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The proof given here is a loose translation of [3]. There is another proof
of the Uniformization Theorem in [2] where it is called the Riemann Mapping
Theorem.

1 Harmonic functions

1.1. Throughout this section X denotes a connected Riemann surface, pos-
sibly noncompact. The open unit disk in C is denoted by D. A conformal
disk in X centered at p ∈ X is a pair (z,D) where z is a holomorphic co-
ordinate on X whose image contains the closed disk of radius r about the
origin in C, z(p) = 0, and

D = {q ∈ X : |z(q)| < r}.

For a conformal disk (z,D) we abbreviate the average value of a function u
on the boundary of D by by

M(u, z, ∂D) :=
1

2π

∫ 2π

0

v(reiθ) dθ, v(z(q)) = u(q).

1.2. The Poisson kernel is the function P : D× ∂D→ R defined by

P (z, ζ) :=
1

2π
· |ζ|

2 − |z|2

|ζ − z|2
.

The unique solution of Dirichlet’s problem

∆u = 0, u|∂D = φ
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where φ ∈ C0(∂D) on the unit disk D is given by the Poisson integral
formula

u(z) =

∫
∂D

P (z, eiθ)φ(eiθ) dθ.

(See [1] page 13 for the proof.) For a conformal disk (z,D) in a Riemann
surface X and a continuous function u : X → R we denote by uD the unique
continuous function which agrees with u on X \D and is harmonic in D. (It
is given by reading u|∂D for φ in the Poisson integral formula.)

1.3. The Hodge star operator on Riemann surface X is the operation
which assigns to each 1-form ω the 1-form ∗ω defined by

(∗ω)(ξ) = −ω(iξ)

for each tangent vector ξ. If z is a holomorphic coordinate on X a real valued
1-form has the form

ω = a dx+ b dy

where a and b are real valued functions, x = <(z), and y = =(z); the form
∗ω is then given by

∗ω = −b dx+ a dy.

A function u is called harmonic iff it is C2 and ∗du is closed, i.e. d∗du = 0.
In terms of the coordinate z we have

d∗du = (∆u) dx ∧ dy, ∆u =
∂2u

∂x2
+
∂2u

∂y2
.

Note that the operator ∆ is not intrinsic, i.e. ∆u depends on the choice of
holomorphic coordinate. (However the operator d∗d is independent of the
choice of coordinate and hence also the property of being harmonic.)

Theorem 1.4. Let X a Riemann surface and u : X → R be continuous.
Then the following are equivalent:

(i) u is harmonic.

(ii) u satisfies mean value property i.e. u(p) = M(u, z, ∂D) for every
conformal disk (D, z) centered at p;

(iii) u is locally the real part of a holomorphic function.
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Proof. It is enough to prove this for an open subset of C. That (ii) =⇒ (i)
follows from the Poisson integral formula, namely

u(0) =

∫
∂D

P (0, eiθ)φ(eiθ) dθ = M(u, id, ∂D).

The general case follows by the change a change of variables z 7→ az+b. Note
that the mean value property implies the maximum principle: the function
u has no strict maximum (or minimum) on any open set. A function which
is continuous on the closure of D and satisfies the mean value property in D
must therefore assume its maximum and minimum on the boundary of D.
Hence (ii) =⇒ (i) because u− uD (see 1.2) satisfies the mean value property
in D and vanishes on ∂D so u − uD = 0 on D so u is harmonic on X as D
is arbitrary. For (i) ⇐⇒ (iii) choose a conformal disk (z,D). The function
u is harmonic if and only if the form ∗du is closed. The equation ∗du = dv
encodes the Cauchy Riemann equations; it holds if and only if the function
u+ iv is holomorphic.

Corollary 1.5. The form ∗du is exact if and only there is a holomorphic
function f : X → C with u = <(f).

Theorem 1.6 (Removable Singularity Theorem). If u is harmonic and
bounded on the punctured disk, it extends to a harmonic function on the disk.

Proof. By shrinking the disk and subtracting the solution of the Dirichlet
problem we may assume that u vanishes on ∂D. For ε > 0 the harmonic
function

vε(z) = u(z) + ε log |z| − ε
is negative on ∂D and near 0 and thus negative on D \ {0}. Fix z and let
ε→ 0; we conclude that u ≤ 0 on D \ {0}. Similarly −u ≤ 0.

Remark 1.7. Bôrcher’s Theorem (see [1] page 50) says that a positive func-
tion which harmonic on D \ 0 has the form

u(z) = −b log |z|+ h(z)

where b ≥ 0 and h is harmonic on D. This implies the Removable Singularity
Theorem (add a constant). To prove Bôrcher’s Theorem choose b so that
∗du + b log |z| is exact. Hence assume w.l.o.g. that u is the real part of a
holomorphic function with a possible singularity at the origin. However if
the Laurent expansion for this function contains any negative powers of z its
real part u will be unbounded in both directions.
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Theorem 1.8 (Harnack’s Principle). A pointwise nondecreasing sequence
of harmonic functions converges uniformly on compact sets either to ∞ or
to a harmonic function.

Proof. If we assume that the sequence converges uniformly, this follows from
the characterization via the mean value property (Theorem 1.4). For the
general argument see [1] page 49.

Theorem 1.9. If a sequence of harmonic functions converges uniformly on
compact subsets then the limit is harmonic and for k = 1, 2, . . . the sequence
converges in Ck (uniformly on compact subsets).

Proof. In each holomorphic disk (z,D) we have

∂κu =

∫ 2π

0

∂κPζ · u(ζ)dθ

for each multi-index κ = (κ1, κ2) where ζ = reiθ = z(q), q ∈ ∂D (i.e.
|z(q)| = r), and Pζ(z) = P (z, ζ) is the Poisson kernel. ( See [1] page 15.)

Theorem 1.10 (Compactness Theorem). A uniformly bounded sequence
of harmonic functions contains a subsequence which converges uniformly on
compact sets.

Proof. By the estimate in the proof of 1.9 the the first derivatives of the
sequence are uniformly bounded on any compact subset of any open disk
on which the functions un are uniformly bounded. Use Arzela Ascoli and
diagonalize over compact sets. (See [1] page 35.)

2 The Dirichlet Problem

Compare the following lemma and definition with Theorem 1.4.

Lemma 2.1. Let u : X → R be continuous. Then the following conditions
are equivalent

(i) The function u satisfies the following form of the maximum principle:
For every connected open subset W ⊂ X and every harmonic function
v on W either u−v is constant or else it does not assume its maximum
in W ;
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(ii) For every conformal disk (z,D) we have u ≤ uD;

(iii) u satisfies mean value inequality, i.e. u(p) ≤M(u, z, ∂D) for every
conformal disk (z,D) centered at p;

A function u which satisfies these conditions is called subharmonic. A
function u is called superharmonic iff −u is subharmonic.

Proof. We prove (i) =⇒ (ii). Choose (z,D) and let v = uD. Then u− uD is
zero on ∂D and thus either the constant 0 on D or else nowhere positive. In
either case u ≤ uD.

We prove (ii) =⇒ (iii). Choose (z,D) centered at p. Then by (ii) we have
u(p) ≤ uD(p) = M(uD, z, ∂D) = M(u, z, ∂D).

We prove (iii) =⇒ (i). Suppose that v is harmonic on a connected open
subset W ⊂ X and that u− v assumes its maximum M at some point of W ,
i.e. that the set

WM := {p ∈ W : u(p)− v(p) = M}

is nonempty. We must show that u−v = M on all of W , i.e. that WM = W .
The set WM is closed in W so it is enough to show that WM is open. Choose
p ∈ WM and let (z,D) be a conformal disk centered at p. Then

M = (u− v)(p) ≤M(u− v, z, ∂D) ≤M.

But u − v ≤ M so u − v = M on ∂D. By varying the radius of D we get
that u− v = M near p.

Corollary 2.2. Subharmonic functions satisfy the following properties.

(i) The max and sum of two subharmonic functions is subharmonic and a
positive multiple of a subharmonic function is subharmonic.

(ii) The subharmonic property is local: if X = X1 ∩ X2 where X1 and X2

are open and u ∈ C0(X,R) is subharmonic on X1 and on X2, then it
is subharmonic on X.

(iii) If u is subharmonic so is uD.

(iv) If u : X → R is continuous, positive and harmonic on an open set V ,
and vanishes on X \ V , then u is subharmonic on X.
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Proof. Part (i) is immediate and part (ii) follows easily from part (i) of 2.1.
For (iii) suppose that v is harmonic and uD − v assumes its maximum M at
p. Since uD − v is harmonic in D it follows by the maximum principle that
the maximum on D is assumed on ∂D so we may assume that p ∈ X \ D.
But u = uD on X \ D and u − v ≤ uD − v ≤ M so u − v also assumes
its maximum at p. Hence u − v = M and hence u is harmonic. For (iv)
suppose u − v assumes its maximum at a point p and v is harmonic. We
derive a contradiction. After subtracting a constant we may assume that
this maximum is zero. Then u ≤ v so 0 ≤ v on X \ V and 0 < u ≤ v on
X. If p /∈ X then v(p) = u(p) = 0 and v assumes its minimum at p which
contradicts the fact that v is harmonic. If p ∈ X then u − v assumes its
maximum at p and this contradicts the fact that u is subharmonic on V .

Remark 2.3. The theory of subharmonic functions works in all dimensions.
In dimension one, condition (ii) of lemma 2.1 says that u is a convex function.

Exercise 2.4. A C2 function u defined on an open subset of C is subharmonic
iff and only if ∆u ≥ 0.

2.5. A Perron family on a Riemann surface X is a collection F of functions
on X such that

(P-1) F is nonempty;

(P-2) every u ∈ F is subharmonic;

(P-3) if u, v ∈ F , then there exists w ∈ F with w ≥ max(u, v);

(P-4) for every conformal disk (z,D) in X and every u ∈ F we have uD ∈ F ;

(P-5) the function
uF(q) := sup

u∈F
u(q)

is everywhere finite.

Theorem 2.6 (Perron’s Method). If F is a Perron family, then uF is
harmonic.

Proof. Choose a conformal disk (z,D). Diagonalize on a countable dense
subset to construct a sequence un of elements of F which converges pointwise
to uF on D on a dense set. By (P-3) choose wn ∈ F with w1 = u1 and wn+1 ≥
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max(w1, . . . , wn). The new sequence is pointwise monotonically increasing.
By (P-2) and (P-4) we may assume that each wn is harmonic on D. Then
uF is harmonic in D by Harnack’s Principle and (P-4).

2.7. Assume Y ⊆ X open with ∂Y 6= ∅. Define

Fφ = {u ∈ C0(Ȳ ,R) : u subharmonic on Y, u ≤ sup
∂Y

φ, u|∂Y ≤ φ}

and
uφ(q) = sup

u∈Fφ
u(q).

Lemma 2.8. If φ : ∂Y → R is continuous and bounded then the family Fφ
is a Perron family so uφ is harmonic on Y .

Proof. Maximum principle.

2.9. A barrier function at p ∈ ∂Y is a function β defined in a neighborhood
U of p which is continuous on the closure Y ∩ U of Y ∩ U , superharmonic
on Y ∩ U , such that β(p) = 0 and β > 0 on Y ∩ U \ {p}. A point p ∈ ∂Y is
called regular iff there is a barrier function at p

Lemma 2.10. If ∂Y is a C1 submanifold, it is regular at each of its points.

Proof. Suppose w.l.o.g that Y ⊂ C and that ∂Y is transverse to the real axis
at 0, and that Y lies to the right. Then

β(z) =
√
r cos(θ/2) = <(

√
z), z = reiθ

is a barrier function at 0.

Lemma 2.11. If p is regular, then limy→p uφ(y) = φ(p).

Proof. The idea is that uφ(p) ≤ φ(p) and if we had strict inequality we could
make uφ bigger by adding ε− β. See [1] page 203.

Corollary 2.12. If ∂Y is a C1 submanifold of X then uφ solves the Dirichlet
problem with boundary condition φ, i.e. it extends to a continuous function
on Y ∪ ∂Y which agrees with φ on ∂Y .
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3 Green Functions

Definition 3.1. LetX be a Riemann surface and p ∈ X. A Green function
at p is a function g : X \ {p} → R such that

(G-1) g is harmonic;

(G-2) for some (and hence every) holomorphic coordinate z centered at p
the function g(z) + log(z) is harmonic near p;

(G-3) g > 0;

(G-4) if g′ : X \ {p} → R satisfies (G-1),(G-2),(G-3) then g ≤ g′.

Condition (G-4) implies that the Green function at p is unique (if it exists)
so we denote it by gp. Warning: When X is the interior of a manifold with
boundary, the Green function defined here differs from the usual Green’s
function by a factor of −1/(2π).

Definition 3.2. A Riemann surface X is called elliptic iff it is compact,
hyperbolic iff it admits a nonconstant negative subharmonic function, and
parabolic otherwise. By the maximum principle for subharmonic functions
(in the elliptic case) and definition (in the parabolic case) a nonhyperbolic
surface admits no nonconstant negative subharmonic function. In particu-
lar, it admits no nonconstant negative harmonic function and hence (add a
constant) no nonconstant bounded harmonic function.

Theorem 3.3. For a Riemann surface the following are equivalent.

(i) there is a Green function at every point;

(ii) there is a Green function at some point;

(iii) X is hyperbolic;

(iv) for each compact set K ⊂ X such that ∂K smooth and W := X \K is
connected, there is a continuous function ω : W ∪ ∂W → R such that
ω ≡ 1 on ∂K = ∂W and on W we have both that 0 < ω < 1 and that
ω is harmonic on W .
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Proof. That (i) =⇒ (ii) is obvious; we prove (ii) =⇒ (iii). Suppose gp is a
Green function at p. Then u = max(−2,−gp) is negative and subharmonic.
Now u = −2 near p, so either u is nonconstant or else −gp ≤ −2 everywhere.
The latter case is excluded, since otherwise g′ = gp − 1 would satisfy (G-1),
(G-2), (G-3) but not (G-4).

We prove (iii) =⇒ (iv). Assume X is hyperbolic. Then there is a super-
harmonic u : X → R which is nonconstant and everywhere positive. Choose
a compact K K and let W = X \ K. After rescaling we may assume that
minK u = 1. By the Maximum principle (for −u) and the fact that u is not
constant there are points (necessarily in W ) where u < 1 so after replacing
u by min(1, u) we may assume that u ≡ 1 on K. The family

FK = {v ∈ C0(W ∪ ∂W,R) : v ≤ u and v subharmonic on W}

is a Perron family: (P-1) FK 6= ∅ as the restriction of −u to X \ K is in
FK ; (P-2) v ∈ FK =⇒ v subharmonic by definition; (P-3) v1, v2 ∈ FK =⇒
max(v1, v2) ∈ F ; (P-4) v ∈ FK and D a conformal disk in X \ K implies
that vD ≤ uD ≤ u as v ≤ u on ∂D and u is superharmonic; and (P-5) the
function ω := supv∈F v is finite as v ∈ F =⇒ v ≤ u. It remains to show
that 0 < ω < 1 on W and ω = 1 on ∂W . Suppose Y ⊂ X is open, with ∂Y
smooth and Y ∪ ∂Y compact, and ∂K ⊂ ∂Y . Let w be the solution of the
Dirichlet problem with w = 1 on ∂K and w = 0 on (∂Y ) \ (∂K). Extend w
by zero on W \Y . The extended function w is subharmonic by Corollary 2.2
part (iv). Thus wY − u is subharmonic and ≤ 0 on X \Y and on ∂Y . Hence
wY |W ∈ F . As the sets Y exhaust X and w > 0 on Y it follows that ω
satisfies 0 < ω on W and ω = 1 on ∂W . Since ∂W is smooth it follows
that ω is continuous on ∂W . Since ω ≤ u and u < 1 on W we have that
ω ≤ u < 1 on Y so ω satisfies (iv).

We prove (iv) =⇒ (i). Choose p ∈ X and a conformal disk (z,D) centered
at p. Let F be the set of all continuous functions v : X \ {p} → R satisfying
the following conditions:

(a) supp(v) ∪ {p} is compact;

(b) v is subharmonic on X \ {p}, and

(c) v + log |z| extends to a subharmonic on function on D.

We show that F is a Perron family. The set F is not empty since it contains
the function − ln |z| (extended by 0). Properties (i-iii) in 2.5 are immediate.
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It remains to show (iv), i.e. that uF is finite. For 0 < r ≤ 1 let

Kr = {q ∈ D : z(q) ≤ r},

define ωr as in (iv) reading Kr for K and ωr for ω, and let

λr = max
|z|=1

ωr.

We will show that for v ∈ F we have

v ≤ log r

λr − 1
(∗)

X \ Kr and this shows that uF < ∞ on X \ {p} =
⋃
r>0 X \ Kr. Choose

v ∈ F and let cr = max|z|=r v. The function v + log |z| is subharmonic so its
maximum on K1 must occur on ∂K1, i.e.

cr + log r ≤ c1.

But crω − v ≥ 0 on ∂Kr and off the support of v so v ≤ crω on X \Kr and
hence

c1 ≤ crλr.

It follows that

cr ≤
log r

λr − 1

i.e. that (∗) holds on ∂Kr. But v has compact support so (∗) holds on X\Kr.
The desired Green function is

gp = uF .

From 2.6 we conclude that gp is harmonic on X\{p} and hence that gp+ln |z|
is harmonic on D \ {p}. From (∗) we conclude that the inequality

v + log |z| ≤ log r

λr − 1
+ log r

holds on ∂Kr and hence (as the left hand side is subharmonic) on Kr. Thus
the function gp + ln |z| is bounded on D and therefore harmonic on D by
the Removable Singularity Theorem 1.6. Moreover gp > 0 because gp ≥ 0
and gp is nonconstant. Suppose g′ also satisfies these properties; we must
show gp ≤ g′. If v ∈ F then v − g′ is subharmonic on X \ p (because v is)
and on D (because it equals (v + ln |z|) − (g′ + ln |z|)) and hence on all of
X. But v − g′ < 0 off the support of v and hence v < g′ everywhere. Thus
g = uF ≤ g′.

10



4 Nonhyperbolic surfaces

Theorem 4.1 (Extension Theorem). Assume X is a nonhyperbolic con-
nected Riemann surface. Suppose p ∈ X and that f is a holomorphic function
defined on D \ {p} where (z,D) is a conformal disk centered at p ∈ X. Then
there is a unique harmonic function u : X \ {p} → R bounded in the com-
plement of any neighborhood of p such that u − <(f) is harmonic in D and
vanishes at p.

Remark 4.2. Suppose that X = C, that p = 0, and that the function f has
a Laurent expansion

f(z) =
∞∑

n=−∞

cnz
n

valid in 0 < |z| < 1. The function u is given by u = <(w) where

w(z) =
−1∑

n=−∞

cnz
n.

The latter series converges for all z 6= 0.

Proof of 4.1. The proof of uniqueness is easy. If u1 and u2 are two functions
as in the theorem, then u1 − u2 is bounded in the complement of every
neighborhood of p (as u1 and u2 are) and near p (as u1− u2 = (u1−<(f))−
(u2 − <(f)) and is thus bounded, hence constant (as X is nonhyperbolic)
hence zero (as it vanishes at p). For existence we need two preliminary
lemmas. By the definition of conformal disk the open set z(D) contains the
closed unit disk in C; for r ≤ 1 let

Dr = {q ∈ D : |z(q)| < r}.

The following lemma is an immediate consequence of Stoke’s Theorem if X
is compact.

Lemma 4.3. If r < 1 and u is harmonic and bounded on X \Dr, then∫
∂D

∗du = 0.
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Proof. By adding a large positive constant we may assume w.l.o.g. that u is
nonnegative on ∂Dr. Choose an increasing sequence of open subsets Xn ⊂ X
such that Xn ∪ ∂Xn is compact, ∂Xn is smooth, and the closure of D is a
subset of Xn. Let un and vn be the solutions of the Dirichlet problem on
Xn \ Dr with boundary conditions un = vn = 0 on ∂Xn, un = u on ∂Dr

and vn = 1 on ∂Dr. By the maximum principle we have that 0 ≤ un ≤
um ≤ max∂D u and 0 ≤ vn ≤ vm ≤ 1 on Xn for m ≥ n. Hence by Harnack
and 1.9 un and vn converge in Ck uniformly on compact subsets of X \D (in
fact on compact subsets of the complement of the closure of Dr). Moreover
limn vn = 1 on ∂D and limn vn ≤ 1 on X \D so we must have limn vn = 1 on
X \D by (iv) of Corollary 2.2 and the fact that X is nonhyperbolic. Hence∫

∂D

∗du = lim
n→∞

∫
∂D

vn ∗ dun − un ∗ dvn

But un = vn = 0 on ∂Xn on ∂D so this may be written∫
∂D

∗du = − lim
n→∞

∫
∂(Xn\D)

vn∗dun − un∗dvn.

Now by Stokes∫
∂(Xn\D)

vn∗dun − un∗dvn =

∫
Xn\D

vn ∆un − un ∆vn = 0.

Lemma 4.4. For 0 < ρ < 1 and let uρ be the solution of the Dirichlet
problem on X \Dρ with u = <(f) on ∂Dρ. Then for 0 < r < 1/20 there is
a constant c(r) such that for 0 < ρ < r we have

max
∂Dr
|uρ| ≤ c(r).

Proof. By Lemma 4.3 the 1-form ∗ duρ is exact on on the interior of D \Dρ

so there is a holomorphic function Fρ with uρ = <(Fρ). The function Fρ− f
has a Laurent expansion about 0; its real part is

(uρ −<f)(teiθ =
∞∑

n=−∞

(αn cos(nθ) + βn sin(nθ)tn
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valid for ρ ≤ t ≤ 1. (The coefficients αn and βn depend on ρ.) Then

1

π
(uρ −<f)(teiθ cos(kθ) dθ = αkt

k + α−kt
−k

and
1

π
(uρ −<f)(teiθ sin(kθ) dθ = βkt

k + β−kt
−k.

For t = ρ the integrand vanishes so

α−k(ρ) = −αk(ρ)ρ2k, β−k(ρ) = −βk(ρ)ρ2k. (1)

For t = 1 we have

|αk|(1− ρ2k) = |αk + α−k| ≤ 2Mρ, |βk|(1− ρ2k) = |βk + β−k| ≤ 2Mρ

where
Mρ = max

|z|=1
|uρ|+ max

|z|=1
|<(f)|;

Hence for ρ < 1/2 we have |αk|, |βk| ≤ 4Mρ so

max
|z|=r
|uρ| ≤ max

|z|=r
|<(f)|+ 4Mρ

∞∑
n=0

rn + ρ2nr−n.

Since ρ < r sum on the right is less than 2
∑
rn = 1/(1− r) so we get

max
|z|=r
|uρ| ≤ max

|z|=r
|<(f)|+ 8Mρ

1− r
. (2)

The function uρ is harmonic and bounded on X \Dρ so we have

max
|z|=1
|uρ| ≤ max

|z|=r
|<(f)|+ 8Mρ

1− r
.

and hence

Mρ ≤ max
|z|=1
|<(f)|+ max

|z|=r
|<(f)|+ 8Mρ

1− r
.

Since 8/(1− r) < 1/2 this gives the bound

Mρ ≤ 2

(
max
|z|=1
|<(f)|+ max

|z|=r
|<(f)

)
on Mρ independent of ρ < r. hence a bound of |uρ| on |z| = 1 (i.e. ∂D), and
hence a bound on |uρ| on X \D.
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We complete the proof of Theorem 4.1. Let rn = 1/(21n) so that 1/20 >
r1 > r2 > · · · and limn→∞ rn = 0. Let uk = uρk where ρk = rk/2. By the
Compactness Theorem 1.10 and the fact that |uk| < c(r1) for ρk < r1 there
is a subsequence of the uk (still denoted by uk) converging uniformly to a
harmonic function u on X \Dr1 . For the same reason there is a subsequence
converging uniformly on X \ Dr2 , and a subsequence converging uniformly
on X \Dr3 , etc. Diagonalize and we get a sequence converging uniformly on
compact subsets to a harmonic function u on X \ {p}.

5 Maps to P

The material in this section is not required for the proof of the Uniformization
Theorem.

Theorem 5.1. Let X be a Riemann surface, p1, p2, . . . , pn ∈ X be distinct,
and a1, a2, . . . , an ∈ P := C ∪ {∞}. Then there is a meromorphic function f
(i.e. a holomorphic map f : X → P) with f(pj) = aj for j = 1, 2, . . . , n.

Proof. First suppose n = 2, a1 =∞, and a2 = 0 amd Then choose holomor-
phic coordinates zj centered at pj. In case that X is nonhyperbolic there
are functions uj : X \ {pj} → R with uj − <(1/zj) bounded and harmonic.
In case that X is hyperbolic there are functions uj : X \ {pj} → R with
uj − log |zj| bounded and harmonic. In either case by the Cauchy Riemann
equations the function

f(z) =
u1x − iu1y

u2x − iu2y

locally a ratio of two holomorphic differentials and is independent of the
choice of local coordinates z = x + iy used to defined it. (Note: No need to
assume X is simply connected.) Now g12 = f/(f + 1) takes the value 1 at p1

and 0 at p2. For general n the function hj =
∏

k 6=j gkj satisfies hj(pk) = δjk.
Take f =

∑
j ajhj.

Theorem 5.2. Let X be a compact Riemann surface and p ∈ X. Then there
is a meromorphic function F : X → P having p as its only pole.

Proof. Let g be the genus of X so that dimR H
1(X,R) = 2g. For k =

1, 2, . . . , 2g + 1 let uk be the harmonic function on X \ {p} given by Theo-
rem 4.1 with f = 1/zk, i.e. uk is harmonic on X \ {p} and uk − <(1/zk) is
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harmonic near p. Then ∗duk is a closed 1-form on X so some nontrivial linear
combination is exact; i.e. dv =

∑
k ak ∗duk. The function v is the imaginary

part of a holomophic function F = u+ iv whose real part <(F ) =
∑

k akuk is
bounded in the complement of every neighborhood of p. Thus p is the only
pole of F .

6 The Uniformization Theorem

Theorem 6.1 (Uniformization Theorem). Suppose that X is connected
and simply connected. Then

1. if X is elliptic, it is isomorphic to P1;

2. if X hyperbolic, it is isomorphic to the unit disk D;

3. if X is parabolic, it is isomorphic to C.

Definition 6.2. A holomorphic function F on X is called a holomorphic
Green function at the point p ∈ X iff

|F | = e−gp

where gp is the Green function for X at p.

Lemma 6.3. Assume X is simply connected and hyperbolic and p ∈ X.
Then there is a holomorphic Green function F at p.

Proof. Choose a holomorphic coordinate z = x + iy centered at p and let
h be a holomorphic function defined near p with <(h) = gp + log |z|. Let
Fp = e−hz. Then F is holomorphic and log |F | = −<(h) + log |z| = −gp.
Now the condition gp = − log |F | defines a holomorphic function F (unique
up to a multiplicative constant) in a neighborhood of any point other than
p so F extends to X by analytic continuation.

Lemma 6.4. Let F be holomorphic Green function p. Then

(i) F is holomorphic;

(ii) F has a simple zero at p;

(iii) F has no other zero;
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(iv) F : X → D;

(v) If F ′ satisfies (i-iv) then |F ′| ≤ |F |.

By (v) the holomorphic Green function at p is unique up to a multiplicative
constant of absolute value one.

Proof. Since Fp = e−hz the function F has a simple zero at p. Since gp > 0
we have that F : X → D and F has no other zero.

Lemma 6.5. A holomorphic Green function is injective.

Proof. Choose q ∈ X and let

φ(r) =
Fp(q)− Fp(r)
1− F̄p(q)Fp(r)

.

Then φ is the composition of Fp with an automorphism of D which maps Fp(q)
to 0. Suppose that φ has a zero of order n at a point q. Let u = − log |φ|/n.
Let z be a holomorphic coordinate at centered at q. Then u + log |z| is
bounded near p and hence (by Bôcher) harmonic near p. The Green function
gq at q is defined by gq = uF where F is the set of all v of compact support,
with v subharmonic on X \ {q} and v + log |z| subharmonic near q. By the
maximum principle, and because v has compact support we have v ≤ u for
v ∈ F . Hence gq ≤ u so

|Fq(r)| ≥ |φ(r)|1/n ≥ |φ(r)|. (#)

Since Fp(p) = 0 we have φ(p) = Fp(q) so Fq(p)| ≥ |Fp(q)|. Reversing p and
q gives |Fq(p)| = |Fp(q)|. By (#) |Fq(r)/φ(r)| ≤ 1 with equality at r = p.
Hence Fq = cφ where c is a constant with |c| = 1. But fq(r) 6= 0 for r 6= q so
φ(r) 6= 0 for r 6= q so Fp(r) 6= Fp(q) for r 6= q, i.e. Fp is injective.

The proof that X is isomorphic to D now follows from the Riemann
Mapping Theorem. However we can also prove that Fp is surjective as follows.

Lemma 6.6. Suppose W is a simply connected open subset of the unit disk
D such that 0 ∈ W but W 6= D. Then there is a injective holomorphic map
H : W → D with H(0) = 0 and |H ′(0)| > 1.
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Proof. Suppose a2 ∈ D \W . Then the unction (z − a2)/(1 − ā2z) is holo-
morphic and nonzero on W . Since W is simply connected this function has
a square root, i.e. there is a holomorphic function h on W such that

h(z)2 =
z − a2

1− ā2z

and h(0) = ia. Consider the function H : W → D defined by

H(z) =
h− ia
1 + iah

Then H ′(0) = (1 + |a|2)/(2ia) so |H ′(0)| > 1. This map is injective as

H(z) = H(w) =⇒ h(z) = h(w) =⇒ h(z)2 = h(w)2 =⇒ z − a2

1− ā2z
=

w − a2

1− ā2w
=⇒ z = w.

Lemma 6.7. A holomorphic Green function is surjective.

Proof. Assume not. Read Fp(X) for W in Lemma 6.6. Note that both Fp
and H ◦ Fp has a simple zero at p. The function − log |H ◦ Fp| has all the
properties of the Green function so

− log |Fp| = gp ≤ − log |H ◦ Fp|

by the minimality of the Green function. Hence |H ◦ Fp| ≤ |Fp| so |H| ≤ |z|
near zero contradicting |H ′(0)| > 1.

This proves the Uniformization Theorem in the hyperbolic case. To prove
the Uniformization Theorem in the nonhyperbolic case we introduce a class
of functions to play the role of the holomorphic Green function of 6.3.

Definition 6.8. Let X be a Riemann surface and p ∈ X. A function F :
X → P := C ∪ {∞} is called unipolar at p iff it it is meromorphic, has a
simple pole at p, and is bounded (hence holomorphic) in the complement of
every neighborhood of p. In other words, a unipolar function is a holomorphic
map F : X → P such that ∞ is a regular value, F−1(∞) consists of a
single point, and F is proper at infinity in the sense that for any sequence
qn ∈ X we have limn→∞ F (qn) =∞ =⇒ limn→∞ qn = p. By the Extension
Theorem 4.1 for any point p in a nonhyperbolic Riemann surface X there is
a unique function u which is unipolar at p (take f = 1/z).
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Lemma 6.9. Assume that X is nonhyperbolic and that F ′ and F are both
unipolar at p. Then F ′ = aF + b for some a, b ∈ C.

Proof. For some constant a, F ′ − aF has no pole at p and is hence bounded
and holomorphic on X. On a nonhyperbolic surface the only bounded holo-
morphic functions are the constant functions.

Lemma 6.10. Assume that X is nonhyperbolic, that p ∈ X, and that F :
X → P := C ∪ {∞} is meromorphic, has a simple pole at p, and that <(F )
bounded in the complement of every neighborhood of p. Then for q sufficiently
near (but distinct from) p the function G(r) = 1/(F (r) − F (q)) is unipolar
at q. In particular, G is unipolar at q if F is unipolar at p.

Proof. Since F has a simple pole at p it maps a neighborhood U of p dif-
feomorphically to a neighborhood of infinity by the Inverse Function Theo-
rem. Let M = supr/∈U u(r). For q sufficiently near p we have |F (q)| > 2M .
For such q we have that q is the only pole of G in U (as F is injective
on U) and that |G(r)| < M for r /∈ U (since |G(r)| = 1/|F (r) − F (q)| ≤
1/|u(r) − F (q)| < 1/M). Thus q is the only pole of G. Since G = L ◦ F
where L(w) = 1/(w − F (q)) we have that G maps U diffeomorphically to
a neighborhood of infinity so G is proper at infinity so G is unipolar as
required.

Lemma 6.11. Assume X is simply connected and nonhyperbolic and that
p ∈ X. Then there is a function F unipolar at p.

Proof. Use Theorem 4.1 with f(z) = 1/z. As X is simply connected the
resulting function u is the real part of a meromorphic function F = u + iv
with u bounded in the complement of every neighborhood of p, and F − 1/z
holomorphic in a neighborhood of p and vanishing at p. We must show that
v is also bounded in the complement of every neighborhood of p. Apply
Theorem 4.1 with f(z) = i/z. We get a meromorphic function F̃ = ũ + iṽ
with ũ bounded in the complement of every neighborhood of p and F̃ − i/z
holomorphic in a neighborhood of p. Thus to prove that v is bounded in the
complement of every neighborhood of p it is enough to show that F̃ = iF for
then v = −ũ.

By Lemma 6.10 the functions G(r) = 1/(F (r)−F (q)) G̃(r) = 1/(F̃ (r)−
F̃ (q)) are unipolar for q sufficiently near q. Then for suitable constants a
and ã the function aG(r) + ãG̃(r) has no pole at q (and hence no pole at
all) and hence, as X is nonhyperbolic, must be constant. solve the equation
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aG(r) + ãG̃(r) = c for F̃ in terms of F . Then F̃ = (αF + β)/(γF + δ). But
F (z) = 1/z+R(z) and F̃ (z) = i/z+ R̃(z) where R and R̃ vanish at p. Hence
F̃ = iF as claimed.

Lemma 6.12. If F is unipolar at p and F ′ is unipolar at q, then F ′ = L ◦F
for some automorphism L of P.

Proof. Fix p and let S be the set of points q where the lemma is true. By
Lemma 6.9 p ∈ S so it suffices to show that S is open and closed. Choose
q0 ∈ S and let F0 be unipolar at q0. By Lemma 6.10 the function F (r) =
1/(F0(r) − F0(q)) is unipolar at q for q sufficiently near q0. Now F = L ◦
F0 where L(w) = 1/(w − F0(q)) so by Lemma 6.9 (and the fact that the
automorphisms form a group) the lemma holds for q sufficiently near q0,
i.e. S is open. Now choose q ∈ X and assume that q = limn→∞ qn where
qn ∈ S. By Lemma 6.11 let F ′ be unipolar at p. For n sufficiently large
G′(r) = 1/(F ′(r)−F ′(qn)) is unipolar at qn by Lemma 6.10. Hence G′ = L◦F
for some L so F ′ = F ′(qn)+1/(L◦F ) = L′◦F so q ∈ S. Thus S is closed.

Lemma 6.13. Assume X is simply connected and nonhyperbolic. Then a
unipolar function is injective.

Proof. Suppose that F is unipolar at some point o ∈ X and assume that
F (p) = F (q). Let Fp be unipolar at p. Then there is an automorphism L
with Fp = L ◦ F . Thus Fp has a pole at q so q = p.

Proof of the Uniformization Theorem continued. By Lemma 6.13 we may as-
sume that X is an open subset of P = C ∪ {∞}. If X is elliptic we must
have X = P. If X = P \ {a} then a suitable automorphism of P maps X to
P \ {∞} = C. Hence it suffices to show that a simply connected open sub-
set of P which omits two points admits a bounded nonconstant holomorphic
function and is hence hyperbolic. By composing with an automorphism of
P we may assume that X ⊂ C \ {0,∞}. As X is simply connected there
is a square root function f defined on X,i.e. f(z)2 = z for z ∈ X. Hence
X ∩ (−X) = ∅ else z = f(z)2 = f(−z)2 = −z for some z ∈ X so either 0 or
∞ is in X, a contradiction. As −X is open the function g(z) = 1/(z − a) is
bounded on X for a ∈ −X.
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7 Surfaces with abelian fundamental group

7.1. The Uniformization Theorem classifies all connected Riemann surfaces
X whose fundamental group π1(X) is trivial. In this section we extend this
classification to surfaces X whose fundamental group us abelian. We also
determine the automorphism group of each such X. Note that the upper
half plane H and the unit disk D are isomorphic via the diffeomorphism
f : H→ D defined by f(z) = (1 + zi)/(1− zi).

Theorem 7.2. The connected Riemann surfaces with abelian fundamental
group are

(i) the plane C,

(ii) the upper half plane H,

(iii) the Riemann sphere P = C ∪ {∞},

(iv) the punctured plane C∗ = C \ {0},

(v) the punctured disk D∗ = D \ {0},

(vi) the annulus Dr = {z ∈ D : r < |z|} where 0 < r < 1,

(vii) the torus C/Λτ where τ ∈ H and Λτ = Z+ Zτ .

Theorem 7.3. No two of these are isomorphic except that C/Λτ and C/Λτ ′

are isomorphic if and only if Q(τ) = Q(τ ′), i.e. if and only if τ ′ = g(τ) for
some g ∈ SL2(Z).

Theorem 7.4. The automorphism groups of these surfaces X are as follows.

(i) The group Aut(C)of automorphisms of C is the group consisting of trans-
formations φ of form

φ(z) = az + b

where a, b ∈ C and a 6= 0.

(ii) The group Aut(P)of automorphisms of the Riemann sphere P is the
group PGL(2,C) of all transformations φ of form

φ(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad− bc 6= 0.
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(iii) The group Aut(H) of automorphisms of the upper half plane H is the
group PGL(2,R) of all transformations φ of form

φ(z) =
az + b

cz + d

where a, b, c, d ∈ R and ad− bc 6= 0.

(iv) The group Aut(C∗) of automorphisms of the punctured plane C∗ is the
group of all transformations φ of one of the forms

φ(z) = az or φ(z) =
a

z

where a ∈ C and a 6= 0.

(v) The group Aut(C/Λτ ) of automorphisms of the torus C/Λτ is the group
of all transformations φ of form

φ(z + Λτ ) = az + b+ Λτ

where b ∈ C and a = 1 if τ /∈ Q(i) ∪ Q(j), a4 = 1 if τ ∈ Q(i), and
a6 = 1 if a ∈ Q(j). (Here j is the intersection point in H of the two
circles |z| = 1 and |z − 1| = 1.)

(vi) The group Aut(D∗) of automorphisms of the punctured disk D∗ is the
group of all transformations φ of form

φ(z) = az

where a ∈ C and |a| = 1.

(vii) The group Aut(Dr) of automorphisms of the annulus Dr is the group
of all transformations φ of one of the forms

φ(z) = az or φ(z) =
ar

z

where a ∈ C and |a| = 1.

Theorem 7.5. A Riemann surface has abelian fundamental group if and
only if its automorphism group is not discrete.

21



7.6. Fix a connected Riemann surface X. By the Uniformization Theorem
the universal cover X̃ of a (connected) Riemann surface X is one of P, C, or
H ' D and hence X is isomorphic to X̃/G where G ⊂ Aut(X̃) is the group
of deck transformations of the covering projection π : X̃ → X, i.e.

G = {g ∈ Aut(X̃) : π ◦ g = π}.

Note that G is discrete and acts freely.

Lemma 7.7. The automorphism group of X = X̃/G is isomorphic to the
quotient N(G)/G where

N(G) = {φ ∈ Aut(X̃) : φ ◦G ◦ φ−1 = G}

is the normalizer of G in Aut(X̃).

Proof of Theorem 7.4(i). Let φ ∈ Aut(C). Then φ is an entire function. It
cannot have an essential singularity at infinity by Casorati-Weierstrass and
the pole at infinity must be simple as φ is injective. Hence φ(z) = az+b.

Proof of Theorem 7.4(ii). Choose φ ∈ Aut(P). After composing with an
element of PGL(2,C) we may assume that infinity is fixed, i.e. that φ(z) =
az + b.

Proof of Theorem 7.4(iii). Choose φ ∈ Aut(H). Let f : H → D be the
isomorphism given by f(z) = (1 + zi)/(1− zi). Then ψ := f−1 ◦ φ ◦ f is an
automorphism of the disk D. Composing with α(z) = (z − a)/(āz − 1) we
may assume that ψ(0) = 0. Then |ψ(z)| ≤ |z| by the Maximum Principle
(ψ(z)/z is holomorphic) and similarly |ψ−1(z)| ≤ |z|. Hence |ψ(z)| = |z| so
ψ(z) = cz where |c| = 1 by the Schwartz lemma. Hence φ ∈ PGL(2,C). The
coefficients must be real as the real axis is preserved so φ ∈ PGL(2,R).

Proof of Theorem 7.4(iv). The universal cover of the punctured plane C∗ is
the map

C→ C
∗ : z 7→ exp(2πiz).

The group G of deck transformations is the cyclic group generated by the
translation z 7→ z + 1. The normalizer N(G) of G in Aut(C) is . . .
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Proof of Theorem 7.4(v). The universal cover of the torus C/Λτ is the map

C→ C/Λτ : z 7→ z + Λτ .

The group G of deck transformations is the abelian group generated by the
translations z 7→ z+ 1 and z 7→ z+ τ . The normalizer N(G) of G in Aut(C)
is . . .

Proof of Theorem 7.4(vi). The universal cover of the punctured disk D∗ is
the map

H→ D
∗ : z 7→ exp(2πiz).

The group G of deck transformations is the cyclic group generated by the
translation z 7→ z + 1 . The normalizer N(G) of G in Aut(D) is . . .

Proof of Theorem 7.4(vii). The universal cover of the annulus Dr is the map

H→ Dr : z 7→ exp

(
log r log z

πi

)
.

Here log z denotes the branch of the logarithm satisfying 0 < =(log z) < π
so writing z = ρeiθ the cover takes the form

H→ Dr : ρeiθ 7→ rθ/π exp

(
log r log ρ

πi

)
.

The group G of deck transformations is the cyclic group generated by z 7→ az
where a = exp(−2π2/ log r). The normalizer N(G) of G in Aut(D) is . . .

Lemma 7.8. If X̃ = P then G = {1} so X = P.

Proof. Any nontrivial element of PSL(2,C) has a fixed point.

Lemma 7.9. If X̃ = C then the group G consists of a discrete abelian group
of translations. More precisely G is the set of all transformations f(z) = z+b
where b ∈ Γ and where the subgroup Γ ⊂ C is one of the following:

(i) Γ = {0} in which case X = X̃ = C;

(ii) Γ = ωZ in which case X ' C∗;

(iii) Γ = ω1Z+ ω2Z in which case X ' C/Λτ , τ = ω2/ω1.
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Proof. Any automorphism of form z 7→ az + b where a 6= 1 has a fixed
point so G is a discrete group of translations. Kronecker’s theorem says that
for ω ∈ R the group Zω + Z is dense in R if and only if ω /∈ Q. (Proof:
Consider a minimal positive element of Zω + Z.) It follows easily that a
discrete subgroup of the additive group Rn has at most n generators. Hence
the three possibilities. In case (ii) the group G is conjugate in Aut(C) to
the cyclic group generated by the translations z 7→ z + τ . In case (iii) the
group G is conjugate in Aut(C) to the free abelian group generated by the
translations z 7→ z + 1 and z 7→ z + τ .

Corollary 7.10 (Picard’s Theorem). An entire function f : C→ C which
omits two points is constant.

Proof. C \ {a, b} has a nonabelian fundamental group so its universal cover
must be D. A holomorphic map f : C→ C \ {a, b} lifts to a map f̃ : C→ D

which must be constant by Liouville.

Lemma 7.11. A fixed point free automorphism φ of H is conjugate in Aut(H)
either to a homothety z 7→ az where a > 0 or to the translation z 7→ z + 1.

Proof. Let A ∈ SL(2,R) be a matrix representing the automorphism φ. Since
φ has no fixed points in H the eigenvalues of A must be real. Since their
product is one we may rescale so that they are positive. If there are two
eigenvalues λ and λ−1 then A is conjugate in SL(2,R) to a diagonal matrix
and so φ is conjugate in Aut(H) to z 7→ λ2z. Otherwise the only eigenvalue

is 1 and A is conjugate in SL(2,R) to

(
1 1
0 1

)
so φ is conjugate in Aut(H)

to z 7→ z + 1.

Corollary 7.12. If X̃ = H and G is abelian, then the group G is conjugate
in Aut(H) to either a free abelian group generated by a homothety z 7→ az
where a > 0 or the free abelian group generated by the translation z 7→ z+ 1.
In the former case X ' Dr for some r and in the latter case X ' D∗.

Proof. If G contains a homethety it must be a subgroup of the group of
homotheties (as it is abelian) and hence cyclic as it is discrete. Similarly, If
G contains a translation it must be a subgroup of the group of translations
and hence cyclic.
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