The Uniformization Theorem

JWR

Tuesday December 11, 2001, 9:03 AM

The proof given here is a loose translation of [\[3\]](#page-24-0). There is another proof of the Uniformization Theorem in [\[2](#page-24-1)] where it is called the Riemann Mapping Theorem.

1 Harmonic functions

1.1. Throughout this section X denotes a connected Riemann surface, possibly noncompact. The open unit disk in $\mathbb C$ is denoted by $\mathbb D$. A **conformal** disk in X centered at $p \in X$ is a pair (z, D) where z is a holomorphic coordinate on X whose image contains the closed disk of radius r about the origin in $\mathbb{C}, z(p) = 0$, and

$$
D = \{ q \in X : |z(q)| < r \}.
$$

For a conformal disk (z, D) we abbreviate the average value of a function u on the boundary of D by by

$$
M(u, z, \partial D) := \frac{1}{2\pi} \int_0^{2\pi} v(re^{i\theta}) d\theta, \qquad v(z(q)) = u(q).
$$

1.2. The Poisson kernel is the function $P : \mathbb{D} \times \partial \mathbb{D} \to \mathbb{R}$ defined by

$$
P(z,\zeta) := \frac{1}{2\pi} \cdot \frac{|\zeta|^2 - |z|^2}{|\zeta - z|^2}.
$$

The unique solution of Dirichlet's problem

$$
\Delta u = 0, \qquad u|\partial \mathbb{D} = \phi
$$

where $\phi \in C^0(\partial \mathbb{D})$ on the unit disk $\mathbb D$ is given by the **Poisson integral** formula

$$
u(z) = \int_{\partial \mathbb{D}} P(z, e^{i\theta}) \phi(e^{i\theta}) d\theta.
$$

(See [\[1](#page-24-2)] page 13 for the proof.) For a conformal disk (z, D) in a Riemann surface X and a continuous function $u : X \to \mathbb{R}$ we denote by u_D the unique continuous function which agrees with u on $X \setminus D$ and is harmonic in D. (It is given by reading $u|\partial D$ for ϕ in the Poisson integral formula.)

1.3. The Hodge star operator on Riemann surface X is the operation which assigns to each 1-form ω the 1-form $*\omega$ defined by

$$
(*\omega)(\xi) = -\omega(i\xi)
$$

for each tangent vector ξ . If z is a holomorphic coordinate on X a real valued 1-form has the form

$$
\omega = a\,dx + b\,dy
$$

where a and b are real valued functions, $x = \Re(z)$, and $y = \Im(z)$; the form $*\omega$ is then given by

$$
*\omega = -b\,dx + a\,dy.
$$

A function u is called **harmonic** iff it is C^2 and *du is closed, i.e. $d * du = 0$. In terms of the coordinate z we have

$$
d*du = (\Delta u) dx \wedge dy, \qquad \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.
$$

Note that the operator Δ is not intrinsic, i.e. Δu depends on the choice of holomorphic coordinate. (However the operator d∗d is independent of the choice of coordinate and hence also the property of being harmonic.)

Theorem 1.4. Let X a Riemann surface and $u : X \to \mathbb{R}$ be continuous. Then the following are equivalent:

- (i) u is harmonic.
- (ii) u satisfies mean value property *i.e.* $u(p) = M(u, z, \partial D)$ for every conformal disk (D, z) centered at p;
- (iii) u is locally the real part of a holomorphic function.

Proof. It is enough to prove this for an open subset of \mathbb{C} . That (ii) \implies (i) follows from the Poisson integral formula, namely

$$
u(0) = \int_{\partial \mathbb{D}} P(0, e^{i\theta}) \phi(e^{i\theta}) d\theta = M(u, \text{id}, \partial \mathbb{D}).
$$

The general case follows by the change a change of variables $z \mapsto az+b$. Note that the mean value property implies the maximum principle: the function u has no strict maximum (or minimum) on any open set. A function which is continuous on the closure of D and satisfies the mean value property in D must therefore assume its maximum and minimum on the boundary of D. Hence (ii) \implies (i) because $u - u_D$ (see [1.2](#page-0-0)) satisfies the mean value property in D and vanishes on ∂D so $u - u_D = 0$ on D so u is harmonic on X as D is arbitrary. For (i) \iff (iii) choose a conformal disk (z, D) . The function u is harmonic if and only if the form *du is closed. The equation *du = dv encodes the Cauchy Riemann equations; it holds if and only if the function $u + iv$ is holomorphic. \Box

Corollary 1.5. The form ∗du is exact if and only there is a holomorphic function $f: X \to \mathbb{C}$ with $u = \Re(f)$.

Theorem 1.6 (Removable Singularity Theorem). If u is harmonic and bounded on the punctured disk, it extends to a harmonic function on the disk.

Proof. By shrinking the disk and subtracting the solution of the Dirichlet problem we may assume that u vanishes on ∂D . For $\varepsilon > 0$ the harmonic function

$$
v_{\varepsilon}(z) = u(z) + \varepsilon \log|z| - \varepsilon
$$

is negative on $\partial \mathbb{D}$ and near 0 and thus negative on $\mathbb{D} \setminus \{0\}$. Fix z and let $\varepsilon \to 0$; we conclude that $u \leq 0$ on $\mathbb{D} \setminus \{0\}$. Similarly $-u \leq 0$. \Box

Remark 1.7. Bôrcher's Theorem (see [\[1](#page-24-2)] page 50) says that a positive function which harmonic on $\mathbb{D} \setminus 0$ has the form

$$
u(z) = -b \log|z| + h(z)
$$

where $b \geq 0$ and h is harmonic on D. This implies the Removable Singularity Theorem (add a constant). To prove Bôrcher's Theorem choose b so that $*du + b\log|z|$ is exact. Hence assume w.l.o.g. that u is the real part of a holomorphic function with a possible singularity at the origin. However if the Laurent expansion for this function contains any negative powers of z its real part u will be unbounded in both directions.

Theorem 1.8 (Harnack's Principle). A pointwise nondecreasing sequence of harmonic functions converges uniformly on compact sets either to ∞ or to a harmonic function.

Proof. If we assume that the sequence converges uniformly, this follows from the characterization via the mean value property (Theorem [1.4](#page-1-0)). For the general argument see[[1\]](#page-24-2) page 49. \Box

Theorem 1.9. If a sequence of harmonic functions converges uniformly on compact subsets then the limit is harmonic and for $k = 1, 2, \ldots$ the sequence converges in C^k (uniformly on compact subsets).

Proof. In each holomorphic disk (z, D) we have

$$
\partial^{\kappa} u = \int_0^{2\pi} \partial^{\kappa} P_{\zeta} \cdot u(\zeta) d\theta
$$

for each multi-index $\kappa = (\kappa_1, \kappa_2)$ where $\zeta = re^{i\theta} = z(q)$, $q \in \partial D$ (i.e. $|z(q)| = r$, and $P_{\zeta}(z) = P(z, \zeta)$ is the Poisson kernel. (See [\[1](#page-24-2)] page 15.) \Box

Theorem 1.10 (Compactness Theorem). A uniformly bounded sequence of harmonic functions contains a subsequence which converges uniformly on compact sets.

Proof. By the estimate in the proof of [1.9](#page-3-0) the the first derivatives of the sequence are uniformly bounded on any compact subset of any open disk on which the functions u_n are uniformly bounded. Use Arzela Ascoli and diagonalize over compact sets. (See [\[1](#page-24-2)] page 35.) \Box

2 The Dirichlet Problem

Compare the following lemma and definition with Theorem [1.4](#page-1-0).

Lemma 2.1. Let $u : X \to \mathbb{R}$ be continuous. Then the following conditions are equivalent

(i) The function u satisfies the following form of the maximum principle: For every connected open subset $W \subset X$ and every harmonic function v on W either $u-v$ is constant or else it does not assume its maximum in W ;

- (ii) For every conformal disk (z, D) we have $u \leq u_D$;
- (iii) u satisfies mean value inequality, i.e. $u(p) \leq M(u, z, \partial D)$ for every conformal disk (z, D) centered at p;

A function u which satisfies these conditions is called subharmonic. A function u is called superharmonic iff $-u$ is subharmonic.

Proof. We prove (i) \implies (ii). Choose (z, D) and let $v = u_D$. Then $u - u_D$ is zero on ∂D and thus either the constant 0 on D or else nowhere positive. In either case $u \lt u_D$.

We prove (ii) \implies (iii). Choose (z, D) centered at p. Then by (ii) we have $u(p) \leq u_D(p) = M(u_D, z, \partial D) = M(u, z, \partial D).$

We prove (iii) \implies (i). Suppose that v is harmonic on a connected open subset $W \subset X$ and that $u - v$ assumes its maximum M at some point of W, i.e. that the set

$$
W_M := \{ p \in W : u(p) - v(p) = M \}
$$

is nonempty. We must show that $u-v = M$ on all of W, i.e. that $W_M = W$. The set W_M is closed in W so it is enough to show that W_M is open. Choose $p \in W_M$ and let (z, D) be a conformal disk centered at p. Then

$$
M = (u - v)(p) \le M(u - v, z, \partial D) \le M.
$$

But $u - v \leq M$ so $u - v = M$ on ∂D . By varying the radius of D we get that $u - v = M$ near p. \Box

Corollary 2.2. Subharmonic functions satisfy the following properties.

- (i) The max and sum of two subharmonic functions is subharmonic and a positive multiple of a subharmonic function is subharmonic.
- (ii) The subharmonic property is local: if $X = X_1 \cap X_2$ where X_1 and X_2 are open and $u \in C^0(X,\mathbb{R})$ is subharmonic on X_1 and on X_2 , then it is subharmonic on X.
- (iii) If u is subharmonic so is u_D .
- (iv) If $u: X \to \mathbb{R}$ is continuous, positive and harmonic on an open set V, and vanishes on $X \setminus V$, then u is subharmonic on X.

Proof. Part (i) is immediate and part (ii) follows easily from part (i) of [2.1](#page-3-1). For (iii) suppose that v is harmonic and $u_D - v$ assumes its maximum M at p. Since $u_D - v$ is harmonic in D it follows by the maximum principle that the maximum on D is assumed on ∂D so we may assume that $p \in X \setminus D$. But $u = u_D$ on $X \setminus D$ and $u - v \le u_D - v \le M$ so $u - v$ also assumes its maximum at p. Hence $u - v = M$ and hence u is harmonic. For (iv) suppose $u - v$ assumes its maximum at a point p and v is harmonic. We derive a contradiction. After subtracting a constant we may assume that this maximum is zero. Then $u \leq v$ so $0 \leq v$ on $X \setminus V$ and $0 < u \leq v$ on X. If $p \notin X$ then $v(p) = u(p) = 0$ and v assumes its minimum at p which contradicts the fact that v is harmonic. If $p \in X$ then $u - v$ assumes its maximum at p and this contradicts the fact that u is subharmonic on V. \Box

Remark 2.3. The theory of subharmonic functions works in all dimensions. In dimension one, condition (ii) of lemma [2.1](#page-3-1) says that u is a convex function.

Exercise 2.4. A C^2 function u defined on an open subset of $\mathbb C$ is subharmonic iff and only if $\Delta u \geq 0$.

2.5. A Perron family on a Riemann surface X is a collection $\mathcal F$ of functions on X such that

- $(P-1)$ F is nonempty;
- (P-2) every $u \in \mathcal{F}$ is subharmonic;
- (P-3) if $u, v \in \mathcal{F}$, then there exists $w \in \mathcal{F}$ with $w \ge \max(u, v)$;
- (P-4) for every conformal disk (z, D) in X and every $u \in \mathcal{F}$ we have $u_D \in \mathcal{F}$;
- (P-5) the function

$$
u_{\mathcal{F}}(q) := \sup_{u \in \mathcal{F}} u(q)
$$

is everywhere finite.

Theorem 2.6 (Perron's Method). If F is a Perron family, then u_F is harmonic.

Proof. Choose a conformal disk (z, D) . Diagonalize on a countable dense subset to construct a sequence u_n of elements of $\mathcal F$ which converges pointwise to $u_{\mathcal{F}}$ on D on a dense set. By (P-3) choose $w_n \in \mathcal{F}$ with $w_1 = u_1$ and $w_{n+1} \geq$

 $\max(w_1, \ldots, w_n)$. The new sequence is pointwise monotonically increasing. By $(P-2)$ and $(P-4)$ we may assume that each w_n is harmonic on D. Then $u_{\mathcal{F}}$ is harmonic in D by Harnack's Principle and (P-4). \Box

2.7. Assume $Y \subseteq X$ open with $\partial Y \neq \emptyset$. Define

$$
\mathcal{F}_{\phi} = \{ u \in C^{0}(\bar{Y}, \mathbb{R}) : u \text{ subharmonic on } Y, u \le \sup_{\partial Y} \phi, u | \partial Y \le \phi \}
$$

and

$$
u_{\phi}(q) = \sup_{u \in \mathcal{F}_{\phi}} u(q).
$$

Lemma 2.8. If $\phi : \partial Y \to \mathbb{R}$ is continuous and bounded then the family \mathcal{F}_{ϕ} is a Perron family so u_{ϕ} is harmonic on Y.

Proof. Maximum principle.

2.9. A barrier function at $p \in \partial Y$ is a function β defined in a neighborhood U of p which is continuous on the closure $\overline{Y \cap U}$ of $Y \cap U$, superharmonic on $Y \cap U$, such that $\beta(p) = 0$ and $\beta > 0$ on $\overline{Y \cap U} \setminus \{p\}$. A point $p \in \partial Y$ is called **regular** iff there is a barrier function at p

Lemma 2.10. If ∂Y is a C^1 submanifold, it is regular at each of its points.

Proof. Suppose w.l.o.g that $Y \subset \mathbb{C}$ and that ∂Y is transverse to the real axis at 0, and that Y lies to the right. Then

$$
\beta(z) = \sqrt{r} \cos(\theta/2) = \Re(\sqrt{z}), \qquad z = re^{i\theta}
$$

is a barrier function at 0.

Lemma 2.11. If p is regular, then $\lim_{y\to p} u_{\phi}(y) = \phi(p)$.

Proof. The idea is that $u_{\phi}(p) \leq \phi(p)$ and if we had strict inequality we could make u_{ϕ} bigger by adding $\varepsilon - \beta$. See [\[1\]](#page-24-2) page 203. \Box

Corollary 2.12. If ∂Y is a C^1 submanifold of X then u_{ϕ} solves the Dirichlet problem with boundary condition ϕ , i.e. it extends to a continuous function on $Y \cup \partial Y$ which agrees with ϕ on ∂Y .

 \Box

 \Box

3 Green Functions

Definition 3.1. Let X be a Riemann surface and $p \in X$. A Green function at p is a function $g: X \setminus \{p\} \to \mathbb{R}$ such that

- $(G-1)$ g is harmonic;
- $(G-2)$ for some (and hence every) holomorphic coordinate z centered at p the function $q(z) + \log(z)$ is harmonic near p;

(**G-3**) $q > 0$;

(G-4) if $g' : X \setminus \{p\} \to \mathbb{R}$ satisfies (G-1), (G-2), (G-3) then $g \leq g'$.

Condition $(G-4)$ implies that the Green function at p is unique (if it exists) so we denote it by g_p . Warning: When X is the interior of a manifold with boundary, the Green function defined here differs from the usual Green's function by a factor of $-1/(2\pi)$.

Definition 3.2. A Riemann surface X is called elliptic iff it is compact, hyperbolic iff it admits a nonconstant negative subharmonic function, and parabolic otherwise. By the maximum principle for subharmonic functions (in the elliptic case) and definition (in the parabolic case) a nonhyperbolic surface admits no nonconstant negative subharmonic function. In particular, it admits no nonconstant negative harmonic function and hence (add a constant) no nonconstant bounded harmonic function.

Theorem 3.3. For a Riemann surface the following are equivalent.

- (i) there is a Green function at every point;
- (ii) there is a Green function at some point;
- (iii) X is hyperbolic;
- (iv) for each compact set $K \subset X$ such that ∂K smooth and $W := X \setminus K$ is connected, there is a continuous function $\omega : W \cup \partial W \to \mathbb{R}$ such that $\omega \equiv 1$ on $\partial K = \partial W$ and on W we have both that $0 < \omega < 1$ and that ω is harmonic on W.

Proof. That $(i) \implies (ii)$ is obvious; we prove $(ii) \implies (iii)$. Suppose g_p is a Green function at p. Then $u = \max(-2, -g_p)$ is negative and subharmonic. Now $u = -2$ near p, so either u is nonconstant or else $-g_p \leq -2$ everywhere. The latter case is excluded, since otherwise $g' = g_p - 1$ would satisfy (G-1), $(G-2)$, $(G-3)$ but not $(G-4)$.

We prove (iii) \implies (iv). Assume X is hyperbolic. Then there is a superharmonic $u: X \to \mathbb{R}$ which is nonconstant and everywhere positive. Choose a compact K K and let $W = X \setminus K$. After rescaling we may assume that $\min_K u = 1$. By the Maximum principle (for $-u$) and the fact that u is not constant there are points (necessarily in W) where $u < 1$ so after replacing u by min $(1, u)$ we may assume that $u \equiv 1$ on K. The family

$$
\mathcal{F}_K = \{ v \in C^0(W \cup \partial W, \mathbb{R}) : v \le u \text{ and } v \text{ subharmonic on } W \}
$$

is a Perron family: (P-1) $\mathcal{F}_K \neq \emptyset$ as the restriction of $-u$ to $X \setminus K$ is in \mathcal{F}_K ; (P-2) $v \in \mathcal{F}_K \implies v$ subharmonic by definition; (P-3) $v_1, v_2 \in \mathcal{F}_K \implies$ $\max(v_1, v_2) \in \mathcal{F}$; (P-4) $v \in \mathcal{F}_K$ and D a conformal disk in $X \setminus K$ implies that $v_D \leq u_D \leq u$ as $v \leq u$ on ∂D and u is superharmonic; and (P-5) the function $\omega := \sup_{v \in \mathcal{F}} v$ is finite as $v \in \mathcal{F} \implies v \leq u$. It remains to show that $0 < \omega < 1$ on W and $\omega = 1$ on ∂W . Suppose $Y \subset X$ is open, with ∂Y smooth and $Y \cup \partial Y$ compact, and $\partial K \subset \partial Y$. Let w be the solution of the Dirichlet problem with $w = 1$ on ∂K and $w = 0$ on $(\partial Y) \setminus (\partial K)$. Extend w by zero on $W \backslash Y$. The extended function w is subharmonic by Corollary [2.2](#page-4-0) part (iv). Thus $w_Y - u$ is subharmonic and ≤ 0 on $X \setminus Y$ and on ∂Y . Hence $w_Y | W \in \mathcal{F}$. As the sets Y exhaust X and $w > 0$ on Y it follows that ω satisfies $0 < \omega$ on W and $\omega = 1$ on ∂W . Since ∂W is smooth it follows that ω is continuous on ∂W . Since $\omega \leq u$ and $u < 1$ on W we have that $\omega \leq u \leq 1$ on Y so ω satisfies (iv).

We prove $(iv) \Longrightarrow (i)$. Choose $p \in X$ and a conformal disk (z, D) centered at p. Let F be the set of all continuous functions $v: X \setminus \{p\} \to \mathbb{R}$ satisfying the following conditions:

- (a) supp $(v) \cup \{p\}$ is compact;
- (b) v is subharmonic on $X \setminus \{p\}$, and
- (c) $v + \log |z|$ extends to a subharmonic on function on D.

We show that $\mathcal F$ is a Perron family. The set $\mathcal F$ is not empty since it contains the function $-\ln|z|$ (extended by 0). Properties (i-iii) in [2.5](#page-5-0) are immediate.

It remains to show (iv), i.e. that $u_{\mathcal{F}}$ is finite. For $0 < r \leq 1$ let

$$
K_r = \{ q \in D : z(q) \le r \},
$$

define ω_r as in (iv) reading K_r for K and ω_r for ω , and let

$$
\lambda_r = \max_{|z|=1} \omega_r.
$$

We will show that for $v \in \mathcal{F}$ we have

$$
v \le \frac{\log r}{\lambda_r - 1} \tag{*}
$$

 $X \setminus K_r$ and this shows that $u_{\mathcal{F}} < \infty$ on $X \setminus \{p\} = \bigcup_{r>0} X \setminus K_r$. Choose $v \in \mathcal{F}$ and let $c_r = \max_{|z|=r} v$. The function $v + \log|z|$ is subharmonic so its maximum on K_1 must occur on ∂K_1 , i.e.

$$
c_r + \log r \le c_1.
$$

But $c_r \omega - v \geq 0$ on ∂K_r and off the support of v so $v \leq c_r \omega$ on $X \setminus K_r$ and hence

$$
c_1 \leq c_r \lambda_r.
$$

It follows that

$$
c_r \le \frac{\log r}{\lambda_r - 1}
$$

i.e. that (*) holds on ∂K_r . But v has compact support so (*) holds on $X \backslash K_r$. The desired Green function is

$$
g_p = u_{\mathcal{F}}.
$$

From [2.6](#page-5-1) we conclude that g_p is harmonic on $X \setminus \{p\}$ and hence that $g_p + \ln |z|$ is harmonic on $D \setminus \{p\}$. From (*) we conclude that the inequality

$$
v + \log|z| \le \frac{\log r}{\lambda_r - 1} + \log r
$$

holds on ∂K_r and hence (as the left hand side is subharmonic) on K_r . Thus the function $g_p + \ln |z|$ is bounded on D and therefore harmonic on D by the Removable Singularity Theorem [1.6.](#page-2-0) Moreover $g_p > 0$ because $g_p \geq 0$ and g_p is nonconstant. Suppose g' also satisfies these properties; we must show $g_p \leq g'$. If $v \in \mathcal{F}$ then $v - g'$ is subharmonic on $X \setminus p$ (because v is) and on D (because it equals $(v + \ln |z|) - (g' + \ln |z|)$) and hence on all of X. But $v - g' < 0$ off the support of v and hence $v < g'$ everywhere. Thus $g = u_{\mathcal{F}} \leq g'.$ \Box

4 Nonhyperbolic surfaces

Theorem 4.1 (Extension Theorem). Assume X is a nonhyperbolic connected Riemann surface. Suppose $p \in X$ and that f is a holomorphic function defined on $D \setminus \{p\}$ where (z, D) is a conformal disk centered at $p \in X$. Then there is a unique harmonic function $u : X \setminus \{p\} \to \mathbb{R}$ bounded in the complement of any neighborhood of p such that $u - \Re(f)$ is harmonic in D and vanishes at p.

Remark 4.2. Suppose that $X = \mathbb{C}$, that $p = 0$, and that the function f has a Laurent expansion

$$
f(z) = \sum_{n = -\infty}^{\infty} c_n z^n
$$

valid in $0 < |z| < 1$. The function u is given by $u = \Re(w)$ where

$$
w(z) = \sum_{n=-\infty}^{-1} c_n z^n.
$$

The latter series converges for all $z \neq 0$.

Proof of [4.1.](#page-10-0) The proof of uniqueness is easy. If u_1 and u_2 are two functions as in the theorem, then $u_1 - u_2$ is bounded in the complement of every neighborhood of p (as u_1 and u_2 are) and near p (as $u_1 - u_2 = (u_1 - \Re(f))$ – $(u_2 - \Re(f))$ and is thus bounded, hence constant (as X is nonhyperbolic) hence zero (as it vanishes at p). For existence we need two preliminary lemmas. By the definition of conformal disk the open set $z(D)$ contains the closed unit disk in \mathbb{C} ; for $r \leq 1$ let

$$
D_r = \{ q \in D : |z(q)| < r \}.
$$

The following lemma is an immediate consequence of Stoke's Theorem if X is compact.

Lemma 4.3. If $r < 1$ and u is harmonic and bounded on $X \setminus D_r$, then

$$
\int_{\partial D} * du = 0.
$$

Proof. By adding a large positive constant we may assume w.l.o.g. that u is nonnegative on ∂D_r . Choose an increasing sequence of open subsets $X_n \subset X$ such that $X_n \cup \partial X_n$ is compact, ∂X_n is smooth, and the closure of D is a subset of X_n . Let u_n and v_n be the solutions of the Dirichlet problem on $X_n \setminus D_r$ with boundary conditions $u_n = v_n = 0$ on ∂X_n , $u_n = u$ on ∂D_r and $v_n = 1$ on ∂D_r . By the maximum principle we have that $0 \le u_n \le$ u_m ≤ max_{∂D} u and $0 \le v_n \le v_m \le 1$ on X_n for $m \ge n$. Hence by Harnack and [1.9](#page-3-0) u_n and v_n converge in C^k uniformly on compact subsets of $X \setminus D$ (in fact on compact subsets of the complement of the closure of D_r). Moreover $\lim_{n} v_n = 1$ on ∂D and $\lim_{n} v_n \leq 1$ on $X \setminus D$ so we must have $\lim_{n} v_n = 1$ on $X \setminus D$ by (iv) of Corollary [2.2](#page-4-0) and the fact that X is nonhyperbolic. Hence

$$
\int_{\partial D} * du = \lim_{n \to \infty} \int_{\partial D} v_n * du_n - u_n * dv_n
$$

But $u_n = v_n = 0$ on ∂X_n on ∂D so this may be written

$$
\int_{\partial D} * du = -\lim_{n \to \infty} \int_{\partial (X_n \setminus D)} v_n * du_n - u_n * dv_n.
$$

Now by Stokes

$$
\int_{\partial(X_n \setminus D)} v_n * du_n - u_n * dv_n = \int_{X_n \setminus D} v_n \Delta u_n - u_n \Delta v_n = 0.
$$

 \Box

Lemma 4.4. For $0 < \rho < 1$ and let u_{ρ} be the solution of the Dirichlet problem on $X \setminus D_\rho$ with $u = \Re(f)$ on ∂D_ρ . Then for $0 < r < 1/20$ there is a constant c(r) such that for $0 < \rho < r$ we have

$$
\max_{\partial D_r} |u_\rho| \le c(r).
$$

Proof. By Lemma [4.3](#page-10-1) the 1-form $* du_{\rho}$ is exact on on the interior of $D \setminus D_{\rho}$ so there is a holomorphic function F_{ρ} with $u_{\rho} = \Re(F_{\rho})$. The function $F_{\rho} - f$ has a Laurent expansion about 0; its real part is

$$
(u_{\rho} - \Re f)(te^{i\theta}) = \sum_{n=-\infty}^{\infty} (\alpha_n \cos(n\theta) + \beta_n \sin(n\theta)) t^n
$$

valid for $\rho \le t \le 1$. (The coefficients α_n and β_n depend on ρ .) Then

$$
\frac{1}{\pi}(u_{\rho} - \Re f)(te^{i\theta}\cos(k\theta) d\theta = \alpha_k t^k + \alpha_{-k}t^{-k}
$$

and

$$
\frac{1}{\pi}(u_{\rho} - \Re f)(te^{i\theta}\sin(k\theta) d\theta = \beta_k t^k + \beta_{-k}t^{-k}.
$$

For $t = \rho$ the integrand vanishes so

$$
\alpha_{-k}(\rho) = -\alpha_k(\rho)\rho^{2k}, \qquad \beta_{-k}(\rho) = -\beta_k(\rho)\rho^{2k}.
$$
 (1)

For $t = 1$ we have

$$
|\alpha_k|(1 - \rho^{2k}) = |\alpha_k + \alpha_{-k}| \le 2M_\rho,
$$
 $|\beta_k|(1 - \rho^{2k}) = |\beta_k + \beta_{-k}| \le 2M_\rho$

where

$$
M_{\rho} = \max_{|z|=1} |u_{\rho}| + \max_{|z|=1} |\Re(f)|;
$$

Hence for $\rho < 1/2$ we have $|\alpha_k|, |\beta_k| \le 4M_\rho$ so

$$
\max_{|z|=r} |u_{\rho}| \le \max_{|z|=r} |\Re(f)| + 4M_{\rho} \sum_{n=0}^{\infty} r^{n} + \rho^{2n} r^{-n}.
$$

Since $\rho < r$ sum on the right is less than $2\sum r^n = 1/(1-r)$ so we get

$$
\max_{|z|=r} |u_{\rho}| \le \max_{|z|=r} |\Re(f)| + \frac{8M_{\rho}}{1-r}.\tag{2}
$$

The function u_{ρ} is harmonic and bounded on $X \setminus D_{\rho}$ so we have

$$
\max_{|z|=1} |u_{\rho}| \le \max_{|z|=r} |\Re(f)| + \frac{8M_{\rho}}{1-r}.
$$

and hence

$$
M_{\rho} \le \max_{|z|=1} |\Re(f)| + \max_{|z|=r} |\Re(f)| + \frac{8M_{\rho}}{1-r}.
$$

Since $8/(1 - r) < 1/2$ this gives the bound

$$
M_{\rho} \le 2 \left(\max_{|z|=1} |\Re(f)| + \max_{|z|=r} |\Re(f)| \right)
$$

on M_ρ independent of $\rho < r$. hence a bound of $|u_\rho|$ on $|z| = 1$ (i.e. ∂D), and hence a bound on $|u_{\rho}|$ on $X \setminus D$. \Box

We complete the proof of Theorem [4.1](#page-10-0). Let $r_n = 1/(21n)$ so that $1/20 >$ $r_1 > r_2 > \cdots$ and $\lim_{n\to\infty} r_n = 0$. Let $u_k = u_{\rho_k}$ where $\rho_k = r_k/2$. By the Compactness Theorem [1.10](#page-3-2) and the fact that $|u_k| < c(r_1)$ for $\rho_k < r_1$ there is a subsequence of the u_k (still denoted by u_k) converging uniformly to a harmonic function u on $X \setminus D_{r_1}$. For the same reason there is a subsequence converging uniformly on $X \setminus D_{r_2}$, and a subsequence converging uniformly on $X \setminus D_{r_3}$, etc. Diagonalize and we get a sequence converging uniformly on compact subsets to a harmonic function u on $X \setminus \{p\}.$ \Box

5 Maps to $\mathbb P$

The material in this section is not required for the proof of the Uniformization Theorem.

Theorem 5.1. Let X be a Riemann surface, $p_1, p_2, \ldots, p_n \in X$ be distinct, and $a_1, a_2, \ldots, a_n \in \mathbb{P} := \mathbb{C} \cup \{\infty\}$. Then there is a meromorphic function f (i.e. a holomorphic map $f: X \to \mathbb{P}$) with $f(p_j) = a_j$ for $j = 1, 2, ..., n$.

Proof. First suppose $n = 2$, $a_1 = \infty$, and $a_2 = 0$ amd Then choose holomorphic coordinates z_j centered at p_j . In case that X is nonly perbolic there are functions $u_j: X \setminus \{p_j\} \to \mathbb{R}$ with $u_j - \Re(1/z_j)$ bounded and harmonic. In case that X is hyperbolic there are functions $u_j: X \setminus \{p_j\} \to \mathbb{R}$ with $u_j - \log |z_j|$ bounded and harmonic. In either case by the Cauchy Riemann equations the function

$$
f(z) = \frac{u_{1x} - iu_{1y}}{u_{2x} - iu_{2y}}
$$

locally a ratio of two holomorphic differentials and is independent of the choice of local coordinates $z = x + iy$ used to defined it. (Note: No need to assume X is simply connected.) Now $g_{12} = f/(f+1)$ takes the value 1 at p_1 and 0 at p_2 . For general n the function $h_j = \prod_{k \neq j} g_{kj}$ satisfies $h_j(p_k) = \delta_{jk}$. Take $f = \sum_j a_j h_j$. \Box

Theorem 5.2. Let X be a compact Riemann surface and $p \in X$. Then there is a meromorphic function $F: X \to \mathbb{P}$ having p as its only pole.

Proof. Let g be the genus of X so that $\dim_{\mathbb{R}} H^1(X,\mathbb{R}) = 2g$. For $k =$ $1, 2, \ldots, 2g + 1$ let u_k be the harmonic function on $X \setminus \{p\}$ given by Theo-rem [4.1](#page-10-0) with $f = 1/z^k$, i.e. u_k is harmonic on $X \setminus \{p\}$ and $u_k - \Re(1/z_k)$ is harmonic near p. Then $*du_k$ is a closed 1-form on X so some nontrivial linear combination is exact; i.e. $dv = \sum_k a_k * du_k$. The function v is the imaginary part of a holomophic function $\overline{F} = u + iv$ whose real part $\Re(F) = \sum_k a_k u_k$ is bounded in the complement of every neighborhood of p . Thus p is the only pole of F. \Box

6 The Uniformization Theorem

Theorem 6.1 (Uniformization Theorem). Suppose that X is connected and simply connected. Then

- 1. if X is elliptic, it is isomorphic to \mathbb{P}^1 ;
- 2. if X hyperbolic, it is isomorphic to the unit disk \mathbb{D} ;
- 3. if X is parabolic, it is isomorphic to \mathbb{C} .

Definition 6.2. A holomorphic function F on X is called a **holomorphic Green function** at the point $p \in X$ iff

$$
|F| = e^{-g_p}
$$

where g_p is the Green function for X at p.

Lemma 6.3. Assume X is simply connected and hyperbolic and $p \in X$. Then there is a holomorphic Green function F at p .

Proof. Choose a holomorphic coordinate $z = x + iy$ centered at p and let h be a holomorphic function defined near p with $\Re(h) = g_p + \log |z|$. Let $F_p = e^{-h}z$. Then F is holomorphic and $\log|F| = -\Re(h) + \log|z| = -g_p$. Now the condition $g_p = -\log |F|$ defines a holomorphic function F (unique up to a multiplicative constant) in a neighborhood of any point other than p so F extends to X by analytic continuation. \Box

Lemma 6.4. Let F be holomorphic Green function p . Then

- (i) F is holomorphic;
- (ii) F has a simple zero at p ;
- (iii) F has no other zero;

 (iv) $F: X \rightarrow \mathbb{D}$;

(v) If F' satisfies (i-iv) then $|F'| \leq |F|$.

By (v) the holomorphic Green function at p is unique up to a multiplicative constant of absolute value one.

Proof. Since $F_p = e^{-h}z$ the function F has a simple zero at p. Since $g_p > 0$ we have that $F: X \to \mathbb{D}$ and F has no other zero. \Box

Lemma 6.5. A holomorphic Green function is injective.

Proof. Choose $q \in X$ and let

$$
\phi(r) = \frac{F_p(q) - F_p(r)}{1 - \bar{F}_p(q)F_p(r)}.
$$

Then ϕ is the composition of F_p with an automorphism of D which maps $F_p(q)$ to 0. Suppose that ϕ has a zero of order n at a point q. Let $u = -\log |\phi|/n$. Let z be a holomorphic coordinate at centered at q. Then $u + \log |z|$ is bounded near p and hence (by Bôcher) harmonic near p . The Green function g_q at q is defined by $g_q = u_{\mathcal{F}}$ where $\mathcal F$ is the set of all v of compact support, with v subharmonic on $X \setminus \{q\}$ and $v + \log |z|$ subharmonic near q. By the maximum principle, and because v has compact support we have $v \leq u$ for $v \in \mathcal{F}$. Hence $g_q \leq u$ so

$$
|F_q(r)| \ge |\phi(r)|^{1/n} \ge |\phi(r)|. \tag{#}
$$

Since $F_p(p) = 0$ we have $\phi(p) = F_p(q)$ so $F_q(p) \geq |F_p(q)|$. Reversing p and q gives $|F_q(p)| = |F_p(q)|$. By $(\#) |F_q(r)/\phi(r)| \leq 1$ with equality at $r = p$. Hence $F_q = c\phi$ where c is a constant with $|c| = 1$. But $f_q(r) \neq 0$ for $r \neq q$ so $\phi(r) \neq 0$ for $r \neq q$ so $F_p(r) \neq F_p(q)$ for $r \neq q$, i.e. F_p is injective. \Box

The proof that X is isomorphic to D now follows from the Riemann Mapping Theorem. However we can also prove that F_p is surjective as follows.

Lemma 6.6. Suppose W is a simply connected open subset of the unit disk D such that 0 ∈ W but $W \neq$ D. Then there is a injective holomorphic map $H: W \to \mathbb{D}$ with $H(0) = 0$ and $|H'(0)| > 1$.

Proof. Suppose $a^2 \in \mathbb{D} \setminus W$. Then the unction $(z - a^2)/(1 - \bar{a}^2 z)$ is holomorphic and nonzero on W . Since W is simply connected this function has a square root, i.e. there is a holomorphic function h on W such that

$$
h(z)^2=\frac{z-a^2}{1-\bar{a}^2z}
$$

and $h(0) = ia$. Consider the function $H : W \to D$ defined by

$$
H(z) = \frac{h - ia}{1 + iah}
$$

Then $H'(0) = (1+|a|^2)/(2ia)$ so $|H'(0)| > 1$. This map is injective as $\frac{z}{z-a^2}$ $H(z) = H(w) \implies h(z) = h(w) \implies h(z)^2 = h(w)^2 \implies$ $\frac{z-\bar{x}}{1-\bar{a}^2z} =$ $w - a^2$ $\implies z = w.$ \Box $\overline{1-\bar{a}^2w}$

Lemma 6.7. A holomorphic Green function is surjective.

Proof. Assume not. Read $F_p(X)$ for W in Lemma [6.6.](#page-15-0) Note that both F_p and $H \circ F_p$ has a simple zero at p. The function $-\log|H \circ F_p|$ has all the properties of the Green function so

$$
-\log|F_p| = g_p \le -\log|H \circ F_p|
$$

by the minimality of the Green function. Hence $|H \circ F_p| \leq |F_p|$ so $|H| \leq |z|$ near zero contradicting $|H'(0)| > 1$.

This proves the Uniformization Theorem in the hyperbolic case. To prove the Uniformization Theorem in the nonhyperbolic case we introduce a class of functions to play the role of the holomorphic Green function of [6.3](#page-14-0).

Definition 6.8. Let X be a Riemann surface and $p \in X$. A function F: $X \to \mathbb{P} := \mathbb{C} \cup {\infty}$ is called **unipolar** at p iff it it is meromorphic, has a simple pole at p , and is bounded (hence holomorphic) in the complement of every neighborhood of p . In other words, a unipolar function is a holomorphic map $F: X \to \mathbb{P}$ such that ∞ is a regular value, $F^{-1}(\infty)$ consists of a single point, and F is **proper at infinity** in the sense that for any sequence $q_n \in X$ we have $\lim_{n\to\infty} F(q_n) = \infty \implies \lim_{n\to\infty} q_n = p$. By the Extension Theorem [4.1](#page-10-0) for any point p in a nonhyperbolic Riemann surface X there is a unique function u which is unipolar at p (take $f = 1/z$).

Lemma 6.9. Assume that X is nonhyperbolic and that F' and F are both unipolar at p. Then $F' = aF + b$ for some $a, b \in \mathbb{C}$.

Proof. For some constant a, $F' - aF$ has no pole at p and is hence bounded and holomorphic on X . On a nonhyperbolic surface the only bounded holomorphic functions are the constant functions. \Box

Lemma 6.10. Assume that X is nonhyperbolic, that $p \in X$, and that F : $X \to \mathbb{P} := \mathbb{C} \cup {\infty}$ is meromorphic, has a simple pole at p, and that $\Re(F)$ bounded in the complement of every neighborhood of p. Then for q sufficiently near (but distinct from) p the function $G(r) = 1/(F(r) - F(q))$ is unipolar at q. In particular, G is unipolar at q if F is unipolar at p .

Proof. Since F has a simple pole at p it maps a neighborhood U of p diffeomorphically to a neighborhood of infinity by the Inverse Function Theorem. Let $M = \sup_{r \notin U} u(r)$. For q sufficiently near p we have $|F(q)| > 2M$. For such q we have that q is the only pole of G in U (as F is injective on U) and that $|G(r)| < M$ for $r \notin U$ (since $|G(r)| = 1/|F(r) - F(q)| \le$ $1/|u(r) - F(q)| < 1/M$). Thus q is the only pole of G. Since $G = L \circ F$ where $L(w) = 1/(w - F(q))$ we have that G maps U diffeomorphically to a neighborhood of infinity so G is proper at infinity so G is unipolar as required. \Box

Lemma 6.11. Assume X is simply connected and nonhyperbolic and that $p \in X$. Then there is a function F unipolar at p.

Proof. Use Theorem [4.1](#page-10-0) with $f(z) = 1/z$. As X is simply connected the resulting function u is the real part of a meromorphic function $F = u + iv$ with u bounded in the complement of every neighborhood of p, and $F - 1/z$ holomorphic in a neighborhood of p and vanishing at p . We must show that v is also bounded in the complement of every neighborhood of p . Apply Theorem [4.1](#page-10-0) with $f(z) = i/z$. We get a meromorphic function $\tilde{F} = \tilde{u} + i\tilde{v}$ with \tilde{u} bounded in the complement of every neighborhood of p and $\tilde{F} - i/z$ holomorphic in a neighborhood of p . Thus to prove that v is bounded in the complement of every neighborhood of p it is enough to show that $\tilde{F} = iF$ for then $v = -\tilde{u}$.

By Lemma [6.10](#page-17-0) the functions $G(r) = 1/(F(r) - F(q)) \tilde{G}(r) = 1/(\tilde{F}(r) F(q)$ are unipolar for q sufficiently near q. Then for suitable constants a and \tilde{a} the function $aG(r) + \tilde{a}G(r)$ has no pole at q (and hence no pole at all) and hence, as X is nonhyperbolic, must be constant. solve the equation $aG(r) + \tilde{a}\tilde{G}(r) = c$ for \tilde{F} in terms of F. Then $\tilde{F} = (\alpha F + \beta)/(\gamma F + \delta)$. But $F(z) = 1/z + R(z)$ and $\tilde{F}(z) = i/z + \tilde{R}(z)$ where R and \tilde{R} vanish at p. Hence $F = iF$ as claimed. \Box

Lemma 6.12. If F is unipolar at p and F' is unipolar at q, then $F' = L \circ F$ for some automorphism L of \mathbb{P} .

Proof. Fix p and let S be the set of points q where the lemma is true. By Lemma [6.9](#page-17-1) $p \in S$ so it suffices to show that S is open and closed. Choose $q_0 \in S$ and let F_0 be unipolar at q_0 . By Lemma [6.10](#page-17-0) the function $F(r)$ = $1/(F_0(r) - F_0(q))$ is unipolar at q for q sufficiently near q₀. Now $F = L \circ$ F_0 where $L(w) = 1/(w - F_0(q))$ so by Lemma [6.9](#page-17-1) (and the fact that the automorphisms form a group) the lemma holds for q sufficiently near q_0 , i.e. S is open. Now choose $q \in X$ and assume that $q = \lim_{n \to \infty} q_n$ where $q_n \in S$. By Lemma [6.11](#page-17-2) let F' be unipolar at p. For n sufficiently large $G'(r) = 1/(F'(r) - F'(q_n))$ is unipolar at q_n by Lemma [6.10.](#page-17-0) Hence $G' = L \circ F$ for some \hat{L} so $F' = F'(q_n) + 1/(L \circ F) = L' \circ F$ so $q \in S$. Thus S is closed.

Lemma 6.13. Assume X is simply connected and nonhyperbolic. Then a unipolar function is injective.

Proof. Suppose that F is unipolar at some point $o \in X$ and assume that $F(p) = F(q)$. Let F_p be unipolar at p. Then there is an automorphism L with $F_p = L \circ F$. Thus F_p has a pole at q so $q = p$. \Box

Proof of the Uniformization Theorem continued. By Lemma [6.13](#page-18-0) we may assume that X is an open subset of $\mathbb{P} = \mathbb{C} \cup \{\infty\}$. If X is elliptic we must have $X = \mathbb{P}$. If $X = \mathbb{P} \setminus \{a\}$ then a suitable automorphism of \mathbb{P} maps X to $\mathbb{P} \setminus \{\infty\} = \mathbb{C}$. Hence it suffices to show that a simply connected open subset of $\mathbb P$ which omits two points admits a bounded nonconstant holomorphic function and is hence hyperbolic. By composing with an automorphism of P we may assume that $X \subset \mathbb{C} \setminus \{0,\infty\}$. As X is simply connected there is a square root function f defined on X,i.e. $f(z)^2 = z$ for $z \in X$. Hence $X \cap (-X) = \emptyset$ else $z = f(z)^2 = f(-z)^2 = -z$ for some $z \in X$ so either 0 or ∞ is in X, a contradiction. As $-X$ is open the function $g(z) = 1/(z - a)$ is bounded on X for $a \in -X$. \Box

7 Surfaces with abelian fundamental group

7.1. The Uniformization Theorem classifies all connected Riemann surfaces X whose fundamental group $\pi_1(X)$ is trivial. In this section we extend this classification to surfaces X whose fundamental group us abelian. We also determine the automorphism group of each such X . Note that the upper half plane $\mathbb H$ and the unit disk $\mathbb D$ are isomorphic via the diffeomorphism $f : \mathbb{H} \to \mathbb{D}$ defined by $f(z) = (1 + zi)/(1 - zi)$.

Theorem 7.2. The connected Riemann surfaces with abelian fundamental group are

- (i) the plane \mathbb{C} ,
- (ii) the upper half plane \mathbb{H} ,
- (iii) the Riemann sphere $\mathbb{P} = \mathbb{C} \cup \{\infty\},\$
- (iv) the punctured plane $\mathbb{C}^* = \mathbb{C} \setminus \{0\},\$
- (v) the punctured disk $\mathbb{D}^* = \mathbb{D} \setminus \{0\},\$
- (vi) the annulus $\mathbb{D}_r = \{z \in \mathbb{D} : r < |z|\}$ where $0 < r < 1$,
- (vii) the torus $\mathbb{C}/\Lambda_{\tau}$ where $\tau \in \mathbb{H}$ and $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$.

Theorem 7.3. No two of these are isomorphic except that $\mathbb{C}/\Lambda_{\tau}$ and $\mathbb{C}/\Lambda_{\tau'}$ are isomorphic if and only if $\mathbb{Q}(\tau) = \mathbb{Q}(\tau')$, i.e. if and only if $\tau' = g(\tau)$ for some $g \in SL_2(\mathbb{Z})$.

Theorem 7.4. The automorphism groups of these surfaces X are as follows.

(i) The group $Aut(\mathbb{C})$ of automorphisms of \mathbb{C} is the group consisting of transformations ϕ of form

$$
\phi(z) = az + b
$$

where $a, b \in \mathbb{C}$ and $a \neq 0$.

(ii) The group $Aut(\mathbb{P})$ of automorphisms of the Riemann sphere \mathbb{P} is the group $PGL(2, \mathbb{C})$ of all transformations ϕ of form

$$
\phi(z) = \frac{az+b}{cz+d}
$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$.

(iii) The group $\text{Aut}(\mathbb{H})$ of automorphisms of the upper half plane \mathbb{H} is the group $PGL(2, \mathbb{R})$ of all transformations ϕ of form

$$
\phi(z) = \frac{az + b}{cz + d}
$$

where $a, b, c, d \in \mathbb{R}$ and $ad - bc \neq 0$.

(iv) The group $Aut(\mathbb{C}^*)$ of automorphisms of the punctured plane \mathbb{C}^* is the *group of all transformations* ϕ *of one of the forms*

$$
\phi(z) = az
$$
 or $\phi(z) = \frac{a}{z}$

where $a \in \mathbb{C}$ and $a \neq 0$.

(v) The group Aut($\mathbb{C}/\Lambda_{\tau}$) of automorphisms of the torus $\mathbb{C}/\Lambda_{\tau}$ is the group of all transformations ϕ of form

$$
\phi(z + \Lambda_\tau) = az + b + \Lambda_\tau
$$

where $b \in \mathbb{C}$ and $a = 1$ if $\tau \notin \mathbb{Q}(i) \cup \mathbb{Q}(j)$, $a^4 = 1$ if $\tau \in \mathbb{Q}(i)$, and $a^6 = 1$ if $a \in \mathbb{Q}(j)$. (Here j is the intersection point in \mathbb{H} of the two circles $|z| = 1$ and $|z - 1| = 1$.)

(vi) The group $Aut(\mathbb{D}^*)$ of automorphisms of the punctured disk \mathbb{D}^* is the group of all transformations ϕ of form

$$
\phi(z) = az
$$

where $a \in \mathbb{C}$ and $|a| = 1$.

(vii) The group $Aut(\mathbb{D}_r)$ of automorphisms of the annulus \mathbb{D}_r is the group of all transformations ϕ of one of the forms

$$
\phi(z) = az
$$
 or $\phi(z) = \frac{ar}{z}$

where $a \in \mathbb{C}$ and $|a| = 1$.

Theorem 7.5. A Riemann surface has abelian fundamental group if and only if its automorphism group is not discrete.

7.6. Fix a connected Riemann surface X. By the Uniformization Theorem the universal cover X of a (connected) Riemann surface X is one of \mathbb{P}, \mathbb{C} , or $\mathbb{H} \simeq \mathbb{D}$ and hence X is isomorphic to X/G where $G \subset \text{Aut}(X)$ is the group of deck transformations of the covering projection $\pi : \tilde{X} \to X$, i.e.

$$
G = \{ g \in \text{Aut}(\tilde{X}) : \pi \circ g = \pi \}.
$$

Note that G is discrete and acts freely.

Lemma 7.7. The automorphism group of $X = \tilde{X}/G$ is isomorphic to the quotient $N(G)/G$ where

$$
N(G) = \{ \phi \in \text{Aut}(\tilde{X}) : \phi \circ G \circ \phi^{-1} = G \}
$$

is the normalizer of G in Aut (X) .

Proof of Theorem [7.4](#page-19-0)(i). Let $\phi \in Aut(\mathbb{C})$. Then ϕ is an entire function. It cannot have an essential singularity at infinity by Casorati-Weierstrass and the pole at infinity must be simple as ϕ is injective. Hence $\phi(z) = az + b$. \Box

Proof of Theorem [7.4](#page-19-0)(ii). Choose $\phi \in Aut(\mathbb{P})$. After composing with an element of PGL $(2, \mathbb{C})$ we may assume that infinity is fixed, i.e. that $\phi(z) =$ $az + b$. \Box

Proof of Theorem [7.4](#page-19-0)(iii). Choose $\phi \in \text{Aut}(\mathbb{H})$. Let $f : \mathbb{H} \to \mathbb{D}$ be the isomorphism given by $f(z) = (1 + zi)/(1 - zi)$. Then $\psi := f^{-1} \circ \phi \circ f$ is an automorphism of the disk D. Composing with $\alpha(z) = (z - a)/(\bar{a}z - 1)$ we may assume that $\psi(0) = 0$. Then $|\psi(z)| \leq |z|$ by the Maximum Principle $(\psi(z)/z$ is holomorphic) and similarly $|\psi^{-1}(z)| \leq |z|$. Hence $|\psi(z)| = |z|$ so $\psi(z) = cz$ where $|c| = 1$ by the Schwartz lemma. Hence $\phi \in \text{PGL}(2, \mathbb{C})$. The coefficients must be real as the real axis is preserved so $\phi \in \text{PGL}(2,\mathbb{R})$. \Box

Proof of Theorem [7.4](#page-19-0)(iv). The universal cover of the punctured plane \mathbb{C}^* is the map

$$
\mathbb{C} \to \mathbb{C}^* : z \mapsto \exp(2\pi i z).
$$

The group G of deck transformations is the cyclic group generated by the translation $z \mapsto z + 1$. The normalizer $N(G)$ of G in Aut(C) is ... \Box *Proof of Theorem [7.4](#page-19-0)(v).* The universal cover of the torus $\mathbb{C}/\Lambda_{\tau}$ is the map

$$
\mathbb{C} \to \mathbb{C}/\Lambda_{\tau}: z \mapsto z + \Lambda_{\tau}.
$$

The group G of deck transformations is the abelian group generated by the translations $z \mapsto z + 1$ and $z \mapsto z + \tau$. The normalizer $N(G)$ of G in Aut(C) $is \ldots$ \Box

Proof of Theorem [7.4](#page-19-0)(vi). The universal cover of the punctured disk \mathbb{D}^* is the map

$$
\mathbb{H} \to \mathbb{D}^* : z \mapsto \exp(2\pi i z).
$$

The group G of deck transformations is the cyclic group generated by the translation $z \mapsto z + 1$. The normalizer $N(G)$ of G in Aut(D) is ... \Box

Proof of Theorem [7.4](#page-19-0)(vii). The universal cover of the annulus \mathbb{D}_r is the map

$$
\mathbb{H} \to D_r : z \mapsto \exp\left(\frac{\log r \log z}{\pi i}\right).
$$

Here $\log z$ denotes the branch of the logarithm satisfying $0 < \Im(\log z) < \pi$ so writing $z = \rho e^{i\theta}$ the cover takes the form

$$
\mathbb{H} \to D_r : \rho e^{i\theta} \mapsto r^{\theta/\pi} \exp\left(\frac{\log r \log \rho}{\pi i}\right).
$$

The group G of deck transformations is the cyclic group generated by $z \mapsto az$ where $a = \exp(-2\pi^2/\log r)$. The normalizer $N(G)$ of G in Aut(\mathbb{D}) is ...

Lemma 7.8. If $\tilde{X} = \mathbb{P}$ then $G = \{1\}$ so $X = \mathbb{P}$.

Proof. Any nontrivial element of $PSL(2, \mathbb{C})$ has a fixed point.

 \Box

Lemma 7.9. If $\tilde{X} = \mathbb{C}$ then the group G consists of a discrete abelian group of translations. More precisely G is the set of all transformations $f(z) = z + b$ where $b \in \Gamma$ and where the subgroup $\Gamma \subset \mathbb{C}$ is one of the following:

- (i) $\Gamma = \{0\}$ in which case $X = \tilde{X} = \mathbb{C}$;
- (ii) $\Gamma = \omega \mathbb{Z}$ in which case $X \simeq \mathbb{C}^*$;
- (iii) $\Gamma = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ in which case $X \simeq \mathbb{C}/\Lambda_\tau$, $\tau = \omega_2/\omega_1$.

Proof. Any automorphism of form $z \mapsto az + b$ where $a \neq 1$ has a fixed point so G is a discrete group of translations. Kronecker's theorem says that for $\omega \in \mathbb{R}$ the group $\mathbb{Z}\omega + \mathbb{Z}$ is dense in \mathbb{R} if and only if $\omega \notin \mathbb{Q}$. (Proof: Consider a minimal positive element of $\mathbb{Z}\omega + \mathbb{Z}$. It follows easily that a discrete subgroup of the additive group \mathbb{R}^n has at most n generators. Hence the three possibilities. In case (ii) the group G is conjugate in $Aut(\mathbb{C})$ to the cyclic group generated by the translations $z \mapsto z + \tau$. In case (iii) the group G is conjugate in Aut (\mathbb{C}) to the free abelian group generated by the translations $z \mapsto z + 1$ and $z \mapsto z + \tau$. \Box

Corollary 7.10 (Picard's Theorem). An entire function $f: \mathbb{C} \to \mathbb{C}$ which omits two points is constant.

Proof. $\mathbb{C} \setminus \{a, b\}$ has a nonabelian fundamental group so its universal cover must be D. A holomorphic map $f : \mathbb{C} \to \mathbb{C} \setminus \{a, b\}$ lifts to a map $\tilde{f} : \mathbb{C} \to \mathbb{D}$ which must be constant by Liouville. \Box

Lemma 7.11. A fixed point free automorphism ϕ of \mathbb{H} is conjugate in Aut(\mathbb{H}) either to a homothety $z \mapsto az$ where $a > 0$ or to the translation $z \mapsto z + 1$.

Proof. Let $A \in SL(2,\mathbb{R})$ be a matrix representing the automorphism ϕ . Since ϕ has no fixed points in H the eigenvalues of A must be real. Since their product is one we may rescale so that they are positive. If there are two eigenvalues λ and λ^{-1} then A is conjugate in SL(2, R) to a diagonal matrix and so ϕ is conjugate in Aut(H) to $z \mapsto \lambda^2 z$. Otherwise the only eigenvalue is 1 and A is conjugate in SL(2, \mathbb{R}) to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ so ϕ is conjugate in Aut(\mathbb{H}) \Box to $z \mapsto z + 1$.

Corollary 7.12. If $\tilde{X} = \mathbb{H}$ and G is abelian, then the group G is conjugate in Aut(\mathbb{H}) to either a free abelian group generated by a homothety $z \mapsto az$ where $a > 0$ or the free abelian group generated by the translation $z \mapsto z + 1$. In the former case $X \simeq \mathbb{D}^r$ for some r and in the latter case $X \simeq \mathbb{D}^*$.

Proof. If G contains a homethety it must be a subgroup of the group of homotheties (as it is abelian) and hence cyclic as it is discrete. Similarly, If G contains a translation it must be a subgroup of the group of translations and hence cyclic. \Box

References

- [1] S. Axler, P. Bourdon, W. Ramey: Harmonic Function Theory, Springer Graduate Texts in Math 137 1992.
- [2] O. Forster: Lectures on Riemann Surfaces, Springer Graduate Texts in Math 81 1981.
- [3] E. Reyssat: Quelques Aspects des Surface de Riemann, Birkhäuser, 1989.