The Uniformization Theorem

JWR

Tuesday December 11, 2001, 9:03 AM

The proof given here is a loose translation of [3]. There is another proof of the Uniformization Theorem in [2] where it is called the *Riemann Mapping Theorem*.

1 Harmonic functions

1.1. Throughout this section X denotes a connected Riemann surface, possibly noncompact. The open unit disk in \mathbb{C} is denoted by \mathbb{D} . A **conformal disk** in X centered at $p \in X$ is a pair (z, D) where z is a holomorphic coordinate on X whose image contains the closed disk of radius r about the origin in \mathbb{C} , z(p) = 0, and

$$D = \{ q \in X : |z(q)| < r \}.$$

For a conformal disk (z, D) we abbreviate the average value of a function u on the boundary of D by by

$$M(u,z,\partial D):=\frac{1}{2\pi}\int_0^{2\pi}v(re^{i\theta})\,d\theta,\qquad v(z(q))=u(q).$$

1.2. The **Poisson kernel** is the function $P : \mathbb{D} \times \partial \mathbb{D} \to \mathbb{R}$ defined by

$$P(z,\zeta) := \frac{1}{2\pi} \cdot \frac{|\zeta|^2 - |z|^2}{|\zeta - z|^2}.$$

The unique solution of Dirichlet's problem

$$\Delta u = 0, \qquad u | \partial \mathbb{D} = \phi$$

where $\phi \in C^0(\partial \mathbb{D})$ on the unit disk \mathbb{D} is given by the **Poisson integral** formula

$$u(z) = \int_{\partial \mathbb{D}} P(z, e^{i\theta}) \phi(e^{i\theta}) \, d\theta.$$

(See [1] page 13 for the proof.) For a conformal disk (z, D) in a Riemann surface X and a continuous function $u: X \to \mathbb{R}$ we denote by u_D the unique continuous function which agrees with u on $X \setminus D$ and is harmonic in D. (It is given by reading $u | \partial D$ for ϕ in the Poisson integral formula.)

1.3. The **Hodge star operator** on Riemann surface X is the operation which assigns to each 1-form ω the 1-form $*\omega$ defined by

$$(*\omega)(\xi) = -\omega(i\xi)$$

for each tangent vector ξ . If z is a holomorphic coordinate on X a real valued 1-form has the form

$$\omega = a \, dx + b \, dy$$

where a and b are real valued functions, $x = \Re(z)$, and $y = \Im(z)$; the form $*\omega$ is then given by

$$*\omega = -b\,dx + a\,dy.$$

A function u is called **harmonic** iff it is C^2 and *du is closed, i.e. d*du = 0. In terms of the coordinate z we have

$$d*du = (\Delta u) \, dx \wedge dy, \qquad \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

Note that the operator Δ is not intrinsic, i.e. Δu depends on the choice of holomorphic coordinate. (However the operator d*d is independent of the choice of coordinate and hence also the property of being harmonic.)

Theorem 1.4. Let X a Riemann surface and $u : X \to \mathbb{R}$ be continuous. Then the following are equivalent:

- (i) *u* is harmonic.
- (ii) u satisfies mean value property *i.e.* $u(p) = M(u, z, \partial D)$ for every conformal disk (D, z) centered at p;
- (iii) *u* is locally the real part of a holomorphic function.

Proof. It is enough to prove this for an open subset of \mathbb{C} . That (ii) \Longrightarrow (i) follows from the Poisson integral formula, namely

$$u(0) = \int_{\partial \mathbb{D}} P(0, e^{i\theta}) \phi(e^{i\theta}) \, d\theta = M(u, \mathrm{id}, \partial \mathbb{D}).$$

The general case follows by the change a change of variables $z \mapsto az+b$. Note that the mean value property implies the **maximum principle**: the function u has no strict maximum (or minimum) on any open set. A function which is continuous on the closure of D and satisfies the mean value property in D must therefore assume its maximum and minimum on the boundary of D. Hence (ii) \Longrightarrow (i) because $u - u_D$ (see 1.2) satisfies the mean value property in D and vanishes on ∂D so $u - u_D = 0$ on D so u is harmonic on X as D is arbitrary. For (i) \iff (iii) choose a conformal disk (z, D). The function u is harmonic if and only if the form *du is closed. The equation *du = dv encodes the Cauchy Riemann equations; it holds if and only if the function u + iv is holomorphic.

Corollary 1.5. The form *du is exact if and only there is a holomorphic function $f: X \to \mathbb{C}$ with $u = \Re(f)$.

Theorem 1.6 (Removable Singularity Theorem). If u is harmonic and bounded on the punctured disk, it extends to a harmonic function on the disk.

Proof. By shrinking the disk and subtracting the solution of the Dirichlet problem we may assume that u vanishes on ∂D . For $\varepsilon > 0$ the harmonic function

$$v_{\varepsilon}(z) = u(z) + \varepsilon \log |z| - \varepsilon$$

is negative on $\partial \mathbb{D}$ and near 0 and thus negative on $\mathbb{D} \setminus \{0\}$. Fix z and let $\varepsilon \to 0$; we conclude that $u \leq 0$ on $\mathbb{D} \setminus \{0\}$. Similarly $-u \leq 0$.

Remark 1.7. Bôrcher's Theorem (see [1] page 50) says that a positive function which harmonic on $\mathbb{D} \setminus 0$ has the form

$$u(z) = -b\log|z| + h(z)$$

where $b \ge 0$ and h is harmonic on \mathbb{D} . This implies the Removable Singularity Theorem (add a constant). To prove Bôrcher's Theorem choose b so that $*du + b \log |z|$ is exact. Hence assume w.l.o.g. that u is the real part of a holomorphic function with a possible singularity at the origin. However if the Laurent expansion for this function contains any negative powers of z its real part u will be unbounded in both directions. **Theorem 1.8 (Harnack's Principle).** A pointwise nondecreasing sequence of harmonic functions converges uniformly on compact sets either to ∞ or to a harmonic function.

Proof. If we assume that the sequence converges uniformly, this follows from the characterization via the mean value property (Theorem 1.4). For the general argument see [1] page 49. \Box

Theorem 1.9. If a sequence of harmonic functions converges uniformly on compact subsets then the limit is harmonic and for k = 1, 2, ... the sequence converges in C^k (uniformly on compact subsets).

Proof. In each holomorphic disk (z, D) we have

$$\partial^{\kappa} u = \int_{0}^{2\pi} \partial^{\kappa} P_{\zeta} \cdot u(\zeta) d\theta$$

for each multi-index $\kappa = (\kappa_1, \kappa_2)$ where $\zeta = re^{i\theta} = z(q), q \in \partial D$ (i.e. |z(q)| = r), and $P_{\zeta}(z) = P(z, \zeta)$ is the Poisson kernel. (See [1] page 15.)

Theorem 1.10 (Compactness Theorem). A uniformly bounded sequence of harmonic functions contains a subsequence which converges uniformly on compact sets.

Proof. By the estimate in the proof of 1.9 the first derivatives of the sequence are uniformly bounded on any compact subset of any open disk on which the functions u_n are uniformly bounded. Use Arzela Ascoli and diagonalize over compact sets. (See [1] page 35.)

2 The Dirichlet Problem

Compare the following lemma and definition with Theorem 1.4.

Lemma 2.1. Let $u : X \to \mathbb{R}$ be continuous. Then the following conditions are equivalent

 (i) The function u satisfies the following form of the maximum principle: For every connected open subset W ⊂ X and every harmonic function v on W either u-v is constant or else it does not assume its maximum in W;

- (ii) For every conformal disk (z, D) we have $u \leq u_D$;
- (iii) u satisfies mean value inequality, i.e. $u(p) \le M(u, z, \partial D)$ for every conformal disk (z, D) centered at p;

A function u which satisfies these conditions is called subharmonic. A function u is called superharmonic iff -u is subharmonic.

Proof. We prove (i) \implies (ii). Choose (z, D) and let $v = u_D$. Then $u - u_D$ is zero on ∂D and thus either the constant 0 on D or else nowhere positive. In either case $u \leq u_D$.

We prove (ii) \Longrightarrow (iii). Choose (z, D) centered at p. Then by (ii) we have $u(p) \le u_D(p) = M(u_D, z, \partial D) = M(u, z, \partial D)$.

We prove (iii) \implies (i). Suppose that v is harmonic on a connected open subset $W \subset X$ and that u - v assumes its maximum M at some point of W, i.e. that the set

$$W_M := \{ p \in W : u(p) - v(p) = M \}$$

is nonempty. We must show that u - v = M on all of W, i.e. that $W_M = W$. The set W_M is closed in W so it is enough to show that W_M is open. Choose $p \in W_M$ and let (z, D) be a conformal disk centered at p. Then

$$M = (u - v)(p) \le M(u - v, z, \partial D) \le M.$$

But $u - v \leq M$ so u - v = M on ∂D . By varying the radius of D we get that u - v = M near p.

Corollary 2.2. Subharmonic functions satisfy the following properties.

- (i) The max and sum of two subharmonic functions is subharmonic and a positive multiple of a subharmonic function is subharmonic.
- (ii) The subharmonic property is local: if $X = X_1 \cap X_2$ where X_1 and X_2 are open and $u \in C^0(X, \mathbb{R})$ is subharmonic on X_1 and on X_2 , then it is subharmonic on X.
- (iii) If u is subharmonic so is u_D .
- (iv) If $u : X \to \mathbb{R}$ is continuous, positive and harmonic on an open set V, and vanishes on $X \setminus V$, then u is subharmonic on X.

Proof. Part (i) is immediate and part (ii) follows easily from part (i) of 2.1. For (iii) suppose that v is harmonic and $u_D - v$ assumes its maximum M at p. Since $u_D - v$ is harmonic in D it follows by the maximum principle that the maximum on D is assumed on ∂D so we may assume that $p \in X \setminus D$. But $u = u_D$ on $X \setminus D$ and $u - v \leq u_D - v \leq M$ so u - v also assumes its maximum at p. Hence u - v = M and hence u is harmonic. For (iv) suppose u - v assumes its maximum at a point p and v is harmonic. We derive a contradiction. After subtracting a constant we may assume that this maximum is zero. Then $u \leq v$ so $0 \leq v$ on $X \setminus V$ and $0 < u \leq v$ on X. If $p \notin X$ then v(p) = u(p) = 0 and v assumes its minimum at p which contradicts the fact that v is harmonic. If $p \in X$ then u - v assumes its maximum at p and this contradicts the fact that u is subharmonic on V. \Box

Remark 2.3. The theory of subharmonic functions works in all dimensions. In dimension one, condition (ii) of lemma 2.1 says that u is a convex function.

Exercise 2.4. A C^2 function u defined on an open subset of \mathbb{C} is subharmonic iff and only if $\Delta u \geq 0$.

2.5. A **Perron family** on a Riemann surface X is a collection \mathcal{F} of functions on X such that

- (P-1) \mathcal{F} is nonempty;
- (P-2) every $u \in \mathcal{F}$ is subharmonic;
- (P-3) if $u, v \in \mathcal{F}$, then there exists $w \in \mathcal{F}$ with $w \ge \max(u, v)$;
- (P-4) for every conformal disk (z, D) in X and every $u \in \mathcal{F}$ we have $u_D \in \mathcal{F}$;
- (P-5) the function

$$u_{\mathcal{F}}(q) := \sup_{u \in \mathcal{F}} u(q)$$

is everywhere finite.

Theorem 2.6 (Perron's Method). If \mathcal{F} is a Perron family, then $u_{\mathcal{F}}$ is harmonic.

Proof. Choose a conformal disk (z, D). Diagonalize on a countable dense subset to construct a sequence u_n of elements of \mathcal{F} which converges pointwise to $u_{\mathcal{F}}$ on D on a dense set. By (P-3) choose $w_n \in \mathcal{F}$ with $w_1 = u_1$ and $w_{n+1} \geq$ $\max(w_1, \ldots, w_n)$. The new sequence is pointwise monotonically increasing. By (P-2) and (P-4) we may assume that each w_n is harmonic on D. Then $u_{\mathcal{F}}$ is harmonic in D by Harnack's Principle and (P-4).

2.7. Assume $Y \subseteq X$ open with $\partial Y \neq \emptyset$. Define

$$\mathcal{F}_{\phi} = \{ u \in C^{0}(\bar{Y}, \mathbb{R}) : u \text{ subharmonic on } Y, \ u \leq \sup_{\partial Y} \phi, \ u | \partial Y \leq \phi \}$$

and

$$u_{\phi}(q) = \sup_{u \in \mathcal{F}_{\phi}} u(q).$$

Lemma 2.8. If $\phi : \partial Y \to \mathbb{R}$ is continuous and bounded then the family \mathcal{F}_{ϕ} is a Perron family so u_{ϕ} is harmonic on Y.

Proof. Maximum principle.

2.9. A barrier function at $p \in \partial Y$ is a function β defined in a neighborhood U of p which is continuous on the closure $\overline{Y \cap U}$ of $Y \cap U$, superharmonic on $Y \cap U$, such that $\beta(p) = 0$ and $\beta > 0$ on $\overline{Y \cap U} \setminus \{p\}$. A point $p \in \partial Y$ is called **regular** iff there is a barrier function at p

Lemma 2.10. If ∂Y is a C^1 submanifold, it is regular at each of its points.

Proof. Suppose w.l.o.g that $Y \subset \mathbb{C}$ and that ∂Y is transverse to the real axis at 0, and that Y lies to the right. Then

$$\beta(z) = \sqrt{r}\cos(\theta/2) = \Re(\sqrt{z}), \qquad z = re^{i\theta}$$

is a barrier function at 0.

Lemma 2.11. If p is regular, then $\lim_{y\to p} u_{\phi}(y) = \phi(p)$.

Proof. The idea is that $u_{\phi}(p) \leq \phi(p)$ and if we had strict inequality we could make u_{ϕ} bigger by adding $\varepsilon - \beta$. See [1] page 203.

Corollary 2.12. If ∂Y is a C^1 submanifold of X then u_{ϕ} solves the Dirichlet problem with boundary condition ϕ , i.e. it extends to a continuous function on $Y \cup \partial Y$ which agrees with ϕ on ∂Y .

3 Green Functions

Definition 3.1. Let X be a Riemann surface and $p \in X$. A **Green function** at p is a function $g: X \setminus \{p\} \to \mathbb{R}$ such that

- (G-1) g is harmonic;
- (G-2) for some (and hence every) holomorphic coordinate z centered at p the function $g(z) + \log(z)$ is harmonic near p;
- (G-3) g > 0;

(G-4) if $g': X \setminus \{p\} \to \mathbb{R}$ satisfies (G-1),(G-2),(G-3) then $g \leq g'$.

Condition (G-4) implies that the Green function at p is unique (if it exists) so we denote it by g_p . Warning: When X is the interior of a manifold with boundary, the Green function defined here differs from the usual Green's function by a factor of $-1/(2\pi)$.

Definition 3.2. A Riemann surface X is called **elliptic** iff it is compact, hyperbolic iff it admits a nonconstant negative subharmonic function, and **parabolic** otherwise. By the maximum principle for subharmonic functions (in the elliptic case) and definition (in the parabolic case) a nonhyperbolic surface admits no nonconstant negative subharmonic function. In particular, it admits no nonconstant negative harmonic function and hence (add a constant) no nonconstant bounded harmonic function.

Theorem 3.3. For a Riemann surface the following are equivalent.

- (i) there is a Green function at every point;
- (ii) there is a Green function at some point;
- (iii) X is hyperbolic;
- (iv) for each compact set K ⊂ X such that ∂K smooth and W := X \ K is connected, there is a continuous function ω : W ∪ ∂W → ℝ such that ω ≡ 1 on ∂K = ∂W and on W we have both that 0 < ω < 1 and that ω is harmonic on W.

Proof. That (i) \implies (ii) is obvious; we prove (ii) \implies (iii). Suppose g_p is a Green function at p. Then $u = \max(-2, -g_p)$ is negative and subharmonic. Now u = -2 near p, so either u is nonconstant or else $-g_p \leq -2$ everywhere. The latter case is excluded, since otherwise $g' = g_p - 1$ would satisfy (G-1), (G-2), (G-3) but not (G-4).

We prove (iii) \implies (iv). Assume X is hyperbolic. Then there is a superharmonic $u: X \to \mathbb{R}$ which is nonconstant and everywhere positive. Choose a compact K K and let $W = X \setminus K$. After rescaling we may assume that $\min_K u = 1$. By the Maximum principle (for -u) and the fact that u is not constant there are points (necessarily in W) where u < 1 so after replacing u by $\min(1, u)$ we may assume that $u \equiv 1$ on K. The family

$$\mathcal{F}_K = \{ v \in C^0(W \cup \partial W, \mathbb{R}) : v \le u \text{ and } v \text{ subharmonic on } W \}$$

is a Perron family: (P-1) $\mathcal{F}_K \neq \emptyset$ as the restriction of -u to $X \setminus K$ is in \mathcal{F}_K ; (P-2) $v \in \mathcal{F}_K \implies v$ subharmonic by definition; (P-3) $v_1, v_2 \in \mathcal{F}_K \implies \max(v_1, v_2) \in \mathcal{F}$; (P-4) $v \in \mathcal{F}_K$ and D a conformal disk in $X \setminus K$ implies that $v_D \leq u_D \leq u$ as $v \leq u$ on ∂D and u is superharmonic; and (P-5) the function $\omega := \sup_{v \in \mathcal{F}} v$ is finite as $v \in \mathcal{F} \implies v \leq u$. It remains to show that $0 < \omega < 1$ on W and $\omega = 1$ on ∂W . Suppose $Y \subset X$ is open, with ∂Y smooth and $Y \cup \partial Y$ compact, and $\partial K \subset \partial Y$. Let w be the solution of the Dirichlet problem with w = 1 on ∂K and w = 0 on $(\partial Y) \setminus (\partial K)$. Extend w by zero on $W \setminus Y$. The extended function w is subharmonic by Corollary 2.2 part (iv). Thus $w_Y - u$ is subharmonic and ≤ 0 on $X \setminus Y$ and on ∂Y . Hence $w_Y | W \in \mathcal{F}$. As the sets Y exhaust X and w > 0 on Y it follows that ω satisfies $0 < \omega$ on W and $\omega = 1$ on ∂W . Since ∂W is smooth it follows that $\omega \leq u < 1$ on Y so ω satisfies (iv).

We prove $(iv) \Longrightarrow (i)$. Choose $p \in X$ and a conformal disk (z, D) centered at p. Let \mathcal{F} be the set of all continuous functions $v : X \setminus \{p\} \to \mathbb{R}$ satisfying the following conditions:

- (a) $supp(v) \cup \{p\}$ is compact;
- (b) v is subharmonic on $X \setminus \{p\}$, and
- (c) $v + \log |z|$ extends to a subharmonic on function on D.

We show that \mathcal{F} is a Perron family. The set \mathcal{F} is not empty since it contains the function $-\ln |z|$ (extended by 0). Properties (i-iii) in 2.5 are immediate.

It remains to show (iv), i.e. that $u_{\mathcal{F}}$ is finite. For $0 < r \leq 1$ let

$$K_r = \{q \in D : z(q) \le r\},\$$

define ω_r as in (iv) reading K_r for K and ω_r for ω , and let

$$\lambda_r = \max_{|z|=1} \omega_r.$$

We will show that for $v \in \mathcal{F}$ we have

$$v \le \frac{\log r}{\lambda_r - 1} \tag{(*)}$$

 $X \setminus K_r$ and this shows that $u_{\mathcal{F}} < \infty$ on $X \setminus \{p\} = \bigcup_{r>0} X \setminus K_r$. Choose $v \in \mathcal{F}$ and let $c_r = \max_{|z|=r} v$. The function $v + \log |z|$ is subharmonic so its maximum on K_1 must occur on ∂K_1 , i.e.

$$c_r + \log r \le c_1.$$

But $c_r \omega - v \ge 0$ on ∂K_r and off the support of v so $v \le c_r \omega$ on $X \setminus K_r$ and hence

$$c_1 \le c_r \lambda_r.$$

It follows that

$$c_r \le \frac{\log r}{\lambda_r - 1}$$

i.e. that (*) holds on ∂K_r . But v has compact support so (*) holds on $X \setminus K_r$. The desired Green function is

$$g_p = u_{\mathcal{F}}.$$

From 2.6 we conclude that g_p is harmonic on $X \setminus \{p\}$ and hence that $g_p + \ln |z|$ is harmonic on $D \setminus \{p\}$. From (*) we conclude that the inequality

$$|v| + \log |z| \le \frac{\log r}{\lambda_r - 1} + \log r$$

holds on ∂K_r and hence (as the left hand side is subharmonic) on K_r . Thus the function $g_p + \ln |z|$ is bounded on D and therefore harmonic on D by the Removable Singularity Theorem 1.6. Moreover $g_p > 0$ because $g_p \ge 0$ and g_p is nonconstant. Suppose g' also satisfies these properties; we must show $g_p \le g'$. If $v \in \mathcal{F}$ then v - g' is subharmonic on $X \setminus p$ (because v is) and on D (because it equals $(v + \ln |z|) - (g' + \ln |z|)$) and hence on all of X. But v - g' < 0 off the support of v and hence v < g' everywhere. Thus $g = u_{\mathcal{F}} \le g'$.

4 Nonhyperbolic surfaces

Theorem 4.1 (Extension Theorem). Assume X is a nonhyperbolic connected Riemann surface. Suppose $p \in X$ and that f is a holomorphic function defined on $D \setminus \{p\}$ where (z, D) is a conformal disk centered at $p \in X$. Then there is a unique harmonic function $u : X \setminus \{p\} \to \mathbb{R}$ bounded in the complement of any neighborhood of p such that $u - \Re(f)$ is harmonic in D and vanishes at p.

Remark 4.2. Suppose that $X = \mathbb{C}$, that p = 0, and that the function f has a Laurent expansion

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n$$

valid in 0 < |z| < 1. The function u is given by $u = \Re(w)$ where

$$w(z) = \sum_{n=-\infty}^{-1} c_n z^n.$$

The latter series converges for all $z \neq 0$.

Proof of 4.1. The proof of uniqueness is easy. If u_1 and u_2 are two functions as in the theorem, then $u_1 - u_2$ is bounded in the complement of every neighborhood of p (as u_1 and u_2 are) and near p (as $u_1 - u_2 = (u_1 - \Re(f)) - (u_2 - \Re(f))$ and is thus bounded, hence constant (as X is nonhyperbolic) hence zero (as it vanishes at p). For existence we need two preliminary lemmas. By the definition of conformal disk the open set z(D) contains the closed unit disk in \mathbb{C} ; for $r \leq 1$ let

$$D_r = \{ q \in D : |z(q)| < r \}.$$

The following lemma is an immediate consequence of Stoke's Theorem if X is compact.

Lemma 4.3. If r < 1 and u is harmonic and bounded on $X \setminus D_r$, then

$$\int_{\partial D} *du = 0.$$

Proof. By adding a large positive constant we may assume w.l.o.g. that u is nonnegative on ∂D_r . Choose an increasing sequence of open subsets $X_n \subset X$ such that $X_n \cup \partial X_n$ is compact, ∂X_n is smooth, and the closure of D is a subset of X_n . Let u_n and v_n be the solutions of the Dirichlet problem on $X_n \setminus D_r$ with boundary conditions $u_n = v_n = 0$ on ∂X_n , $u_n = u$ on ∂D_r and $v_n = 1$ on ∂D_r . By the maximum principle we have that $0 \leq u_n \leq$ $u_m \leq \max_{\partial D} u$ and $0 \leq v_n \leq v_m \leq 1$ on X_n for $m \geq n$. Hence by Harnack and 1.9 u_n and v_n converge in C^k uniformly on compact subsets of $X \setminus D$ (in fact on compact subsets of the complement of the closure of D_r). Moreover $\lim_n v_n = 1$ on ∂D and $\lim_n v_n \leq 1$ on $X \setminus D$ so we must have $\lim_n v_n = 1$ on $X \setminus D$ by (iv) of Corollary 2.2 and the fact that X is nonhyperbolic. Hence

$$\int_{\partial D} *du = \lim_{n \to \infty} \int_{\partial D} v_n * du_n - u_n * dv_n$$

But $u_n = v_n = 0$ on ∂X_n on ∂D so this may be written

$$\int_{\partial D} *du = -\lim_{n \to \infty} \int_{\partial (X_n \setminus D)} v_n *du_n - u_n *dv_n.$$

Now by Stokes

$$\int_{\partial(X_n\setminus D)} v_n * du_n - u_n * dv_n = \int_{X_n\setminus D} v_n \,\Delta u_n - u_n \,\Delta v_n = 0.$$

Lemma 4.4. For $0 < \rho < 1$ and let u_{ρ} be the solution of the Dirichlet problem on $X \setminus D_{\rho}$ with $u = \Re(f)$ on ∂D_{ρ} . Then for 0 < r < 1/20 there is a constant c(r) such that for $0 < \rho < r$ we have

$$\max_{\partial D_r} |u_{\rho}| \le c(r).$$

Proof. By Lemma 4.3 the 1-form $* du_{\rho}$ is exact on on the interior of $D \setminus D_{\rho}$ so there is a holomorphic function F_{ρ} with $u_{\rho} = \Re(F_{\rho})$. The function $F_{\rho} - f$ has a Laurent expansion about 0; its real part is

$$(u_{\rho} - \Re f)(te^{i\theta}) = \sum_{n=-\infty}^{\infty} (\alpha_n \cos(n\theta) + \beta_n \sin(n\theta)t^n)$$

valid for $\rho \leq t \leq 1$. (The coefficients α_n and β_n depend on ρ .) Then

$$\frac{1}{\pi}(u_{\rho} - \Re f)(te^{i\theta}\cos(k\theta)\,d\theta = \alpha_k t^k + \alpha_{-k}t^{-k}$$

and

$$\frac{1}{\pi}(u_{\rho} - \Re f)(te^{i\theta}\sin(k\theta)\,d\theta = \beta_k t^k + \beta_{-k}t^{-k}.$$

For $t = \rho$ the integrand vanishes so

$$\alpha_{-k}(\rho) = -\alpha_k(\rho)\rho^{2k}, \qquad \beta_{-k}(\rho) = -\beta_k(\rho)\rho^{2k}.$$
 (1)

For t = 1 we have

$$|\alpha_k|(1-\rho^{2k}) = |\alpha_k + \alpha_{-k}| \le 2M_{\rho}, \qquad |\beta_k|(1-\rho^{2k}) = |\beta_k + \beta_{-k}| \le 2M_{\rho}$$

where

$$M_{\rho} = \max_{|z|=1} |u_{\rho}| + \max_{|z|=1} |\Re(f)|;$$

Hence for $\rho < 1/2$ we have $|\alpha_k|, |\beta_k| \le 4M_{\rho}$ so

$$\max_{|z|=r} |u_{\rho}| \le \max_{|z|=r} |\Re(f)| + 4M_{\rho} \sum_{n=0}^{\infty} r^n + \rho^{2n} r^{-n}.$$

Since $\rho < r$ sum on the right is less than $2\sum r^n = 1/(1-r)$ so we get

$$\max_{|z|=r} |u_{\rho}| \le \max_{|z|=r} |\Re(f)| + \frac{8M_{\rho}}{1-r}.$$
(2)

The function u_{ρ} is harmonic and bounded on $X \setminus D_{\rho}$ so we have

$$\max_{|z|=1} |u_{\rho}| \le \max_{|z|=r} |\Re(f)| + \frac{8M_{\rho}}{1-r}.$$

and hence

$$M_{\rho} \le \max_{|z|=1} |\Re(f)| + \max_{|z|=r} |\Re(f)| + \frac{8M_{\rho}}{1-r}$$

Since 8/(1-r) < 1/2 this gives the bound

$$M_{\rho} \le 2\left(\max_{|z|=1} |\Re(f)| + \max_{|z|=r} |\Re(f)\right)$$

on M_{ρ} independent of $\rho < r$. hence a bound of $|u_{\rho}|$ on |z| = 1 (i.e. ∂D), and hence a bound on $|u_{\rho}|$ on $X \setminus D$.

We complete the proof of Theorem 4.1. Let $r_n = 1/(21n)$ so that $1/20 > r_1 > r_2 > \cdots$ and $\lim_{n\to\infty} r_n = 0$. Let $u_k = u_{\rho_k}$ where $\rho_k = r_k/2$. By the Compactness Theorem 1.10 and the fact that $|u_k| < c(r_1)$ for $\rho_k < r_1$ there is a subsequence of the u_k (still denoted by u_k) converging uniformly to a harmonic function u on $X \setminus D_{r_1}$. For the same reason there is a subsequence converging uniformly on $X \setminus D_{r_2}$, and a subsequence converging uniformly on compact subsets to a harmonic function u on $X \setminus \{p\}$.

5 Maps to \mathbb{P}

The material in this section is not required for the proof of the Uniformization Theorem.

Theorem 5.1. Let X be a Riemann surface, $p_1, p_2, \ldots, p_n \in X$ be distinct, and $a_1, a_2, \ldots, a_n \in \mathbb{P} := \mathbb{C} \cup \{\infty\}$. Then there is a meromorphic function f (i.e. a holomorphic map $f : X \to \mathbb{P}$) with $f(p_j) = a_j$ for $j = 1, 2, \ldots, n$.

Proof. First suppose n = 2, $a_1 = \infty$, and $a_2 = 0$ and Then choose holomorphic coordinates z_j centered at p_j . In case that X is nonhyperbolic there are functions $u_j : X \setminus \{p_j\} \to \mathbb{R}$ with $u_j - \Re(1/z_j)$ bounded and harmonic. In case that X is hyperbolic there are functions $u_j : X \setminus \{p_j\} \to \mathbb{R}$ with $u_j - \log |z_j|$ bounded and harmonic. In either case by the Cauchy Riemann equations the function

$$f(z) = \frac{u_{1x} - iu_{1y}}{u_{2x} - iu_{2y}}$$

locally a ratio of two holomorphic differentials and is independent of the choice of local coordinates z = x + iy used to defined it. (Note: No need to assume X is simply connected.) Now $g_{12} = f/(f+1)$ takes the value 1 at p_1 and 0 at p_2 . For general n the function $h_j = \prod_{k \neq j} g_{kj}$ satisfies $h_j(p_k) = \delta_{jk}$. Take $f = \sum_j a_j h_j$.

Theorem 5.2. Let X be a compact Riemann surface and $p \in X$. Then there is a meromorphic function $F : X \to \mathbb{P}$ having p as its only pole.

Proof. Let g be the genus of X so that $\dim_{\mathbb{R}} H^1(X,\mathbb{R}) = 2g$. For $k = 1, 2, \ldots, 2g + 1$ let u_k be the harmonic function on $X \setminus \{p\}$ given by Theorem 4.1 with $f = 1/z^k$, i.e. u_k is harmonic on $X \setminus \{p\}$ and $u_k - \Re(1/z_k)$ is

harmonic near p. Then $*du_k$ is a closed 1-form on X so some nontrivial linear combination is exact; i.e. $dv = \sum_k a_k *du_k$. The function v is the imaginary part of a holomophic function F = u + iv whose real part $\Re(F) = \sum_k a_k u_k$ is bounded in the complement of every neighborhood of p. Thus p is the only pole of F.

6 The Uniformization Theorem

Theorem 6.1 (Uniformization Theorem). Suppose that X is connected and simply connected. Then

- 1. if X is elliptic, it is isomorphic to \mathbb{P}^1 ;
- 2. if X hyperbolic, it is isomorphic to the unit disk \mathbb{D} ;
- 3. if X is parabolic, it is isomorphic to \mathbb{C} .

Definition 6.2. A holomorphic function F on X is called a **holomorphic** Green function at the point $p \in X$ iff

$$|F| = e^{-g_p}$$

where g_p is the Green function for X at p.

Lemma 6.3. Assume X is simply connected and hyperbolic and $p \in X$. Then there is a holomorphic Green function F at p.

Proof. Choose a holomorphic coordinate z = x + iy centered at p and let h be a holomorphic function defined near p with $\Re(h) = g_p + \log |z|$. Let $F_p = e^{-h}z$. Then F is holomorphic and $\log |F| = -\Re(h) + \log |z| = -g_p$. Now the condition $g_p = -\log |F|$ defines a holomorphic function F (unique up to a multiplicative constant) in a neighborhood of any point other than p so F extends to X by analytic continuation.

Lemma 6.4. Let F be holomorphic Green function p. Then

- (i) F is holomorphic;
- (ii) F has a simple zero at p;
- (iii) F has no other zero;

(iv) $F: X \to \mathbb{D};$

(v) If F' satisfies (i-iv) then $|F'| \leq |F|$.

By (v) the holomorphic Green function at p is unique up to a multiplicative constant of absolute value one.

Proof. Since $F_p = e^{-h}z$ the function F has a simple zero at p. Since $g_p > 0$ we have that $F: X \to \mathbb{D}$ and F has no other zero.

Lemma 6.5. A holomorphic Green function is injective.

Proof. Choose $q \in X$ and let

$$\phi(r) = \frac{F_p(q) - F_p(r)}{1 - \bar{F}_p(q)F_p(r)}.$$

Then ϕ is the composition of F_p with an automorphism of \mathbb{D} which maps $F_p(q)$ to 0. Suppose that ϕ has a zero of order n at a point q. Let $u = -\log |\phi|/n$. Let z be a holomorphic coordinate at centered at q. Then $u + \log |z|$ is bounded near p and hence (by Bôcher) harmonic near p. The Green function g_q at q is defined by $g_q = u_{\mathcal{F}}$ where \mathcal{F} is the set of all v of compact support, with v subharmonic on $X \setminus \{q\}$ and $v + \log |z|$ subharmonic near q. By the maximum principle, and because v has compact support we have $v \leq u$ for $v \in \mathcal{F}$. Hence $g_q \leq u$ so

$$|F_q(r)| \ge |\phi(r)|^{1/n} \ge |\phi(r)|.$$
 (#)

Since $F_p(p) = 0$ we have $\phi(p) = F_p(q)$ so $F_q(p)| \ge |F_p(q)|$. Reversing p and q gives $|F_q(p)| = |F_p(q)|$. By $(\#) |F_q(r)/\phi(r)| \le 1$ with equality at r = p. Hence $F_q = c\phi$ where c is a constant with |c| = 1. But $f_q(r) \ne 0$ for $r \ne q$ so $\phi(r) \ne 0$ for $r \ne q$ so $F_p(r) \ne F_p(q)$ for $r \ne q$, i.e. F_p is injective. \Box

The proof that X is isomorphic to \mathbb{D} now follows from the Riemann Mapping Theorem. However we can also prove that F_p is surjective as follows.

Lemma 6.6. Suppose W is a simply connected open subset of the unit disk \mathbb{D} such that $0 \in W$ but $W \neq \mathbb{D}$. Then there is a injective holomorphic map $H: W \to \mathbb{D}$ with H(0) = 0 and |H'(0)| > 1.

Proof. Suppose $a^2 \in \mathbb{D} \setminus W$. Then the unction $(z - a^2)/(1 - \bar{a}^2 z)$ is holomorphic and nonzero on W. Since W is simply connected this function has a square root, i.e. there is a holomorphic function h on W such that

$$h(z)^{2} = \frac{z - a^{2}}{1 - \bar{a}^{2}z}$$

and h(0) = ia. Consider the function $H: W \to D$ defined by

$$H(z) = \frac{h - ia}{1 + iah}$$

Then $H'(0) = (1 + |a|^2)/(2ia)$ so |H'(0)| > 1. This map is injective as $H(z) = H(w) \implies h(z) = h(w) \implies h(z)^2 = h(w)^2 \implies \frac{z - a^2}{1 - \bar{a}^2 z} = \frac{w - a^2}{1 - \bar{a}^2 w} \implies z = w.$

Lemma 6.7. A holomorphic Green function is surjective.

Proof. Assume not. Read $F_p(X)$ for W in Lemma 6.6. Note that both F_p and $H \circ F_p$ has a simple zero at p. The function $-\log |H \circ F_p|$ has all the properties of the Green function so

$$-\log|F_p| = g_p \le -\log|H \circ F_p|$$

by the minimality of the Green function. Hence $|H \circ F_p| \le |F_p|$ so $|H| \le |z|$ near zero contradicting |H'(0)| > 1.

This proves the Uniformization Theorem in the hyperbolic case. To prove the Uniformization Theorem in the nonhyperbolic case we introduce a class of functions to play the role of the holomorphic Green function of 6.3.

Definition 6.8. Let X be a Riemann surface and $p \in X$. A function $F : X \to \mathbb{P} := \mathbb{C} \cup \{\infty\}$ is called **unipolar** at p iff it it is meromorphic, has a simple pole at p, and is bounded (hence holomorphic) in the complement of every neighborhood of p. In other words, a unipolar function is a holomorphic map $F : X \to \mathbb{P}$ such that ∞ is a regular value, $F^{-1}(\infty)$ consists of a single point, and F is **proper at infinity** in the sense that for any sequence $q_n \in X$ we have $\lim_{n\to\infty} F(q_n) = \infty \implies \lim_{n\to\infty} q_n = p$. By the Extension Theorem 4.1 for any point p in a nonhyperbolic Riemann surface X there is a unique function u which is unipolar at p (take f = 1/z).

Lemma 6.9. Assume that X is nonhyperbolic and that F' and F are both unipolar at p. Then F' = aF + b for some $a, b \in \mathbb{C}$.

Proof. For some constant a, F' - aF has no pole at p and is hence bounded and holomorphic on X. On a nonhyperbolic surface the only bounded holomorphic functions are the constant functions.

Lemma 6.10. Assume that X is nonhyperbolic, that $p \in X$, and that $F : X \to \mathbb{P} := \mathbb{C} \cup \{\infty\}$ is meromorphic, has a simple pole at p, and that $\Re(F)$ bounded in the complement of every neighborhood of p. Then for q sufficiently near (but distinct from) p the function G(r) = 1/(F(r) - F(q)) is unipolar at q. In particular, G is unipolar at q if F is unipolar at p.

Proof. Since F has a simple pole at p it maps a neighborhood U of p diffeomorphically to a neighborhood of infinity by the Inverse Function Theorem. Let $M = \sup_{r \notin U} u(r)$. For q sufficiently near p we have |F(q)| > 2M. For such q we have that q is the only pole of G in U (as F is injective on U) and that |G(r)| < M for $r \notin U$ (since $|G(r)| = 1/|F(r) - F(q)| \le 1/|u(r) - F(q)| < 1/M$). Thus q is the only pole of G. Since $G = L \circ F$ where L(w) = 1/(w - F(q)) we have that G maps U diffeomorphically to a neighborhood of infinity so G is proper at infinity so G is unipolar as required.

Lemma 6.11. Assume X is simply connected and nonhyperbolic and that $p \in X$. Then there is a function F unipolar at p.

Proof. Use Theorem 4.1 with f(z) = 1/z. As X is simply connected the resulting function u is the real part of a meromorphic function F = u + iv with u bounded in the complement of every neighborhood of p, and F - 1/z holomorphic in a neighborhood of p and vanishing at p. We must show that v is also bounded in the complement of every neighborhood of p. Apply Theorem 4.1 with f(z) = i/z. We get a meromorphic function $\tilde{F} = \tilde{u} + i\tilde{v}$ with \tilde{u} bounded in the complement of every neighborhood of p and $\tilde{F} - i/z$ holomorphic in a neighborhood of p. Thus to prove that v is bounded in the complement of v is not prove that $\tilde{F} = iF$ for then $v = -\tilde{u}$.

By Lemma 6.10 the functions $G(r) = 1/(F(r) - F(q)) \tilde{G}(r) = 1/(\tilde{F}(r) - \tilde{F}(q))$ are unipolar for q sufficiently near q. Then for suitable constants a and \tilde{a} the function $aG(r) + \tilde{a}\tilde{G}(r)$ has no pole at q (and hence no pole at all) and hence, as X is nonhyperbolic, must be constant. solve the equation

 $aG(r) + \tilde{a}\tilde{G}(r) = c$ for \tilde{F} in terms of F. Then $\tilde{F} = (\alpha F + \beta)/(\gamma F + \delta)$. But F(z) = 1/z + R(z) and $\tilde{F}(z) = i/z + \tilde{R}(z)$ where R and \tilde{R} vanish at p. Hence $\tilde{F} = iF$ as claimed.

Lemma 6.12. If F is unipolar at p and F' is unipolar at q, then $F' = L \circ F$ for some automorphism L of \mathbb{P} .

Proof. Fix p and let S be the set of points q where the lemma is true. By Lemma 6.9 $p \in S$ so it suffices to show that S is open and closed. Choose $q_0 \in S$ and let F_0 be unipolar at q_0 . By Lemma 6.10 the function $F(r) = 1/(F_0(r) - F_0(q))$ is unipolar at q for q sufficiently near q_0 . Now $F = L \circ F_0$ where $L(w) = 1/(w - F_0(q))$ so by Lemma 6.9 (and the fact that the automorphisms form a group) the lemma holds for q sufficiently near q_0 , i.e. S is open. Now choose $q \in X$ and assume that $q = \lim_{n\to\infty} q_n$ where $q_n \in S$. By Lemma 6.11 let F' be unipolar at p. For n sufficiently large $G'(r) = 1/(F'(r) - F'(q_n))$ is unipolar at q_n by Lemma 6.10. Hence $G' = L \circ F$ for some L so $F' = F'(q_n) + 1/(L \circ F) = L' \circ F$ so $q \in S$. Thus S is closed. \Box

Lemma 6.13. Assume X is simply connected and nonhyperbolic. Then a unipolar function is injective.

Proof. Suppose that F is unipolar at some point $o \in X$ and assume that F(p) = F(q). Let F_p be unipolar at p. Then there is an automorphism L with $F_p = L \circ F$. Thus F_p has a pole at q so q = p.

Proof of the Uniformization Theorem continued. By Lemma 6.13 we may assume that X is an open subset of $\mathbb{P} = \mathbb{C} \cup \{\infty\}$. If X is elliptic we must have $X = \mathbb{P}$. If $X = \mathbb{P} \setminus \{a\}$ then a suitable automorphism of \mathbb{P} maps X to $\mathbb{P} \setminus \{\infty\} = \mathbb{C}$. Hence it suffices to show that a simply connected open subset of \mathbb{P} which omits two points admits a bounded nonconstant holomorphic function and is hence hyperbolic. By composing with an automorphism of \mathbb{P} we may assume that $X \subset \mathbb{C} \setminus \{0, \infty\}$. As X is simply connected there is a square root function f defined on X, i.e. $f(z)^2 = z$ for $z \in X$. Hence $X \cap (-X) = \emptyset$ else $z = f(z)^2 = f(-z)^2 = -z$ for some $z \in X$ so either 0 or ∞ is in X, a contradiction. As -X is open the function g(z) = 1/(z-a) is bounded on X for $a \in -X$.

7 Surfaces with abelian fundamental group

7.1. The Uniformization Theorem classifies all connected Riemann surfaces X whose fundamental group $\pi_1(X)$ is trivial. In this section we extend this classification to surfaces X whose fundamental group us abelian. We also determine the automorphism group of each such X. Note that the upper half plane \mathbb{H} and the unit disk \mathbb{D} are isomorphic via the diffeomorphism $f: \mathbb{H} \to \mathbb{D}$ defined by f(z) = (1+zi)/(1-zi).

Theorem 7.2. The connected Riemann surfaces with abelian fundamental group are

- (i) the plane \mathbb{C} ,
- (ii) the upper half plane \mathbb{H} ,
- (iii) the Riemann sphere $\mathbb{P} = \mathbb{C} \cup \{\infty\}$,
- (iv) the punctured plane $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$,
- (v) the punctured disk $\mathbb{D}^* = \mathbb{D} \setminus \{0\},\$
- (vi) the annulus $\mathbb{D}_r = \{z \in \mathbb{D} : r < |z|\}$ where 0 < r < 1,
- (vii) the torus $\mathbb{C}/\Lambda_{\tau}$ where $\tau \in \mathbb{H}$ and $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$.

Theorem 7.3. No two of these are isomorphic except that $\mathbb{C}/\Lambda_{\tau}$ and $\mathbb{C}/\Lambda_{\tau'}$ are isomorphic if and only if $\mathbb{Q}(\tau) = \mathbb{Q}(\tau')$, i.e. if and only if $\tau' = g(\tau)$ for some $g \in SL_2(\mathbb{Z})$.

Theorem 7.4. The automorphism groups of these surfaces X are as follows.

 (i) The group Aut(C) of automorphisms of C is the group consisting of transformations φ of form

$$\phi(z) = az + b$$

where $a, b \in \mathbb{C}$ and $a \neq 0$.

(ii) The group Aut(P) of automorphisms of the Riemann sphere P is the group PGL(2, C) of all transformations φ of form

$$\phi(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$.

(iii) The group Aut(ℍ) of automorphisms of the upper half plane ℍ is the group PGL(2, ℝ) of all transformations φ of form

$$\phi(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{R}$ and $ad - bc \neq 0$.

(iv) The group $\operatorname{Aut}(\mathbb{C}^*)$ of automorphisms of the punctured plane \mathbb{C}^* is the group of all transformations ϕ of one of the forms

$$\phi(z) = az$$
 or $\phi(z) = \frac{a}{z}$

where $a \in \mathbb{C}$ and $a \neq 0$.

(v) The group $\operatorname{Aut}(\mathbb{C}/\Lambda_{\tau})$ of automorphisms of the torus $\mathbb{C}/\Lambda_{\tau}$ is the group of all transformations ϕ of form

$$\phi(z + \Lambda_{\tau}) = az + b + \Lambda_{\tau}$$

where $b \in \mathbb{C}$ and a = 1 if $\tau \notin \mathbb{Q}(i) \cup \mathbb{Q}(j)$, $a^4 = 1$ if $\tau \in \mathbb{Q}(i)$, and $a^6 = 1$ if $a \in \mathbb{Q}(j)$. (Here j is the intersection point in \mathbb{H} of the two circles |z| = 1 and |z - 1| = 1.)

(vi) The group $\operatorname{Aut}(\mathbb{D}^*)$ of automorphisms of the punctured disk \mathbb{D}^* is the group of all transformations ϕ of form

$$\phi(z) = az$$

where $a \in \mathbb{C}$ and |a| = 1.

(vii) The group $\operatorname{Aut}(\mathbb{D}_r)$ of automorphisms of the annulus \mathbb{D}_r is the group of all transformations ϕ of one of the forms

$$\phi(z) = az$$
 or $\phi(z) = \frac{ar}{z}$

where $a \in \mathbb{C}$ and |a| = 1.

Theorem 7.5. A Riemann surface has abelian fundamental group if and only if its automorphism group is not discrete.

7.6. Fix a connected Riemann surface X. By the Uniformization Theorem the universal cover \tilde{X} of a (connected) Riemann surface X is one of \mathbb{P} , \mathbb{C} , or $\mathbb{H} \simeq \mathbb{D}$ and hence X is isomorphic to \tilde{X}/G where $G \subset \operatorname{Aut}(\tilde{X})$ is the group of deck transformations of the covering projection $\pi : \tilde{X} \to X$, i.e.

$$G = \{g \in \operatorname{Aut}(\tilde{X}) : \pi \circ g = \pi\}.$$

Note that G is discrete and acts freely.

Lemma 7.7. The automorphism group of $X = \tilde{X}/G$ is isomorphic to the quotient N(G)/G where

$$N(G) = \{ \phi \in \operatorname{Aut}(\tilde{X}) : \phi \circ G \circ \phi^{-1} = G \}$$

is the normalizer of G in $\operatorname{Aut}(\tilde{X})$.

Proof of Theorem 7.4(i). Let $\phi \in \operatorname{Aut}(\mathbb{C})$. Then ϕ is an entire function. It cannot have an essential singularity at infinity by Casorati-Weierstrass and the pole at infinity must be simple as ϕ is injective. Hence $\phi(z) = az + b$. \Box

Proof of Theorem 7.4(ii). Choose $\phi \in \operatorname{Aut}(\mathbb{P})$. After composing with an element of $\operatorname{PGL}(2, \mathbb{C})$ we may assume that infinity is fixed, i.e. that $\phi(z) = az + b$.

Proof of Theorem 7.4(iii). Choose $\phi \in \operatorname{Aut}(\mathbb{H})$. Let $f : \mathbb{H} \to \mathbb{D}$ be the isomorphism given by f(z) = (1+zi)/(1-zi). Then $\psi := f^{-1} \circ \phi \circ f$ is an automorphism of the disk \mathbb{D} . Composing with $\alpha(z) = (z-a)/(\bar{a}z-1)$ we may assume that $\psi(0) = 0$. Then $|\psi(z)| \leq |z|$ by the Maximum Principle $(\psi(z)/z)$ is holomorphic) and similarly $|\psi^{-1}(z)| \leq |z|$. Hence $|\psi(z)| = |z|$ so $\psi(z) = cz$ where |c| = 1 by the Schwartz lemma. Hence $\phi \in \operatorname{PGL}(2, \mathbb{C})$. The coefficients must be real as the real axis is preserved so $\phi \in \operatorname{PGL}(2, \mathbb{R})$. \Box

Proof of Theorem 7.4(iv). The universal cover of the punctured plane \mathbb{C}^* is the map

$$\mathbb{C} \to \mathbb{C}^* : z \mapsto \exp(2\pi i z).$$

The group G of deck transformations is the cyclic group generated by the translation $z \mapsto z + 1$. The normalizer N(G) of G in $Aut(\mathbb{C})$ is ...

Proof of Theorem 7.4(v). The universal cover of the torus $\mathbb{C}/\Lambda_{\tau}$ is the map

$$\mathbb{C} \to \mathbb{C}/\Lambda_{\tau} : z \mapsto z + \Lambda_{\tau}.$$

The group G of deck transformations is the abelian group generated by the translations $z \mapsto z+1$ and $z \mapsto z+\tau$. The normalizer N(G) of G in Aut(\mathbb{C}) is ...

Proof of Theorem 7.4(vi). The universal cover of the punctured disk \mathbb{D}^* is the map

$$\mathbb{H} \to \mathbb{D}^* : z \mapsto \exp(2\pi i z).$$

The group G of deck transformations is the cyclic group generated by the translation $z \mapsto z+1$. The normalizer N(G) of G in $Aut(\mathbb{D})$ is ...

Proof of Theorem 7.4(vii). The universal cover of the annulus \mathbb{D}_r is the map

$$\mathbb{H} \to D_r : z \mapsto \exp\left(\frac{\log r \log z}{\pi i}\right).$$

Here $\log z$ denotes the branch of the logarithm satisfying $0 < \Im(\log z) < \pi$ so writing $z = \rho e^{i\theta}$ the cover takes the form

$$\mathbb{H} \to D_r : \rho e^{i\theta} \mapsto r^{\theta/\pi} \exp\left(\frac{\log r \log \rho}{\pi i}\right).$$

The group G of deck transformations is the cyclic group generated by $z \mapsto az$ where $a = \exp(-2\pi^2/\log r)$. The normalizer N(G) of G in Aut(\mathbb{D}) is ... \Box

Lemma 7.8. If $\tilde{X} = \mathbb{P}$ then $G = \{1\}$ so $X = \mathbb{P}$.

Proof. Any nontrivial element of $PSL(2, \mathbb{C})$ has a fixed point.

Lemma 7.9. If $\tilde{X} = \mathbb{C}$ then the group G consists of a discrete abelian group of translations. More precisely G is the set of all transformations f(z) = z+b where $b \in \Gamma$ and where the subgroup $\Gamma \subset \mathbb{C}$ is one of the following:

- (i) $\Gamma = \{0\}$ in which case $X = \tilde{X} = \mathbb{C}$;
- (ii) $\Gamma = \omega \mathbb{Z}$ in which case $X \simeq \mathbb{C}^*$;
- (iii) $\Gamma = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ in which case $X \simeq \mathbb{C}/\Lambda_{\tau}, \ \tau = \omega_2/\omega_1$.

Proof. Any automorphism of form $z \mapsto az + b$ where $a \neq 1$ has a fixed point so G is a discrete group of translations. Kronecker's theorem says that for $\omega \in \mathbb{R}$ the group $\mathbb{Z}\omega + \mathbb{Z}$ is dense in \mathbb{R} if and only if $\omega \notin \mathbb{Q}$. (Proof: Consider a minimal positive element of $\mathbb{Z}\omega + \mathbb{Z}$.) It follows easily that a discrete subgroup of the additive group \mathbb{R}^n has at most n generators. Hence the three possibilities. In case (ii) the group G is conjugate in Aut(\mathbb{C}) to the cyclic group generated by the translations $z \mapsto z + \tau$. In case (iii) the group G is conjugate in Aut(\mathbb{C}) to the free abelian group generated by the translations $z \mapsto z + 1$ and $z \mapsto z + \tau$.

Corollary 7.10 (Picard's Theorem). An entire function $f : \mathbb{C} \to \mathbb{C}$ which omits two points is constant.

Proof. $\mathbb{C} \setminus \{a, b\}$ has a nonabelian fundamental group so its universal cover must be \mathbb{D} . A holomorphic map $f : \mathbb{C} \to \mathbb{C} \setminus \{a, b\}$ lifts to a map $\tilde{f} : \mathbb{C} \to \mathbb{D}$ which must be constant by Liouville.

Lemma 7.11. A fixed point free automorphism ϕ of \mathbb{H} is conjugate in Aut(\mathbb{H}) either to a homothety $z \mapsto az$ where a > 0 or to the translation $z \mapsto z + 1$.

Proof. Let *A* ∈ SL(2, ℝ) be a matrix representing the automorphism *φ*. Since *φ* has no fixed points in 𝔄 the eigenvalues of *A* must be real. Since their product is one we may rescale so that they are positive. If there are two eigenvalues λ and λ^{-1} then *A* is conjugate in SL(2, ℝ) to a diagonal matrix and so *φ* is conjugate in Aut(𝔄) to $z \mapsto \lambda^2 z$. Otherwise the only eigenvalue is 1 and *A* is conjugate in SL(2, ℝ) to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ so *φ* is conjugate in Aut(𝔄) to $z \mapsto z + 1$.

Corollary 7.12. If $\tilde{X} = \mathbb{H}$ and G is abelian, then the group G is conjugate in Aut(\mathbb{H}) to either a free abelian group generated by a homothety $z \mapsto az$ where a > 0 or the free abelian group generated by the translation $z \mapsto z + 1$. In the former case $X \simeq \mathbb{D}^r$ for some r and in the latter case $X \simeq \mathbb{D}^*$.

Proof. If G contains a homethety it must be a subgroup of the group of homotheties (as it is abelian) and hence cyclic as it is discrete. Similarly, If G contains a translation it must be a subgroup of the group of translations and hence cyclic.

References

- S. Axler, P. Bourdon, W. Ramey: *Harmonic Function Theory*, Springer Graduate Texts in Math 137 1992.
- [2] O. Forster: Lectures on Riemann Surfaces, Springer Graduate Texts in Math 81 1981.
- [3] E. Reyssat: Quelques Aspects des Surface de Riemann, Birkhäuser, 1989.