < r and

γ(t) := expp0(tv), γ′(t) := exp′p′0
(tΦ0v), Φ(t) := Φ′γ′(t, 0)Φ0Φγ(0, t),

then Φ(t)∗Rγ(t) = R′γ′(t) for 0 ≤ t ≤ 1.

Moreover, when these equivalent conditions hold, φ is given by

φ(expp0(v)) = exp′p′0
(Φ0v) .

for v ∈ Tp0M with |v| < r.
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Lemma 4.54. Let p ∈ M and v, w ∈ TpM such that |v| < inj(p). For
0 ≤ t ≤ 1 define

γ(t) := exp(tv), X(t) :=
∂

∂λ

∣∣∣∣
λ=0

expp
(
t(v + λw)

)
∈ Tγ(t)M.

Then

∇t∇tX = R(γ̇, X)γ̇, X(0) = 0, ∇tX(0) = w. (4.46)

A vector field along γ satisfying the first equation in (4.46) is called a Jacobi
field along γ.

Proof. Write γ(λ, t) := expp(t(v + λw)) and X := ∂λγ to all λ and t. Since
γ(λ, 0) = p for all λ we have X(λ, 0) = 0 and

∇tX(λ, 0) = ∇t∂λγ(λ, 0) = ∇λ∂tγ(λ, 0) =
d

dλ

(
v + λw

)
= w.

Moreover, ∇t∂tγ = 0 and hence

∇t∇tX = ∇t∇t∂λγ
= ∇t∇λ∂tγ −∇λ∇t∂tγ
= R(∂tγ, ∂λγ)∂tγ

= R(∂tγ,X)∂tγ.

This proves the lemma.

Proof of Theorem 4.53. The proofs (i) =⇒ (ii) =⇒ (iii) =⇒ (i) =⇒ (iv)
are as before; the reader might note that when L(γ) ≤ r we also have
L(γ′) ≤ r for any development so that there are plenty of developments
with γ : [0, 1] → Ur and γ′ : [0, 1] → U ′r. The proof that (iv) implies (i) is
a little different since (iv) here is somewhat weaker than (iv) of the global
theorem: the equation Φ∗R = R′ is only assumed for certain developments.

Hence assume (iv) and define φ : Ur → U ′r by

φ := exp′p′0
◦Φ0 ◦ exp−1

p0 : Ur → U ′r.

We must prove that φ is an isometry. Thus we fix a point q ∈ Ur and a
tangent vector u ∈ TqM and choose v, w ∈ TpM with |v| < r such that

expp0(v) = q, d expp0(v)w = u. (4.47)
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Define γ : [0, 1]→ Ur, γ
′ : [0, 1]→ U ′r, X ∈ Vect(γ), and X ′ ∈ Vect(γ′) by

γ(t) = expp0(tv), X(t) :=
∂

∂λ

∣∣∣∣
λ=0

expp0(t(v + λw))

γ′(t) = exp′p′0
(tΦ0v), X ′(t) :=

∂

∂λ

∣∣∣∣
λ=0

expp0(t(Φ0v + λΦ0w)).

Then, by definition of φ, we have

γ′ := φ ◦ γ, dφ(γ)X = X ′. (4.48)

Moreover, by Lemma 4.54, X is a solution of (4.46) and X ′ is a solution of

∇t∇tX ′ = R′(∂tγ
′, X ′)∂tγ

′, X(λ, 0) = 0, ∇tX(λ, 0) = Φ0w. (4.49)

Now define Φ(t) : Tγ(t)M → Tγ′(t)M
′ by

Φ(t) := Φ′γ′(t, 0)Φ0Φγ(0, t).

Then Φ intertwines covariant differentiation. Since γ̇ and γ̇′ are parallel
vector fields with γ̇′(0) = Φ0v = Φ(0)γ̇(0), we have

Φ(t)γ̇(t) = γ̇′(t)

for every t. Moreover, it follows from (iv) that Φ∗Rγ = R′γ′ . Combining this
with (4.46) we obtain

∇′t∇′t(ΦX) = Φ∇t∇tX = R′(Φγ̇,ΦX)Φγ̇ = R′(γ̇′,ΦX)γ̇′.

Hence the vector field ΦX along γ′ also satisfies the initial value prob-
lem (4.49) and thus

ΦX = X ′ = dφ(γ)X.

Here we have also used (4.48). Using (4.47) we find

γ(1) = expp0(v) = q, X(1) = d expp0(v)w = u,

and so
dφ(q)u = dφ(γ(1))X(1) = X ′(1) = Φ(1)u.

Since Φ(1) : Tγ(1)M → Tγ′(1)M
′ is an orthogonal transformation this gives

|dφ(q)u| = |Φ(1)u| = |u| .

Hence φ is an isometry as claimed.

Exercise 4.55. Let φ : M → M ′ be a map between manifolds. Assume
that φ ◦ γ is smooth for every smooth curve γ : [0, 1]→M . Prove that φ is
smooth.

.
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4.5 Flat spaces

Our aim in the next few sections is to give applictions of the Cartan-
Ambrose-Hicks Theorem. It is clear that the hypothesis Φ∗R = R′ for
all developments will be difficult to verify without drastic hypotheses on the
curvature. The most drastic such hypothesis is that the curvature vanishes
identically.

Definition 4.56. A Riemannian manifold M is called flat if the Riemann
curvature tensor R vanishes identically.

Theorem 4.57. Let M ⊂ Rn be a smooth m-manifold.

(i) M is flat if and only if every point has a neighborhood which is isometric
to an open subset of Rm, i.e. at each point p ∈M there exist local coordinates
x1, . . . , xm such that the coordinate vectorfields Ei = ∂/∂xi are orthonormal.

(ii) Assume M is connected, simply connected, and complete. Then M is
flat if and only if there is an isometry φ : M → Rm onto Euclidean space.

Proof. Assertion (i) follows immediately from Theorem 4.53 and (ii) follows
immediately from Theorem 4.47.

Exercise 4.58. Carry over the Cartan–Ambrose–Hicks theorem and The-
orem 4.57 to the intrinsic setting.

Exercise 4.59. A one-dimensional manifold is always flat.

Exercise 4.60. If M1 and M2 are flat so is M = M1 ×M2.

Example 4.61. By Exercises 4.59 and 4.60 the standard torus

Tm =
{
z = (z1, . . . , zm) ∈ Cm

∣∣ |z1| = · · · = |zm| = 1
}

is flat.

Exercise 4.62. For b ≥ a > 0 and c ≥ 0 define M ⊂ C3 by

M :=
{

(u, v, w) ∈ C3 | |u| = a, |v| = b, w = cuv
}
.

Then M is diffeomorphic to a torus (a product of two circles) and M is flat.
If M ′ is similarly defined from numbers b′ ≥ a′ > 0 and c′ ≥ 0 then there
is an isometry φ : M → M ′ if and only if (a, b, c) = (a′, b′, c′), i.e. M = M ′.
(Hint: Each circle u = u0 is a geodesic as well as each circle v = v0; the
numbers a, b, c can be computed from the length of the circle u = u0, the
length of the circle v = v0, and the angle between them.)
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Exercise 4.63 (Developable manifolds). Let n = m+ 1 and let E(t) be
a one-parameter family of hyperplanes in Rn. Then there is a smooth map
u : R→ Rn such that

E(t) = u(t)⊥, |u(t)| = 1, (4.50)

for every t. We assume that u̇(t) 6= 0 for every t so that u(t) and u̇(t) are
linearly independent. Show that

L(t) := u(t)⊥ ∩ u̇(t)⊥ = lim
s→t

E(t) ∩ E(s). (4.51)

Thus L(t) is a linear subspace of dimension m− 1. Now let γ : R→ Rn be
a smooth map such that

〈γ̇(t), u(t)〉 = 0, 〈γ̇(t), u̇(t)〉 6= 0 (4.52)

for all t. This means that γ̇(t) ∈ E(t) and γ̇(t) /∈ L(t); thus E(t) is spanned
by L(t) and γ̇(t). For t ∈ R and ε > 0 define

L(t)ε := {v ∈ L(t) | |v| < ε} .

Let I ⊂ R be a bounded open interval such that the restriction of γ to the
closure of I is injective. Prove that, for ε > 0 sufficiently small, the set

M0 :=
⋃
t∈I

(
γ(t) + L(t)ε

)
is a smooth manifold of dimension m = n− 1. A manifold which arises this
way is called developable. Show that the tangent spaces of M0 are the
original subspaces E(t), i.e.

TpM0 = E(t) for p ∈ γ(t) + L(t)ε.

(One therefore calls M0 the “envelope” of the hyperplanes γ(t) + E(t).)
Show that M0 is flat (hint: use Gauss–Codazzi). If (Φ, γ, γ′) is a devel-
opment of M0 along Rm, show that the map φ : M0 → Rm, defined by

φ(γ(t) + v) := γ′(t) + Φ(t)v

for v ∈ L(t)ε, is an isometry onto an open set M ′0 ⊂ Rm. Thus a development
“unrolls” M0 onto the Euclidean space Rm. When n = 3 and m = 2 one
can visualize M0 as a twisted sheet of paper (see Figure 4.4).



4.5. FLAT SPACES 205

Figure 4.4: Developable surfaces.

Remark 4.64. Given a codimension-1 submanifold M ⊂ Rm+1 and a curve
γ : R → M we may form the osculating developable M0 to M along γ
by taking

E(t) := Tγ(t)M.

This developable has common affine tangent spaces with M along γ as
Tγ(t)M0 = E(t) = Tγ(t)M for every t. This gives a nice interpretation of
parallel transport: M0 may be unrolled onto a hyperplane where paral-
lel transport has an obvious meaning and the identification of the tangent
spaces thereby defines parallel transport in M . (See Remark 3.33.)

Exercise 4.65. Each of the following is a developable surface in R3.

(i) A cone on a plane curve Γ ⊂ H, i.e.

M = {tp+ (1− t)q | t > 0, q ∈ Γ}

whereH ⊂ R3 is an affine hyperplane, p ∈ R3\H, and Γ ⊂ H is a 1-manifold.

(ii) A cylinder on a plane curve Γ, i.e.

M = {q + tv | q ∈ Γ, t ∈ R}

where H and Γ are as in (i) and v is a fixed vector not parallel to H. (This
is a cone with the cone point p at infinity.)

(iii) The tangent developable to a space curve γ : R→ R3, i.e.

M = {γ(t) + sγ̇(t) | |t− t0| < ε, 0 < s < ε} ,

where γ̇(t0) and γ̈(t0) are linearly independent and ε > 0 is sufficiently small.

(iv) The normal developable to a space curve γ : R→ R3, i.e.

M = {γ(t) + sγ̈(t) | |t− t0| < ε, |s| < ε}

where |γ̇(t)| = 1 for all t, γ̈(t0) 6= 0, and ε > 0 is sufficiently small.
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Remark 4.66. A 2-dimensional submanifold M ⊂ R3 is called a ruled sur-
face if there is a straight line in M through every point. Every developable
surface is ruled, however, there are ruled surfaces that are not developable.
An example is the elliptic hyperboloid of one sheet depicted in Figure 4.5:

M :=

{
(x, y, z) ∈ R3

∣∣∣∣ x2

a2
+
y2

b2
− z2

c2
= 1

}
.

This manifold has negative Gaussian curvature and there are two straight
lines through every point in M . (Exercise: Prove all this.)

Figure 4.5: A circular one-sheeted hyperboloid.

4.6 Symmetric spaces

In the last section we applied the Cartan-Ambrose-Hicks Theorem in the flat
case; the hypothesis Φ∗R = R′ was easy to verify since both sides vanish. To
find more general situations where we can verify this hypothesis note that
for any development (Φ, γ, γ′) satisfying the initial conditions γ(0) = p0,
γ′(0) = p′0, and Φ(0) = Φ0, we have

Φ(t) = Φ′γ′(t, 0)Φ0Φγ(0, t)

so that the hypothesis Φ∗R = R′ is certainly implied by the three hypotheses

Φγ(t, 0)∗Rp0 = Rγ(t)

Φ′γ′(t, 0)∗R
′
p′0

= R′γ′(t)

(Φ0)∗Rp0 = R′p′0
.

The last hypothesis is a condition on the initial linear isomorphism

Φ0 : Tp0M → Tp′0M
′

while the former hypotheses are conditions on M and M ′ respectively,
namely, that the Riemann curvature tensor is invariant by parallel trans-
port. It is rather amazing that this condition is equivalent to a rather
simple geometric condition as we now show.
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4.6.1 Symmetric spaces

Definition 4.67. A Riemannian manifold M is called symmetric about
the point p ∈ M if there is a (necessarily unique) isometry φ : M → M
satisfying

φ(p) = p, dφ(p) = −id. (4.53)

M is called a symmetric space if it is symmetric about each of its points.
A Riemannian manifold M is called locally symmetric about the point
p ∈M if, for r > 0 sufficiently small, there is an isometry

φ : Ur(p,M)→ Ur(p,M), Ur(p,M) := {q ∈M | d(p, q) < r} ,

satisfying (4.53); M is called a locally symmetric space if it is locally
symmetric about each of its points.

Remark 4.68. The proof of Theorem 4.70 below will show that, if M is
locally symmetric, the isometry φ : Ur(p,M)→ Ur(p,M) with φ(p) = p and
dφ(p) = −id exists whenever 0 < r ≤ inj(p).

Exercise 4.69. Every symmetric space is complete. Hint: If γ : I →M is
a geodesic and φ : M → M is a symmetry about the point γ(t0) for t0 ∈ I
then

φ(γ(t0 + t)) = γ(t0 − t)

for all t ∈ R with t0 + t, t0 − t ∈ I.

Theorem 4.70. Let M ⊂ Rn be an m-dimensional submanifold. Then the
following are equivalent.

(i) M is locally symmetric.

(ii) The covariant derivative ∇R (defined below) vanishes identically, i.e.

(∇vR)p(v1, v2)w = 0

for all p ∈M and v, v1, v2, w ∈ TpM .

(iii) The curvature tensor R is invariant under parallel transport, i.e.

Φγ(t, s)∗Rγ(s) = Rγ(t) (4.54)

for every smooth curve γ : R→M and all s, t ∈ R.

Before proving Theorem 4.70 we note some immediate corollaries.
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Corollary 4.71. Let M and M ′ be locally symmetric spaces and fix two
points p0 ∈ M and p′0 ∈ M ′, and let Φ0 : Tp0M → Tp′0M

′ be an orthogonal
linear isomorphism. Let r > 0 be less than the injectivity radius of M at p0

and the injectivity radius of M ′ at p′0. Then the following holds.

(i) There is an isometry φ : Ur(p0,M)→ Ur(p
′
0,M

′) with φ(p0) = p′0 and
dφ(p0) = Φ0 if and only if Φ0 intertwines R and R′:

(Φ0)∗Rp0 = R′p′0
. (4.55)

(ii) Assume M and M ′ are connected, simply connected, and complete.
Then there is an isometry φ : M →M ′ with φ(p0) = p′0 and dφ(p0) = Φ0 if
and only if Φ0 satisfies (4.55).

Proof. In both (i) and (ii) the “only if” statement follows from Theorem 4.30
(Theorema Egregium) with Φ0 := dφ(p0). To prove the “if” statement, let
(Φ, γ, γ′) be a development satisfying γ(0) = p0, γ′(0) = p′0, and Φ(0) = Φ0.
Since R and R′ are invariant under parallel transport, by Theorem 4.70, it
follows from the discussion in the beginning of this section that Φ∗R = R′.
Hence assertion (i) follows from the local C-A-H Theorem 4.53 and (ii)
follows from the global C-A-H Theorem 4.47

Corollary 4.72. A connected, simply connected, complete, locally symmet-
ric space is symmetric.

Proof. Corollary 4.71 (ii) with M ′ = M , p′0 = p0, and Φ0 = −id.

Corollary 4.73. A connected symmetric space M is homogeneous; i.e.
given p, q ∈M there exists an isometry φ : M →M with φ(p) = q.

Proof. If M is simply connected the assertion follows from Corollary 4.71 (ii)
with M = M ′, p0 = p, p′0 = q, and Φ0 = Φγ(1, 0) : TpM → TqM , where
γ : [0, 1] → M is a curve from p to q. If M is not simply connected we can
argue as follows. There is an equivalence relation on M defined by

p ∼ q :⇐⇒ ∃ isometry φ : M →M 3 φ(p) = q.

Let p, q ∈ M and suppose that d(p, q) < inj(p). By Theorem 2.44 there is
a unique shortest geodesic γ : [0, 1] → M connecting p to q. Since M is
symmetric there is an isometry φ : M → M such that φ(γ(1/2)) = γ(1/2)
and dφ(γ(1/2)) = −id. This isometry satisfies φ(γ(t)) = γ(1− t) and hence
φ(p) = q. Thus p ∼ q whenever d(p, q) < inj(p). This shows that each
equivalence class is open, hence each equivalence class is also closed, and
hence there is only one equivalence class because M is connected. This
proves the corollary.
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4.6.2 The covariant derivative of the curvature

For two vector spaces V,W and an integer k ≥ 1 we denote by Lk(V,W )
the vector space of multi-linear maps from V k = V × · · · × V to W . Thus
L1(V,W ) = L(V,W ) is the space of linear maps from V to W .

Definition 4.74. The covariant derivative of the Riemann curvature
tensor assigns to every p ∈M a linear map

(∇R)p : TpM → L2(TpM,L(TpM,TpM)

such that

(∇R)(X)(X1, X2)Y = ∇X
(
R(X1, X2)Y

)
−R(∇XX1, X2)Y

−R(X1,∇XX2)Y −R(X1, X2)∇XY
(4.56)

for all X,X1, X2, Y ∈ Vect(M). We also use the notation

(∇vR)p := (∇R)p(v)

for p ∈M and v ∈ TpM so that

(∇XR)(X1, X2)Y := (∇R)(X)(X1, X2)Y

for all X,X1, X2, Y ∈ Vect(M).

Remark 4.75. One verifies easily that the map

Vect(M)4 → Vect(M) : (X,X1, X2, Y ) 7→ (∇XR)(X1, X2)Y,

defined by the right hand side of equation (4.56), is multi-linear over the
ring of functions F (M). Hence it follows as in Remark 4.22 that ∇R is well
defined, i.e. that the right hand side of (4.56) at p ∈M depends only on the
tangent vectors X(p), X1(p), X2(p), Y (p).

Remark 4.76. Let γ : I →M be a smooth curve on an interval I ⊂ R and

X1, X2, Y ∈ Vect(γ)

be smooth vector fields along γ. Then equation (4.56) continues to hold
with X replaced by γ̇ and each ∇X on the right hand side replaced by the
covariant derivative of the respective vector field along γ:

(∇γ̇R)(X1, X2)Y = ∇(R(X1, X2)Y )−R(∇X1, X2)Y

−R(X1,∇X2)Y −R(X1, X2)∇Y.
(4.57)
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Theorem 4.77. (i) If γ : R → M is a smooth curve such that γ(0) = p
and γ̇(0) = v then

(∇vR)p =
d

dt

∣∣∣∣
t=0

Φγ(0, t)∗Rγ(t) (4.58)

(ii) The covariant derivative of the Riemann curvature tensor satisfies the
second Bianchi identity

(∇XR)(Y,Z) + (∇YR)(Z,X) + (∇ZR)(X,Y ) = 0. (4.59)

Proof. We prove (i). Let v1, v2, w ∈ TpM and choose parallel vector fields
X1, X2, Y ∈ Vect(γ) along γ satisfying the initial conditions X1(0) = v1,
X2(0) = v2, Y (0) = w. Thus

X1(t) = Φγ(t, 0)v1, X2(t) = Φγ(t, 0)v2, Y (t) = Φγ(t, 0)w.

Then the last three terms on the right vanish in equation (4.57) and hence

(∇vR)(v1, v2)w = ∇(R(X1, X2)Y )(0)

=
d

dt

∣∣∣∣
t=0

Φγ(0,t)Rγ(t)(X1(t), X2(t))Y (t)

=
d

dt

∣∣∣∣
t=0

Φγ(0,t)Rγ(t)(Φγ(t, 0)v1,Φγ(t, 0)v2)Φγ(t, 0)w

=
d

dt

∣∣∣∣
t=0

(
Φγ(0, t)∗Rγ(t)

)
(v1, v2)w.

Here the second equation follows from Theorem 3.4. This proves (i).
We prove (ii). Choose a smooth function γ : R3 → M and denote by

(r, s, t) the coordinates on R3. If Y is a vector field along γ we have

(∇∂rγR)(∂sγ, ∂tγ)Y = ∇r
(
R(∂sγ, ∂tγ)Y

)
−R(∂sγ, ∂tγ)∇rY

−R(∇r∂sγ, ∂tγ)Y −R(∂sγ,∇r∂tγ)Y

= ∇r (∇s∇tY −∇t∇sY )− (∇s∇t −∇t∇s)∇rY
+R(∂tγ,∇r∂sγ)Y −R(∂sγ,∇t∂rγ)Y.

Permuting the variables r, s, t cyclically and taking the sum of the resulting
three equations we obtain

(∇∂rγR)(∂sγ, ∂tγ)Y + (∇∂sγR)(∂tγ, ∂rγ)Y + (∇∂tγR)(∂rγ, ∂sγ)Y

= ∇r (∇s∇tY −∇t∇sY )− (∇s∇t −∇t∇s)∇rY
+∇s (∇t∇rY −∇r∇tY )− (∇t∇r −∇r∇t)∇sY
+∇t (∇r∇sY −∇s∇rY )− (∇r∇s −∇s∇r)∇tY.

The terms on the right hand side cancel out. This proves the theorem.
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Proof of Theorem 4.70. We prove that (iii) implies (i). This follows from
the local Cartan–Ambrose–Hicks Theorem 4.53 with

p′0 = p0 = p, Φ0 = −id : TpM → TpM.

This isomorphism satisfies

(Φ0)∗Rp = Rp.

Hence it follows from the discussion in the beginning of this section that

Φ∗R = R′

for every development (Φ, γ, γ′) of M along itself satisfying

γ(0) = γ′(0) = p, Φ(0) = −id.

Hence, by the local C-A-H Theorem 4.53, there is an isometry

φ : Ur(p,M)→ Ur(p,M)

satisfying
φ(p) = p, dφ(p) = −id

whenever 0 < r < inj(p,M).
We prove that (i) implies (ii). By Theorem 4.30 (Theorema Egregium),

every isometry φ : M → M ′ preserves the Riemann curvature tensor and
covariant differentiation, and hence also the covariant derivative of the Rie-
mann curvature tensor, i.e.

φ∗(∇R) = ∇′R′.

Applying this to the local isometry φ : Ur(p,M)→ Ur(p,M) we obtain(
∇dφ(q)vR

)
φ(q)

(dφ(q)v1, dφ(q)v2) = dφ(q) (∇vR) (v1, v2)dφ(q)−1.

for all v, v1, v2 ∈ TpM Since

dφ(p) = −id

this shows that ∇R vanishes at p.
We prove that (ii) imlies (iii). If ∇R vanishes then then equation (4.58)

in Theorem 4.77 shows that the function

s 7→ Φγ(t, s)∗Rγ(s) = Φγ(t, 0)∗Φ(0, s)∗Rγ(s)

is constant and hence is everywhere equal to Rγ(t). This implies (4.54) and
completes the proof of the theorem.
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The covariant derivative of the curvature in local coordinates

Let φ : U → Ω be a local coordinate chart on M with values in an open set
Ω ⊂ Rm, denote its inverse by ψ := φ−1 : Ω→ U, and let

Ei(x) :=
∂ψ

∂xi
(x) ∈ Tψ(x)M, x ∈ Ω, i = 1, . . . ,m,

be the local frame of the tangent bundle determined by this coordinate
chart. Let Γkij : Ω→ R denote the Christoffel symbols and R`ijk : Ω→ R the
coefficients of the Riemann curvature tensor so that

∇iEj =
∑
k

ΓkijEk, R(Ei, Ej)Ek =
∑
`

R`ijkE`.

Given i, j, k, ` ∈ {1, . . . ,m} we can express the vector field (∇EiR)(Ej , Ek)E`
along ψ for each x ∈ Ω as a linear combination of the basis vectors Ei(x).
This gives rise to functions ∇iRνjk` : Ω→ R defined by

(∇EiR)(Ej , Ek)E` =:
∑
ν

∇iRνjk`Eν . (4.60)

These functions are given by

∇iRνjk` = ∂iR
ν
jk` +

∑
µ

ΓνiµR
µ
jk`

−
∑
µ

ΓµijR
ν
µk` −

∑
µ

ΓµikR
ν
jµ` −

∑
µ

Γµi`R
ν
jkµ.

(4.61)

The second Bianchi identity has the form

∇iRνjk` +∇jRνki` +∇kRνij` = 0. (4.62)

Exercise: Prove equations (4.61) and (4.62). Warning: As in Subsec-
tion 4.3.3, care must be taken with the ordering of the indices. Some authors
use the notation ∇iRν`jk for what we call ∇iRνjk`.

4.6.3 Examples and exercises

Example 4.78. A flat manifold is locally symmetric.

Example 4.79. If M1 and M2 are (locally) symmetric, so is M = M1×M2.
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Example 4.80. M = Rm with the standard metric is a symmetric space.
Recall that the isometry group I(Rm) consists of all affine transformations
of the form

φ(x) = Ax+ b, A ∈ O(m), b ∈ Rm.

(See Exercise 4.4.) The isometry with fixed point p ∈ Rm and dφ(p) = −id
is given by φ(x) = 2p− x for x ∈ Rm.

Example 4.81. The flat tori of Exercise 4.62 in the previous section are
symmetric (but not simply connected). This shows that the hypothesis of
simply connectivity cannot be dropped in the Corollary 4.71 (ii).

Example 4.82. Below we define manifolds of constant curvature and show
that they are locally symmetric. The simplest example, after a flat space, is
the unit sphere Sm =

{
x ∈ Rm+1 | |x| = 1

}
. The symmetry φ of the sphere

about a point p ∈M is given by

φ(x) := −x+ 2〈p, x〉p

for x ∈ Sm. This extends to an orthogonal linear transformation of the
ambient space. In fact the group of isometries of Sm is the group O(m+ 1)
of orthogonal linear transformations of Rm+1: see Example 4.101 below. In
accordance with Corollary 4.73 this group acts transitively on Sm.

Example 4.83. A compact two-dimensional manifold of constant negative
curvature is locally symmetric (as its universal cover is symmetric) but not
homogeneous (as closed geodesics of a given period are isolated). Hence it is
not symmetric. This shows that the hypothesis that M be simply connected
cannot be dropped in the Corollary 4.72.

Example 4.84. The real projective space RPn with the metric inherited
from Sn is a symmetric space and the orthogonal group O(n + 1) acts on
it by isometries. The complex projective space CPn with the Fubini–Study
metric is a symmetric space and the unitary group U(n + 1) acts on it
by isometries: see Example 2.69. The complex Grassmannian Gk(Cn) is a
symmetric space and the unitary group U(n) acts on it by isometries: see
Example 2.70. (Exercise: Prove this.)

Example 4.85. The simplest example of a symmetric space which is not
of constant curvature is the orthogonal group O(n) =

{
g ∈ Rn×n | gT g = 1l

}
with the Riemannian metric (4.24) of Example 4.27. The symmetry φ about
the point a ∈ O(n) is given by φ(g) = ag−1a. This discussion extends to
every Lie subgroup G ⊂ O(n). (Exercise: Prove this.)
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4.7 Constant curvature

In the Section 4.3 we saw that the Gaussian curvature of a two-dimensional
surface is intrinsic: we gave a formula for it in terms of the Riemann cur-
vature tensor and the first fundamental form. We may use this formula
to define the Gaussian curvature for any two-dimensional manifold (even
if its codimension is greater than one). We make a slightly more general
definition.

4.7.1 Sectional curvature

Definition 4.86. Let M ⊂ Rn be a smooth m-dimensional manifold. Let
p ∈ M and E ⊂ TpM be a 2-dimensional linear subspace of the tangent
space. The sectional curvature of M at (p,E) is the number

K(p,E) =
〈Rp(u, v)v, u〉
|u|2|v|2 − 〈u, v〉2

(4.63)

where u, v ∈ E are linearly independent (and hence form a basis of E).

The right hand side of (4.63) remains unchanged if we multiply u or v
by a nonzero real number or add to one of the vectors a real multiple of the
other; hence it depends only on the linear subspace spanned by u ad v.

Example 4.87. If M ⊂ R3 is a 2-manifold then, by Theorem 4.37, the
sectional curvature K(p, TpM) = K(p) is the Gaussian curvature of M at p.
More generally, for any 2-manifold M ⊂ Rn (whether or not it has codimen-
sion one) we define the Gaussian curvature of M at p by

K(p) := K(p, TpM).

Example 4.88. If M ⊂ Rm+1 is a submanifold of codimension one and
ν : M → Sm is a Gauss map then the sectional curvature of a 2-dimensional
subspace E ⊂ TpM spanned by two linearly independent tangent vectors
u, v ∈ TpM is given by

K(p,E) =
〈u, dν(p)u〉〈v, dν(p)v〉 − 〈u, dν(p)v〉2

|u|2|v|2 − 〈u, v〉2
. (4.64)

This follows from equation (4.36) in the proof of Theorem 4.37 which holds
in all dimensions. In particular, when M = Sm, we have ν(p) = p and hence
K(p,E) = 1 for all p and E. For a sphere of radius r we have ν(p) = p/r
and hence K(p,E) = 1/r2.
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Example 4.89. Let G ⊂ O(n) be a Lie subgroup equipped with the Rie-
mannian metric

〈v, w〉 := trace(vTw)

for v, w ∈ TgG ⊂ Rn×n. Then, by Example 4.27, the sectional curvature of
G at the identity matrix 1l is given by

K(1l, E) =
1

4
|[ξ, η]|2

for every 2-dimensional linear subspace E ⊂ g = Lie(G) = T1lG with an
orthonormal basis ξ, η.

Exercise 4.90. Let E ⊂ TpM be a 2-dimensional linear subspace, let r > 0
be smaller than the injectivity radius of M at p, and let N ⊂ M be the
2-dimensional submanifold given by

N := expp ({v ∈ E | |v| < r}) .

Show that the sectional curvature K(p,E) of M at (p,E) agrees with the
Gauss curvature of N at p.

Exercise 4.91. Let p ∈M ⊂ Rn and let E ⊂ TpM be a 2-dimensional lin-
ear subspace. For r > 0 let L denote the ball of radius r in the (n−m+ 2)
dimensional affine subspace of Rn through p and parallel to the vector sub-
space E + TpM

⊥:

L =
{
p+ v + w | v ∈ E, w ∈ TpM⊥, |v|2 + |w|2 < r2

}
.

Show that, for r sufficiently small, L ∩M is a 2-dimensional manifold with
Gauss curvature KL∩M (p) at p given by

KL∩M (p) = K(p,E).

4.7.2 Constant sectional curvature

Definition 4.92. Let k ∈ R and m ≥ 2 be an integer. An m-manifold
M ⊂ Rn is said to have constant sectional curvature k if K(p,E) = k
for every p ∈M and every 2-dimensional linear subspace E ⊂ TpM .

Theorem 4.93. An m-dimensional manifold M ⊂ Rn has constant sec-
tional curvature k if and only if

〈Rp(v1, v2)v3, v4〉 = k
(
〈v1, v4〉〈v2, v3〉 − 〈v1, v3〉〈v2, v4〉

)
(4.65)

for all p ∈M and all v1, v2, v3, v4 ∈ TpM .
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Proof. The “only if” statement follows immediately from the definition with
v1 = v2 = u and v2 = v3 = v. To prove the converse, we assume that M has
constant curvature k. Fix a point p ∈ M and define the multi-linear map
Q : TpM

4 → R by

Q(v1, v2, v3, v4) := 〈Rp(v1, v2)v3, v4〉 − k
(
〈v1, v4〉〈v2, v3〉 − 〈v1, v3〉〈v2, v4〉

)
.

Then Q satisfies the equations

Q(v1, v2, v3, v4) +Q(v2, v1, v3, v4) = 0, (4.66)

Q(v1, v2, v3, v4) +Q(v2, v3, v1, v4) +Q(v3, v1, v2, v4) = 0, (4.67)

Q(v1, v2, v3, v4)−Q(v3, v4, v1, v2) = 0, (4.68)

Q(u, v, u, v) = 0 (4.69)

for all u, v, v1, v2, v3, v4 ∈ TpM . Here the first three equations follow from
Therem 4.23 and the last follows from the definition of Q and the hypothesis
that M have constant sectional curvature k.

We must prove that Q vanishes. Using (4.68) and (4.69) we find

0 = Q(u, v1 + v2, u, v1 + v2)

= Q(u, v1, u, v2) +Q(u, v2, uv1)

= 2Q(u, v1, u, v2).

for all u, v1, v2 ∈ TpM . This implies

0 = Q(u1 + u2, v1, u1 + u2, v2)

= Q(u1, v1, u2, v2) +Q(u2, v1, u1, v2).

for all u1, u2, v1, v2 ∈ TpM . Hence

Q(v1, v2, v3, v4) = −Q(v3, v2, v1, v4)

= Q(v2, v3, v1, v4)

= −Q(v3, v1, v2, v4)−Q(v1, v3, v3, v4).

Here the second equation follows from (4.66) and the last from (4.67). Thus

Q(v1, v2, v3, v4) = −1

2
Q(v3, v1, v2, v4) =

1

2
Q(v1, v3, v2, v4)

for all v1, v2, v3, v4 ∈ TpM and, repeating this argument,

Q(v1, v2, v3, v4) =
1

4
Q(v1, v2, v3, v4).

Hence Q ≡ 0 as claimed. This proves the theorem.
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Remark 4.94. The symmetric group S4 on four symbols acts naturally on
the space L4(TpM,R) of multi-linear maps from TpM

4 to R. The condi-
tions (4.66), (4.67), (4.68), and (4.69) say that the four elements

a = id + (12)

c = id + (123) + (132)

b = id− (34)

d = id + (13) + (24) + (13)(24)

of the group ring of S4 annihilate Q. This suggests an alternate proof of
Theorem 4.93. A representation of a finite group is completely reducible so
one can prove that Q = 0 by showing that any vector in any irreducible
representation of S4 which is annihilated by the four elements a, b, c and
d must necessarily be zero. This can be checked case by case for each
irreducible representation. (The group S4 has 5 irreducible representations:
two of dimension 1, two of dimension 3, and one of dimension 2.)

If M and M ′ are two m-dimensional manifolds with constant curvature
k then every orthogonal linear isomorphism Φ : TpM → Tp′M

′ intertwines
the Riemann curvature tensors by Theorem 4.93. Hence by the appropri-
ate version (local or global) of the C-A-H Theorem we have the following
corollaries.

Corollary 4.95. Every Riemannian manifold with constant sectional cur-
vature is locally symmetric.

Proof. Theorem 4.70 and Theorem 4.93.

Corollary 4.96. Let M and M ′ be m-dimensional Riemannian manifolds
with constant curvature k and let p ∈ M and p′ ∈ M ′. If r > 0 is smaller
than the injectivity radii of M at p and of M ′ at p′ then, for every orthogonal
linear isomorphism Φ : TpM → Tp′M

′, there is an isometry

φ : Ur(p,M)→ Ur(p
′,M ′)

such that
φ(p) = p′, dφ(p) = Φ.

Proof. This follows from Corollary 4.71 and Corollary 4.95. Alternatively
one can use Theorem 4.93 and the local C-A-H Theorem 4.53.

Corollary 4.97. Any two connected, simply connected, complete Rieman-
nian manifolds with the same constant sectional curvature and the same
dimension are isometric.
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Proof. Theorem 4.93 and the global C-A-H Theorem 4.47.

Corollary 4.98. Let M ⊂ Rn be a connected, simply connected, complete
manifold. Then the following are equivalent.

(i) M has constant sectional curvature.

(ii) For every pair of points p, q ∈ M and every orthogonal linear isomor-
phism Φ : TpM → TqM there is an isometry φ : M →M such that

φ(p) = q, dφ(p) = Φ.

Proof. That (i) implies (ii) follows immediately from Theorem 4.93 and the
global C-A-H Theorem 4.47. Conversely assume (ii). Then, for every pair of
points p, q ∈M and every orthogonal linear isomorphism Φ : TpM → TqM ,
it follows from Theorem 4.30 (Theorema Egregium) that Φ∗Rp = Rq and
hence K(p,E) = K(q,ΦE) for every 2-dimensional linear subspace E ⊂
TpM . Since, for every pair of points p, q ∈M and of 2-dimensional linear
subspaces E ⊂ TpM , F ⊂ TqM , we can find an orthogonal linear isomor-
phism Φ : TpM → TqM such that ΦE = F , this implies (i).

Corollary 4.98 asserts that a connected, simply connected, complete
Riemannian m-manifold M has constant sectional curvature if and only
if the isometry group I(M) acts transitively on its orthonormal frame bun-
dle O(M). Note that, by Lemma 4.10, this group action is also free.

4.7.3 Examples and exercises

Example 4.99. Any flat Riemannian manifold has constant sectional cur-
vature k = 0.

Example 4.100. The manifold M = Rm with its standard metric is, up
to isometry, the unique connected, simply connected, complete Riemannian
m-manifold with constant sectional curvature k = 0.

Example 4.101. For m ≥ 2 the unit sphere M = Sm with its standard
metric is, up to isometry, the unique connected, simply connected, complete
Riemannian m-manifold with constant sectional curvature k = 1. Hence,
by Corollary 4.97, every connected simply connected, complete Riemannian
manifold with positive sectional curvature k = 1 is compact. Moreover,
by Corollary 4.98, the isometry group I(Sm) is isomorphic to the group
O(m + 1) of orthogonal linear transformations of Rm+1. Thus, by Corol-
lary 4.98, the orthonormal frame bundleO(Sm) is diffeomorphic to O(m+1).
This follows also from the fact that, if v1, . . . , vm is an orthonormal basis of
TpS

m = p⊥ then p, v1, . . . , vm is an orthonormal basis of Rm+1.
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Example 4.102. A product of spheres is not a space of constant sectional
curvature, but it is a symmetric space. Exercise: Prove this.

Example 4.103. For n ≥ 4 the orthogonal group O(n) is not a space of
constant sectional curvature, but it is a symmetric space and has nonnegative
sectional curvature (see Example 4.89).

4.7.4 Hyperbolic space

The hyperbolic space Hm is, up to isometry, the unique connected, sim-
ply connected, complete Riemannian m-manifold with constant sectional
curvature k = −1. A model for Hm can be constructed as follows. A point
in Rm+1 will be denoted by

p = (x0, x), x0 ∈ R, x = (x1, . . . , xm) ∈ Rm.

Let Q : Rm+1 × Rm+1 → R denote the symmetric bilinear form given by

Q(p, q) := −x0y0 + x1y1 + · · ·+ xmym

for p = (x0, x), q = (y0, y) ∈ Rm+1. Since Q is nondegenerate the space

Hm :=
{
p = (x0, x) ∈ Rm+1 |Q(p, p) = −1, x0 > 0

}
is a smooth m-dimensional submanifold of Rm+1 and the tangent space
of Hm at p is given by

TpHm =
{
v ∈ Rm+1 |Q(p, v) = 0

}
.

For p = (x0, x) ∈ Rm+1 and v = (ξ0, ξ) ∈ Rm+1 we have

p ∈ Hm ⇐⇒ x0 =
√

1 + |x|2,

v ∈ TpHm ⇐⇒ ξ0 =
〈ξ, x〉√
1 + |x|2

.

Now let us define a Riemannian metric on Hm by

gp(v, w) := Q(v, w) = 〈ξ, η〉 − ξ0η0 = 〈ξ, η〉 − 〈ξ, x〉〈η, x〉
1 + |x|2

(4.70)

for v = (ξ0, ξ) ∈ TpHm and w = (η0, η) ∈ TpHm.

Theorem 4.104. Hm is a connected, simply connected, complete Rieman-
nian m-manifold with constant sectional curvature k = −1.
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We remark that the manifold Hm does not quite fit into the extrinsic
framework of most of this manuscript as it is not exhibited as a submanifold
of Euclidean space but rather of “pseudo-Euclidean space”: the positive
definite inner product 〈v, w〉 of the ambient space Rm+1 is replaced by a
nondegenerate symmetric bilinear form Q(v, w). However, all the theory
developed thus far goes through (reading Q(v, w) for 〈v, w〉) provided we
make the additional hypothesis (true in the example M = Hm) that the
first fundamental form gp = Q|TpM is positive definite. For then Q|TpM is
nondegenerate and we may define the orthogonal projection Π(p) onto TpM
as before. The next lemma summarizes the basic observations; the proof is
an exercise in linear algebra.

Lemma 4.105. Let Q be a symmetric bilinear form on a vector space V
and for each subspace E of V define its orthogonal complement by

E⊥Q := {w ∈ V |Q(u, v) = 0 ∀v ∈ E} .

Assume Q is nondegenerate, i.e. V ⊥Q = {0}. Then, for every linear sub-
space E ⊂ V , we have

V = E ⊕ E⊥Q ⇐⇒ E ∩ E⊥Q = {0},

i.e. E⊥Q is a vector space complement of E if and only if the restriction of
Q to E is nondegenerate.

Proof of Theorem 4.104. The proofs of the various properties of Hm are
entirely analogous to the corresponding proofs for Sm. Thus the unit normal
field to Hm is given by ν(p) = p for p ∈ Hm although the “square of its
length” is Q(p, p) = −1.

For p ∈ Hm we introduce the Q-orthogonal projection Π(p) of Rm+1 onto
TpHm. It is characterized by the conditions

Π(p)2 = Π(p), ker Π(p) ⊥Q imΠ(p), imΠ(p) = TpHm,

and is given by the explicit formula

Π(p)v = v +Q(v, p)p

for v ∈ Rm+1. The covariant derivative of a vector field X ∈ Vect(γ) along
a smooth curve γ : R→ Hm is given by

∇X(t) = Π(γ(t))Ẋ(t)

= Ẋ(t) +Q(Ẋ(t), γ(t))γ(t)

= Ẋ(t)−Q(X(t), γ̇(t))γ(t).
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The last identity follows by differentiating the equation Q(X, γ) ≡ 0. This
can be interpreted as the hyperbolic Gauss–Weingarten formula as follows.
For p ∈ Hm and u ∈ TpHm we introduce, as before, the second fundamental
form hp(u) : TpHm → (TpHm)⊥Q via

hp(u)v :=
(
dΠ(p)u

)
v

and denote its Q-adjoint by

hp(u)∗ : (TpHm)⊥Q → TpHm.

For every p ∈ Rm+1 we have(
dΠ(p)u

)
v =

d

dt

∣∣∣∣
t=0

(
v +Q(v, p+ tu)(p+ tu)

)
= Q(v, p)u+Q(v, u)p,

where the first summand on the right is tangent to Hm and the second
summand is Q-orthogonal to TpHm. Hence

hp(u)v = Q(v, u)p, hp(u)∗w = Q(w, p)u (4.71)

for v ∈ TpHm and w ∈ (TpHm)⊥Q .

With this understood, the Gauss-Weingarten formula

Ẋ = ∇X + hγ(γ̇)X

extends to the present setting. The reader may verify that the operators
∇ : Vect(γ) → Vect(γ) thus defined satisfy the axioms of Remark 2.72 and
hence define the Levi-Civita connection on Hm.

Now a smooth curve γ : I → Hm is a geodesic if and only if it satisfies
the equivalent conditions

∇γ̇ ≡ 0 ⇐⇒ γ̈(t) ⊥Q Tγ(t)Hm ∀ t ∈ I ⇐⇒ γ̈ = Q(γ̇, γ̇)γ.

A geodesic must satisfy the equation

d

dt
Q(γ̇, γ̇) = 2Q(γ̈, γ̇) = 0

because γ̈ is a scalar multiple of γ, and so Q(γ̇, γ̇) is constant. Let p ∈ Hm

and v ∈ TpHm be given with

Q(v, v) = 1.
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Then the geodesic γ : R→ Hm with γ(0) = p and γ̇(0) = v is given by

γ(t) = cosh(t)p+ sinh(t)v, (4.72)

where

cosh(t) :=
et + e−t

2
, sinh(t) :=

et − e−t

2
.

In fact we have γ̈(t) = γ(t) ⊥Q Tγ(t)Hm. It follows that the geodesics
exist for all time and hence Hm is geodesically complete. Moreover, being
diffeomorphic to Euclidean space, Hm is connected and simply connected.

It remains to prove that Hm has constant sectional curvature k = −1.
To see this we use the Gauss–Codazzi formula in the hyperbolic setting, i.e.

Rp(u, v) = hp(u)∗hp(v)− hp(v)∗hp(u). (4.73)

By equation (4.71), this gives

〈Rp(u, v)v, u〉 = Q(hp(u)u, hp(v)v)−Q(hp(v)u, hp(u)v)

= Q(Q(u, u)p,Q(v, v)p)−Q(Q(u, v)p,Q(u, v)p)

= −Q(u, u)Q(v, v) +Q(u, v)2

= −gp(u, u)gp(v, v) + gp(u, v)2

for all u, v ∈ TpHm. Hence

K(p,E) =
〈Rp(u, v)v, u〉

gp(u, u)gp(v, v)− gp(u, v)2
= −1

for every p ∈ M and every 2-dimensional linear subspace E ⊂ TpM with a
basis u, v. This proves the theorem.

Exercise 4.106. Prove that the pullback of the metric on Hm under the
diffeomorphism

Rm → Hm : x 7→
(√

1 + |x|2, x
)

is given by

|ξ|x =

√
|ξ|2 − 〈x, ξ〉

2

1 + |x|2

or, equivalently, by the metric tensor,

gij(x) = δij −
xixj

1 + |x|2
(4.74)

for x = (x1, . . . , xm) ∈ Rm.
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Exercise 4.107. The Poincaré model of hyperbolic space is the open unit
disc Dm ⊂ Rm equipped with the Poincaré metric

|η|y =
2 |η|

1− |y|2

for y ∈ Dm and η ∈ Rm = TyDm. Thus the metric tensor is given by

gij(y) =
4δij(

1− |y|2
)2 , y ∈ Dm. (4.75)

Prove that the diffeomorphism

Dm → Hm : y 7→

(
1 + |y|2

1− |y|2
,

2y

1− |y|2

)

is an isometry with inverse

Hm → Dm : (x0, x) 7→ x

1 + x0
.

Interpret this map as a stereographic projection from the south pole (−1, 0).

Exercise 4.108. The composition of the isometries in Exercise 4.106 and
Exercise 4.107 is the diffeomorphism Rm → Dm : x 7→ y given by

y =
x√

1 + |x|2 + 1
, x =

2y

1− |y|2
,

√
1 + |x|2 =

1 + |y|2

1− |y|2
.

Prove that this is an isometry intertwining the Riemannian metrics (4.74)
and (4.75). Find a formula for the geodesics in the Poincaré disc Dm. Hint:
Use Exercise 4.110 below.

Exercise 4.109. Prove that the isometry group of Hm is the pseudo-ortho-
gonal group

I(Hm) = O(m, 1) :=

{
g ∈ GL(m+ 1)

∣∣∣∣ Q(gv, gw) = Q(v, w)
for all v, w ∈ Rm+1

}
.

Thus, by Corollary 4.98, the orthonormal frame bundle O(Hm) is diffeomor-
phic to O(m, 1).
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Exercise 4.110. Prove that the exponential map

expp : TpHm → Hm

is given by

expp(v) = cosh
(√

Q(v, v)
)
p+

sinh
(√

Q(v, v)
)

√
Q(v, v)

v (4.76)

for v ∈ TpHm = p⊥Q . Prove that this map is a diffeomorphism for every
p ∈ Hm. Thus any two points in Hm are connected by a unique geodesic.
Prove that the intrinsic distance function on hyperbolic space is given by

d(p, q) = cosh−1 (Q(p, q)) (4.77)

for p, q ∈ Hm. Compare this with Example 2.23 and Example 2.41.

4.8 Nonpositive sectional curvature

In the previous section we have seen that any two points in a connected,
simply connected, complete manifold M of constant negative curvature can
be connected by a unique geodesic (see Exercise 4.110). Thus the entire
manifold M is geodesically convex and its injectivity radius is infinity. This
continues to hold in much greater generality for manifolds with nonpositive
sectional curvature. It is convenient, at this point, to extend the discussion
to Riemannian manifolds in the intrinsic setting. In particular, at some point
in the proof of the main theorem of this section and in our main example,
we shall work with a Riemannian metric that does not arise (in any obvious
way) from an embedding.

Definition 4.111. A Riemannian manifold M is said to have nonpos-
itive sectional curvature if K(p,E) ≤ 0 for every p ∈ M and every
2-dimensional linear subspace E ⊂ TpM or, equivalently,

〈Rp(u, v)v, u〉 ≤ 0

for all p ∈M and all u, v ∈ TpM .
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4.8.1 The theorem of Hadamard and Cartan

The next theorem shows that every connected, simply connected, complete
Riemannian manifold with nonpositive sectional curvature is diffeomorphic
to Euclidean space and has infinite injectivity radius. This is in sharp con-
trast to positive curvature manifolds as the example M = Sm shows.

Theorem 4.112 (Cartan–Hadamard). Let M be a connected, simply
connected, complete Riemannian manifold. Then the following are equiva-
lent.

(i) M has nonpositive sectional curvature.

(ii) The derivative of each exponential map is length increasing, i.e.∣∣d expp(v)v̂
∣∣ ≥ |v̂|

for all p ∈M and all v, v̂ ∈ TpM .

(iii) Each exponential map is distance increasing, i.e.

d(expp(v0), expp(v1)) ≥ |v0 − v1|

for all p ∈M and all v, w ∈ TpM .

Moreover, if these equivalent conditions are satisfied then the exponential
map expp : TpM →M is a diffeomorphism for every p ∈M . Thus any two
points in M can be connected by a unique geodesic.

Lemma 4.113. Let M and M ′ be connected, simply connected, complete
Riemannian manifolds and φ : M → M ′ be a local isometry. Then φ is
bijective and hence is an isometry.

Proof. This follows by combining the weak and strong versions of the global
C-A-H Theorem 4.47. Fix a point p0 ∈M and define

p′0 := φ(p0), Φ0 := dφ(p0).

Then the tuple M,M ′, p0, p
′
0,Φ0 satisfies condition (i) of the weak version of

Theorem 4.47. Hence this tuple also satisfies condition (iv) of Theorem 4.47.
Since M and M ′ are connected, simply connected, and complete we may
apply the strong version of Theorem 4.47 to obtain an isometry ψ : M →M ′

satisfying
ψ(p0) = p′0, dψ(p0) = Φ0.

Since every isometry is also a local isometry and M is connected it follows
from Lemma 4.10 that φ(p) = ψ(p) for all p ∈ M . Hence φ is an isometry,
as required.
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Remark 4.114. Refining the argument in the proof of Lemma 4.113 one can
show that a local isometry φ : M → M ′ must be surjective whenever M is
complete and M ′ is connected. None of these assumptions can be removed.
(Take an isometric embedding of a disc in the plane or an embedding of
a complete space M into a space with two components, one of which is
isometric to M .)

Likewise, one can show that a local isometry φ : M → M ′ must be
injective wheneverM is complete and connected andM ′ is simply connected.
Again none of these asumptions can be removed. (Take a covering R→ S1,
or a covering of a disjoint union of two isometric complete simply connected
spaces onto one copy of this space, or some noninjective immersion of a disc
into the plane and choose the pullback metric on the disc.)

Exercise 4.115. Let ξ : [0,∞)→ Rn be a smooth function such that

ξ(0) = 0, ξ̇(0) 6= 0, ξ(t) 6= 0 ∀ t > 0.

Prove that the function f : [0,∞)→ R given by

f(t) := |ξ(t)|

is smooth. Hint: The function η : [0,∞)→ Rn defined by

η(t) :=

{
t−1ξ(t), for t > 0,

ξ̇(0), for t = 0,

is smooth. Show that f is differentiable and

ḟ =
〈η, ξ̇〉
|η|

.

Exercise 4.116. Let ξ : R→ Rn be a smooth function such that

ξ(0) = 0, ξ̈(0) = 0.

Prove that there are constant ε > 0 and c > 0 such that, for all t ∈ R:

|t| < ε =⇒ |ξ(t)|2 |ξ̇(t)|2 − 〈ξ(t), ξ̇(t)〉2 ≤ c |t|6 .

Hint: Write ξ(t) = tv + η(t) and ξ̇(t) = v + η̇(t) with η(t) = O(t3) and
η̇(t) = O(t2). Show that the terms of order 2 and 4 cancel in the Taylor
expansion at t = 0.
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Proof of Theorem 4.112. We prove that (i) implies (ii). Let p ∈ M and
v, v̂ ∈ TpM be given. Assume without loss of generality that v̂ 6= 0 and
define γ : R→M and X ∈ Vect(γ) by

γ(t) := expp(tv), X(t) :=
∂

∂λ

∣∣∣∣
λ=0

expp(t(v + λv̂)) ∈ Tγ(t)M (4.78)

for t ∈ R. Then

X(0) = 0, ∇X(0) = v̂ 6= 0, X(t) = d expp(tv)tv̂, (4.79)

and, by Lemma 4.54, X is a Jacobi field along γ:

∇∇X = R(γ̇, X)γ̇. (4.80)

It follows from Exercise 4.115 with ξ(t) := Φγ(0, t)X(t) that the function
[0,∞)→ R : t 7→ |X(t)| is smooth and

d

dt

∣∣∣∣
t=0

|X(t)| = |∇X(0)| = |v̂| .

Moreover, for t > 0, we have

d2

dt2
|X| = d

dt

〈X,∇X〉
|X|

=
|∇X|2 + 〈X,∇∇X〉

|X|
− 〈X,∇X〉

2

|X|3

=
|X|2|∇X|2 − 〈X,∇X〉2

|X|3
+
〈X,R(γ̇, X)γ̇〉

|X|
≥ 0.

(4.81)

Here the third equation follows from the fact that X is a Jacobi field along γ,
and the last inequality follows from the nonpositive sectional curvature con-
dition in (i) and from the Cauchy–Schwarz inequality. Thus the second
derivative function [0,∞)→ R : t 7→ |X(t)| − t |v̂| is nonnegative; so its first
derivative is nondecreasing and it vanishes at t = 0; thus

|X(t)| − t |v̂| ≥ 0

for every t ≥ 0. In particular, for t = 1 we obtain∣∣d expp(v)v̂
∣∣ = |X(1)| ≥ |v̂| .

as claimed. Thus we have proved that (i) implies (ii).
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We prove that (ii) implies (i). Assume, by contradiction, that (ii) holds
but there is a point p ∈M and a pair of vectors v, v̂ ∈ TpM such that

〈Rp(v, v̂)v, v̂〉 < 0. (4.82)

Define γ : R→ M and X ∈ Vect(γ) by (4.78) so that (4.79) and (4.80) are
satisfied. Thus X is a Jacobi field with

X(0) = 0, ∇X(0) = v̂ 6= 0.

Hence it follows from Exercise 4.116 with

ξ(t) := Φγ(0, t)X(t)

that there is a constant c > 0 such that, for t > 0 sufficiently small, we have
the inequality

|X(t)|2 |∇X(t)|2 − 〈X(t),∇X(t)〉2 ≤ ct6.

Moreover,

|X(t)| ≥ δt, 〈X(t), R(γ̇(t), X(t))γ̇(t)〉 ≤ −εt2,

for t sufficiently small, where the second inequality follows from (4.82).
Hence, by (4.81), we have

d2

dt2
|X| = |X|

2|∇X|2 − 〈X,∇X〉2

|X|3
+
〈X,R(γ̇, X)γ̇〉

|X|
≤ ct3

δ3
− εt

δ
.

Integrating this inequality over an interval [0, t] with ct2 < εδ2 we get

d

dt
|X(t)| < d

dt

∣∣∣∣
t=0

|X(t)| = |∇X(0)|

Integrating this inequality again gives

|X(t)| < t |∇X(0)|

for small t, and hence∣∣d expp(tv)tv̂
∣∣ = |X(t)| < t |∇X(0)| = t |v̂| .

This contradicts (ii).
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We prove that (ii) implies that the exponential map expp : TpM →M is
a diffeomorphism for every p ∈M . By (ii) expp is a local diffeomorphism, i.e.
its derivative d expp(v) : TpM → Texpp(v)M is bijective for every v ∈ TpM .

Hence we can define a metric on M ′ := TpM by pulling back the metric on
M under the exponential map. To make this more explicit we choose a basis
e1, . . . , em of TpM and define the map ψ : Rm →M by

ψ(x) := expp

(
m∑
i=1

xiei

)

for x = (x1, . . . , xm) ∈ Rm. Define the metric tensor by

gij(x) :=

〈
∂ψ

∂xi
(x),

∂ψ

∂xj
(x)

〉
, i, j = 1, . . . ,m.

Then (Rm, g) is a Riemannian manifold (covered by a single coordinate
chart) and ψ : (Rm, g)→M is a local isometry, by definition of g. The man-
ifold (Rm, g) is clearly connected and simply connected. Moreover, for every
tangent vector ξ = (ξ1, . . . , ξn) ∈ Rm = T0Rm, the curve R→ Rm : t 7→ tξ is
a geodesic with respect to g (because ψ is a local isometry and the image of
the curve under ψ is a geodesic in M). Hence it follows from Theorem 2.57
that (Rm, g) is complete. Since both (Rm, g) and M are connected, simply
connected, and complete, the local isometry ψ is bijective, by Lemma 4.113.
Thus the exponential map expp : TpM →M is a diffeomorphism as claimed.
It follows that any two points in M are connected by a unique geodesic.

We prove that (ii) implies (iii). Fix a point p ∈ M and two tangent
vectors v0, v1 ∈ TpM . Let γ : [0, 1] → M be the geodesic with endpoints
γ(0) = expp(v0) and γ(1) = expp(v1) and let v : [0, 1]→ TpM be the unique
curve satisfying expp(v(t)) = γ(t) for all t. Then v(0) = v0, v(1) = v1, and

d(expp(v0), expp(v1)) = L(γ)

=

∫ 1

0

∣∣d expp(v(t))v̇(t)
∣∣ dt

≥
∫ 1

0
|v̇(t)| dt

≥
∣∣∣∣∫ 1

0
v̇(t) dt

∣∣∣∣
= |v1 − v0| .

Here the third inequality follows from (ii). This shows that (ii) implies (iii).
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We prove that (iii) implies (ii). Fix a point p ∈M and a tangent vector
v ∈ TpM and denote

q := expp(v).

By (iii) the exponential map expq : TqM → M is injective and, since M is
complete, it is bijective (see Theorem 2.58). Hence there is a unique geodesic
from q to any other point in M and therefore, by Theorem 2.44, we have

|w| = d(q, expq(w)) (4.83)

for every w ∈ TqM . Now define

φ := exp−1
q ◦ expp : TpM → TqM.

This map satisfies

φ(v) = 0.

Moreover, it is differentiable in a neighborhood of v and, by the chain rule,
we have

dφ(v) = d expp(v) : TpM → TqM.

Now choose w := φ(v + v̂) in (4.83) with v̂ ∈ TpM . Then

expq(w) = expq(φ(v + v̂)) = expp(v + v̂)

and hence

|φ(v + v̂))| = d(expp(v), expp(v + v̂)) ≥ |v̂| ,

where the last inequality follows from (iii). This gives∣∣d expp(v)v̂
∣∣ = |dφ(v)v̂|

= lim
t→0

|φ(v + tv̂)|
t

≥ lim
t→0

|tv̂|
t

= |v̂| .

Thus we have proved that (iii) implies (ii). This completes the proof of the
theorem.
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4.8.2 Positive definite symmetric matrices

We close this manuscript with an example of a nonpositive sectional curva-
ture manifold which plays a key role in Donaldson’s beautiful paper on Lie
algebra theory [3]. Let n be a positive integer and consider the space

P :=
{
P ∈ Rn×n |P T = P > 0

}
of positive definite symmetric n×n-matrices. (The notation “P > 0” means
〈x, Px〉 > 0 for every nonzero vector x ∈ Rn.) Thus P is an open subset of
the vector space

S :=
{
S ∈ Rn×n |ST = S

}
of symmetric matrices and hence the tangent space of P is TPP = S
for every P ∈ P. However, we do not use the metric inherited from the
inclusion into S but define a Riemannian metric by

〈S1, S2〉P := trace
(
S1P

−1S2P
−1
)

(4.84)

for P ∈P and S1, S2 ∈ S = TPP.

Theorem 4.117. The space P with the Riemannian metric (4.84) is a
connected, simply connected, complete Riemannian manifold with nonposi-
tive sectional curvature. Moreover, P is a symmetric space and the group
GL(n,R) of nonsingular n× n-matrices acts on P by isometries via

g∗P := gPgT (4.85)

for g ∈ GL(n,R) and P ∈P.

Remark 4.118. The paper [3] by Donaldson contains an elementary direct
proof that the manifold P with the metric (4.84) satisfies the assertions of
Theorem 4.112.

Remark 4.119. The submanifold

P0 := {P ∈P | det(P ) = 1}

of positive definite symmetric matrices with determinant one is totally geo-
desic (see Remark 4.120 below). Hence all the assertions of Theorem 4.117
(with GL(n,R) replaced by SL(n,R)) remain valid for P0.



232 CHAPTER 4. CURVATURE

Remark 4.120. Let M be a Riemannian manifold and L ⊂ M be a sub-
manifold. Then the following are equivalent.

(i) If γ : I →M is a geodesic on an open interval I such that 0 ∈ I and

γ(0) ∈ L, γ̇(0) ∈ Tγ(0)L,

then there is a constant ε > 0 such that γ(t) ∈ L for |t| < ε.

(ii) If γ : I → L is a smooth curve on an open interval I and Φγ denotes
parallel transport along γ in M then

Φγ(t, s)Tγ(s)L = Tγ(t)L ∀ s, t ∈ I.

(iii) If γ : I → L is a smooth curve on an open interval I and X ∈ Vect(γ)
is a vector field along γ (with values in TM) then

X(t) ∈ Tγ(t)L ∀ t ∈ I =⇒ ∇X(t) ∈ Tγ(t)L ∀ t ∈ I.

A submanifold that satisfies these equivalent conditions is called totally
geodesic

Exercise 4.121. Prove the equivalence of (i), (ii), and (iii) in Remark 4.120.
Hint: Choose suitable coordinates and translate each of the three assertions
into conditions on the Christoffel symbols.

Exercise 4.122. Prove that P0 is a totally geodesic submanifold of P.
Prove that, in the case n = 2, P0 is isometric to the hyperbolic space H2.

Proof of Theorem 4.117. The manifold P is obviously connected and sim-
ply connected as it is a convex open subset of a finite dimensional vector
space. The remaining assertions will be proved in five steps.

Step 1. Let I →P : t 7→ P (t) be a smoth path in P and I → S : t 7→ S(t)
be a vector field along P . Then the covariant derivative of S is given by

∇S = Ṡ − 1

2
SP−1Ṗ − 1

2
ṖP−1S. (4.86)

The formula (4.86) determines a family of linear operators on the spaces of
vector fields along paths that satisfy the torsion free condition

∇s∂tP = ∇t∂sP

for every smooth map R2 →P : (s, t) 7→ P (s, t) and the Leibnitz rule

∇〈S1, S2〉P = 〈∇S1, S2〉P + 〈S1,∇S2〉P
for any two vector fields S1 and S2 along P . These two conditions determine
the covariant derivative uniquely (see Theorem 2.27 and Remark 2.72).
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Step 2. The geodesics in P are given by

γ(t) = P exp(tP−1S)

= exp(tSP−1)P

= P 1/2 exp(tP−1/2SP−1/2)P 1/2

(4.87)

for P ∈P, S ∈ S = TPP, and t ∈ R. In particular P is complete.

The curve γ : R→P defined by (4.87) satisfies

γ̇(t) = S exp(tP−1S) = SP−1γ(t).

Hence it follows from Step 1 that

∇γ̇(t) = γ̈(t)− γ̇(t)γ(t)−1γ̇(t) = γ̈(t)− SP−1γ̇(t) = 0

for every t ∈ R. Hence γ is a geodesic. Note also that the curve γ : R→P
in (4.87) satisfies γ(0) = P and γ̇(0) = S.

Step 3. The curvature tensor on P is given by

RP (S, T )A = −1

4
SP−1TP−1A− 1

4
AP−1TP−1S

+
1

4
TP−1SP−1A+

1

4
AP−1SP−1T

(4.88)

for P ∈P and S, T,A ∈ S .

Choose smooth maps P : R2 →P and A : R2 → S (understood as a vector
field along P ) and denote S := ∂sP and T := ∂tP . Then

R(S, T )A = ∇s∇tA−∇t∇sA

and ∂sT = ∂tS. By Step 1 we have

∇sA = ∂sA−
1

2
AP−1S − 1

2
SP−1A,

∇tA = ∂tA−
1

2
AP−1T − 1

2
TP−1A,

and hence

R(S, T )A = ∂s∇tA−
1

2
(∇tA)P−1S − 1

2
SP−1(∇tA)

− ∂t∇sA+
1

2
(∇sA)P−1T +

1

2
TP−1(∇sA).

Now Step 3 follows by a direct calculation which we leave to the reader.
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Step 4. The manifold P has nonpositive sectional curvature.

By Step 3 with A = T and equation (4.84) we have

〈S,RP (S, T )T 〉P = trace
(
SP−1RP (S, T )TP−1

)
= − 1

4
trace

(
SP−1SP−1TP−1TP−1

)
− 1

4
trace

(
SP−1TP−1TP−1SP−1

)
+

1

4
trace

(
SP−1TP−1SP−1TP−1

)
+

1

4
trace

(
SP−1TP−1SP−1TP−1

)
= − 1

2
trace

(
SP−1TP−1TP−1SP−1

)
+

1

2
trace

(
SP−1TP−1SP−1TP−1

)
= − 1

2
trace

(
XTX

)
+

1

2
trace

(
X2
)
,

where X := SP−1TP−1. Write X =: (xij)i,j=1,...,n. Then, by the Cauchy–
Schwarz inequality, we have

trace(X2) =
∑
i,j

xijxji ≤
∑
i,j

x2
ij = trace(XTX)

for every matrix X ∈ Rn×n. Hence 〈S,RP (S, T )T 〉P ≤ 0 for all P ∈P and
all S, T ∈ S . This proves Step 4.

Step 5. P is a symmetric space.

Given A ∈P define the map φ : P →P by

φ(P ) := AP−1A.

This map is a diffeomorphism, fixed the matrix A = φ(A), and satisfies

dφ(P )S = −AP−1SP−1A

for P ∈ P and S ∈ S . Hence dφ(A) = −id and, for all P ∈ P and all
S ∈ S , we have

(dφ(P )S)φ(P )−1 = −AP−1SA−1

and therefore

|dφ(P )S|2φ(P ) = trace
((
AP−1SA−1

)2)
= trace

((
P−1S

)2)
= |S|2P .

Hence φ is an isometry and this proves the theorem.
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Remark 4.123. The space P can be identified with the quotient space
GL(n,R)/O(n) via polar decomposition.

Remark 4.124. Theorem 4.117 carries over verbatim to the complex set-
ting. Just replace P by the space H of positive definite Hermitian matrices

H = H∗ > 0,

where H∗ denotes the conjugate transposed matrix of H ∈ Cn×n. The inner
product is then defined by the same formula as in the real case, namely〈

Ĥ1, Ĥ2

〉
H

:= trace
(
Ĥ1H

−1Ĥ2H
−1
)

for H ∈ H and two Hermitian matrices Ĥ1, Ĥ2 ∈ THH . The assertions
of Theorem 4.117 remain valid with GL(n,R) replaced by GL(n,C). This
space H can be identified with the quotient GL(n,C)/U(n) and, likewise,
the subspace H0 of positive definite Hermitian matrices with determinant
one can be identified with the quotient SL(n,C)/SU(n). This quotient (with
nonpositive sectional curvature) can be viewed as a kind of dual of the Lie
group SU(n) (with nonnegative sectional curvature). Exercise: Prove this!
Show that, in the case n = 2, the space H0 is isometric to hyperbolic 3-space.
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hyperboloid, 206
hypersurface, 187

immersion, 19
implicit function theorem, 3, 18
injectivity radius, 107
integrable subbundle of TM , 53
integral curve, 24
intrinsic distance, 82
inverse function theorem, 3, 18
involutive subbundle of TM , 53
isometry, 163

group, 163
local, 169

isotopy, 29

Jacobi field, 201
Jacobi identity, 32
Jacobi matrix, 3

Klein bottle, 79

leaf of a foliation, 58, 73
extrinsic topology, 59
intrinsic topology, 59

length functional, 87
length of a curve, 81
Levi-Civita connection, 129, 174
Lie algebra, 33

automorphism, 43
derivation, 43
homomorphism, 33, 40
of a Lie group, 38

Lie bracket of vector fields, 32, 72
Lie group, 35

homomorphism, 40
Lie subgroup, 180
lift

horizontal, 145
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of a curve, 145
local trivialization, 52
locally finite

open cover, 65
sum, 78

locally symmetric space, 207

manifold, 4, 59
algebraic, 61
complex, 61
developable, 204
flat, 203
osculating developable, 205
smooth, 4, 59
symplectic, 61

maximal existence interval, 26
for geodesics, 105

metrizable, 65
Möbius strip, 52, 89
motion, 151

without sliding, 153
without twisting, 156
without wobbling, 157

moving frame, 145

normal bundle, 50

1-form with values in TM , 179
orthogonal group, 11

paracompact, 65
parallel

transport, 136
vector field, 134

partition of unity, 75
subordinate to a cover, 75

Plücker embedding, 70
Poincaré metric, 223
principal bundle, 143
projection

of a vector bundle, 48

orthogonal, 49

proper, 19

pullback

of a vector bundle, 50

of a vector field, 29

pushforward

of a vector field, 29

real projective plane, 10

real projective space, 62

refinement, 64

relative topology, 4

Riemann curvature tensor, 171

Riemann surface, 66

Riemannian manifold, 122

flat, 203

homogeneous, 208

locally symmetric, 207

symmetric, 207

Riemannian metric, 122

Roman surface, 10

ruled surface, 206

Sard’s theorem, 8

second Bianchi identity, 210

second countable, 64

second fundamental form, 103

section of a vector bundle, 48

sectional curvature, 214

nonpositive, 224

simply connected, 193

Smirnov metrization theorem, 65

smooth map, 2, 4, 66

special linear group, 11, 40

special unitary group, 40

structure group, 143

subbundle, 52, 72

submanifold, 19, 67

totally geodesic, 232

submersion, 47
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surface, 188
symmetric space, 207

tangent bundle, 49, 71
tangent space, 12, 68

horizontal, 145
vertical, 145

tangent vector, 12
Theorema Egregium, 183, 190
topological space

countable base, 64
Hausdorff, 63
locally compact, 65
normal, 65
regular, 65
second countable, 64
σ-compact, 64

torus, 2, 62
totally geodesic submanifold, 232
Tychonoff’s Lemma, 65

unitary group, 40
Urysohn metrization theorem, 65

vector bundle, 48
section, 48

vector field, 23, 71
along a curve, 89
along a map, 128
basic, 148
normal, 139
parallel, 90
with compact support, 28

Veronese embedding, 70
vertical

tangent space, 145


