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This is an account of the talk of Cheol-Hyun Cho. The aim is to construct
a “universal elliptic curve”. Tong Hai Yang helped me with this - he told me
about [1].

1 Discrete Groups

A good reference for the material in this section is [3].

1. Throughout P = C ∪ {∞} denotes the Riemann sphere, H denotes the
upper half plane, C∗ denotes the multiplicative group of complex numbers,
and Pn = (Cn+1 \ {0})/C∗ denotes n dimensional complex projective space.
For w ∈ Cn+1 \{0} let [w] := wC∗ denote the corresponding point of Pn. For
A ∈ GLn+1(C) let MA denote the corresponding automorphism of projective
space so that

MA([w]) = [Aw].

Identify P1 and P via z = [z, 1] and ∞ = [1, 0] so that

MA(z) =
az + b

cz + d
, A =

(
a b
c d

)
for A ∈ GL2(C). A transformation of form MA is called a Möbius trans-
formation.

2. A matrix A ∈ SL2(R) \ {±I2} is called hyperbolic iff its eigenvalues are
real and distinct, elliptic iff its eigenvalues are distinct and not real (and
therefore complex conjugate), and parabolic otherwise. It is easy to see
that a nontrivial Möbius transformation has either exactly one or exactly
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two fixed points; Hence a matrix A ∈ SL2(R) \ {±I2} is hyperbolic if and
only if the corresponding automorphism MA of P has two fixed points in R,
elliptic if and only if MA has two fixed points one in H and the other in −H,
and parabolic if and only if it has exactly one fixed point. The fixed point of
a parabolic element lies in R ∪ {∞}.
3. Let Γ ⊂ SL2(R) be a subgroup. A point z ∈ H is called a regular point
of Γ iff the isotropy group Γz is essentially trivial, i.e. Γz = Γ ∩ {±I2}. A
point z ∈ H is called an elliptic point of Γ iff it is a fixed point of MA some
elliptic element A ∈ Γ. A point z ∈ R ∪ {∞} is called an cusp of Γ iff it is
a fixed point of MA for some parabolic element A ∈ Γ. Denote by

X(Γ) := {Γ(z) : z ∈ H ∪ Cusp(Γ)}, Γ(z) := {MA(z) : A ∈ Γ}

the orbit space of Γ acting on the union of H with the set of cusps of Γ. For
z ∈ H ∪ Cusp(Γ) let

Γz := {A ∈ Γ : MA(z) = z}

denote the stabilizer group of z. Points on the same orbit have conjugate
(in Γ) stabilizer groups so orbits of Γ in H ∪ Cusp(Γ) may be classified as
regular, elliptic, or cusp. It is easy to see that the stabilizer group

SL2(R)∞ := {A ∈ SL2(R) : MA(∞) =∞}

is the set of all real matrices A of form A = ±
(

1 h
0 1

)
where h ∈ R.

Lemma 4. Let Γ ⊂ SL2(R) be a discrete group. Then

(i) Let z0 ∈ H be an elliptic point of Γ. Then there is an element C ∈ SL2(C)
with MC(z0) = 0 and MC ◦ Γz ◦ M−1

C a finite cyclic subgroup of the
stabilizer subgroup C∗ · I2 of the origin in GL2(C).

(ii) Let x0 ∈ R ∪ {∞} is a cusp of Γ. Then is an element C ∈ SL2(R)
with MC(x0) = ∞ and MC ◦ Γz ◦M−1

C an infinite cyclic subgroup of
SL2(R)∞.

5. Introduce a topology in H ∪ Cusp(Γ) by taking as a basis for the open
sets the open sets of H together with all sets D ∪ {z0} where z0 ∈ Cusp(Γ)
and D is an open disk in H whose boundary is tangent to the R ∪ {∞} at
z0. (In case z0 = ∞ this means a set of form =(z) > c.) Since Möbius
transformations map circles to circles it follows that for every A ∈ Γ the map
MA : H ∪ Cusp(Γ)→ H ∪ Cusp(Γ) is a homeomorphism of in this topology.

2



Lemma 6. For every point z ∈ H ∪ Cusp(Γ) there is an open neighborhood
U of z such that for A ∈ Γ we have

A ∈ Γz ⇐⇒ MA(U) ∩ U 6= ∅.

Such an open set U is called an open slice centered at z.

Lemma 7. Let Γ ⊂ SL2(R) be a discrete group and z0 ∈ H∪Cusp(Γ). Then
there is a continuous function ζ : U → C defined in an open slice centered at
z0 which is holomorphic on U \ {z0} and such that for z, z′ ∈ U we have

ζ(z′) = ζ(z) ⇐⇒ z′ ∈ Γ(z).

(In case z0 ∈ H the function ζ is holomorphic on U since the singularity is
removable.)

8. A function ζ : U → C as in Corollary 7 is called a local holomorphic
invariant for Γ at z0. The injective map from U(Γ) := {Γ(z) : z ∈ U} to C
induced by ζ is called a holomorphic coordinate for X(Γ) at Γ(z0).

Theorem 9. Let Γ ⊂ SL2(R) be a discrete group. Then the various holo-
morphic coordinates for X(Γ) form an atlas. This atlas equips X(Γ) with the
structure of a (Hausdorff) orbifold Riemann surface.

Example 10. By the Uniformization Theorem a compact Riemann surface
of genus greater than one is isomorphic to some X(Γ) where every element
of Γ is hyperbolic.

Example 11. Let Γ be the cyclic subgroup of SL2(R) generated by

(
1 h
0 1

)
where h 6= 0. Then every point of H is regular, Cusp(Γ) = {∞}, and ζ(z) =
e2πiz/h is a local holomorphic invariant for Γ. The holomorphic coordinate
induced by ζ on X(Γ) maps X(Γ) isomorphically to the unit disk.

Remark 12. If Γ is a discrete subgroup of SL2(R) so is the group Γ′ generated
by Γ and ±I2. Since as −I2 acts trivially, the group Γ′ has the same orbits
as Γ so X(Γ′) = X(Γ). In particular, any discrete subgroup of SL2(R)∞ has
an orbit space identical to an X(Γ) as in Example 11.

3



Example 13. Let Γ = SL2(Z). Then Cusp(Γ) = Γ(∞) = Q ∪ {∞}. There
are two elliptic orbits Γ(i) and Γ(eπi/3). The stabilizer subgroups at ∞, i,
and eπi/3 are generated by

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
, AB =

(
1 −1
1 0

)
respectively. The element A has infinite order, the element B has order
four, and the element AB has order six. The transformation MA has infinite
order, the transformation MB has order two, and the transformation MAB

has order three. The function z 7→ e2πiz is a local invariant at ∞, the
function z 7→ ((z− i)/(z+ i))2 is a local invariant at i, and the function z 7→
((z − eπi/3)/(z − e−πi/3))3 is a local invariant at eπi/3. In Theorem 33 below
construct an isomorphism from X(Γ) to projective space P; more precisely,
to weighted projective space P(2, 4).

2 Lattices

14. A lattice is a subgroup of the additive group of C of form

Λ = Zω1 + Zω2

where ω1, ω2 ∈ C are independent over R, i.e. one of ω1/ω2 and ω2/ω1 lies
in the upper half plane H and the other in the lower half plane. Choose the
indexing so τ := ω1/ω2 ∈ H. Then the automorphism z 7→ z/omega1 of C
carries the lattice Λ to a lattice

Λτ := Z+ Zτ

where τ ∈ H.

Lemma 15. For τ, τ ′ ∈ H the following are equivalent:

(i) there exists A ∈ SL2(Z) with τ ′ = MA(τ);

(ii) there is an automorphism z 7→ αz + β of C with Λτ = αΛτ ′ + β;

Proof. Assume (i). Then

Z(aτ + b) + Z(cτ + d) ⊂ Z+ Zτ = Λτ .
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The automorphism z 7→ z/(cτ+d) sends this aτ+b to 1 and 1 to τ ′ and hence
Λτ to Λτ ′ . Since ad − bc = 1 interchanging τ and τ ′ constructs the inverse
homomorphism. Conversely assume (ii). Since 0 ∈ Λτ we have β ∈ Λτ ′ so
Λτ = αΛτ ′ so ατ ′ and α generates Λτ . Hence there exist integers a, b, c, d with
ad − bc = ±1, ατ ′ = aτ + b, α = cτ + d and hence τ ′ = (ατ ′)/α = MA(τ ′).
Since τ, τ ′ ∈ H we have ad− bc = 1 (and not −1).

16. Warning: Lemma 15 says when the lattices are isomorphic, not when
they are identical. The condition that τ ′ ∈ Λτ implies that τ satisfies a
quadratic equation with integer coefficients. There are only countably many
such equations so for most τ we have Λτ ′ 6= Λτ for all A ∈ SL2(Z) \ {±I}.
It is not hard to see when Λτ ′ = Λτ . Two lattices Λ = Zω1 + Zω2 and
Λ′ = Zω′1 + Zω′2 are equal if and only if there are integers a, b, c, d ∈ Z with
ad− bc = ±1 and ω′1 = aω1 + bω2, ω′2 = cω1 + dω2. Taking the cross product
gives ω′1×ω′2 = ±ω1×ω2, i.e. the vectors ω1 and ω2 determine a parallelogram
with the same area as the one determined by ω′1 and ω′2. Hence Λτ = Λτ ′

implies that =(τ) = =(τ ′). Now Λτ = Λτ ′ =⇒ ΛMB(τ) = ΛMB(τ ′)
for

B ∈ SL2(Z) and Λτ = Λt+1 so assume that τ lies in the fundamental region
−1

2
< <(τ) ≤ 1

2
and |τ | ≥ 1 (see [3] page 16) and that −1

2
< <(τ ′) ≤ 1

2
. Since

=(τ) = =(τ ′) it follows that τ = τ ′ and hence that τ is an elliptic fixed point
of A. The possibilities are τ = i, MA = a power of z 7→ iz and τ = eπ/6,
MA = a power of z 7→ 1− 1/z. This discussion has the following

Corollary 17. The lattice Λτ admits a nontrivial automorphism (i.e. one
different from the two automorphisms z 7→ ±z) if and only if τ lies on one
of the two elliptic orbits of SL2(Z).

3 Elliptic Curves

Theorem 18. Let X be an elliptic curve, i.e. a compact Riemann surface
of genus one. Then X is isomorphic to C/Λτ for some τ ∈ H. For τ, τ ′ ∈ H,
the elliptic curves C/Λτ and C/Λτ ′ are isomorphic if and only if τ and τ ′ lie
in the same SL2(Z) orbit.

Proof. We first show that the universal cover of X is C and not the upper
half plane H. The group of holomorphic automorphisms of H is the same
as the group of isometries of H so if H were the universal cover the group
of deck transformations would act by isometries and there would be a met-
ric of negative curvature on X. By the Gauss Bonnett theorem, the Euler
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characteristic of X would be negative contradicting the hypothesis that X
has genus one. Hence X = C/Γ where Γ is the group of deck transforma-
tions of the universal cover C→ X. Every automorphism of C has the form
t 7→ at+ b; every element of the subgroup Λ is fixed point free and so has the
form t 7→ t+ b. Thus the orbit Λ of 0 under Γ is a subgroup of the additive
group of C and so X = C/Λ. We must show that Λ has the desired form. By
composing with a rotation we may assume w.l.o.g. that Λ∩R 6= {0}. Since Λ
is discrete, Λ∩R must contain a smallest positive element so by rescaling we
may assume w.l.o.g. that Λ∩R = Z. We cannot have Λ = Z, else X = C/Λ
would be noncompact. Hence Λ contains elements of the upper half plane.
As Λ is discrete, and as any element of Λ ∩ H can be moved to the strip
=(τ) > 0, −1/2 ≤ <(τ) < 1/2 by translation by an element in Z ⊂ Λ there
must be such a τ ∈ Λ ∩ H with =(τ) smallest. The parallelogram P with
vertices 0, 1, τ, 1 + τ is a fundamental domain for the lattice Λτ ⊂ Λ, so for
any t ∈ C there is an element ω ∈ Λτ with t + ω ∈ P . In particular this is
so for t ∈ Λ. By construction t + ω cannot lie in the interior of P or in the
interior of an edge of P . Hence t+ω is a vertex of P so t ∈ Λτ . Thus Λ = Λτ

as required.
Any isomorphism C/Λτ → C/Λτ ′ lifts to an automorphism of C which

carries Λτ to Λτ ′ . Hence, by Lemma 15, C/Λτ and C/Λτ ′ are isomorphic
if and only if there are integers a, b, c, d with τ ′ = (aτ + b)/(cτ + d) and
ad− bc = 1.

19. Define an action of Z2 on H× C by

T(m,n)(τ, t) = (τ, t+mτ + n)

for (m,n) ∈ Z2. This action maps each fiber of the projection H × C → H

to itself. Introduce the space

W := (H× C)/Z2

and the projection W → H : (τ, t + Λτ ) 7→ τ . The fiber over τ of this
projection is the corresponding elliptic curve

Wτ = C/Λτ .

20. Define an action of SL2(Z) on H× C by by

ΦA(τ, t) =

(
aτ + b

cτ + d
,

t

cτ + d

)
, A =

(
a b
c d

)
∈ SL2(Z).
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Then the diagram
H× C ΦA−→ H× Cy y
H

MA−→ H

commutes (the vertical arrows are projection on the first factor). Note that
the action A 7→ ΦA (unlike the action A 7→MA) is effective:

Φ−I(τ, t) = (τ,−t).

Lemma 21. For A ∈ SL2(Z) and (m,n) ∈ Z2 we have

ΦA ◦ T(m,n) = Tµ(m,n,A) ◦ ΦA

where µ(m,n,A) ∈ Z2 is given by

µ(m,n,A) = (m,n)A−1 = (dm− bn,−cm+ an).

Corollary 22. The action A 7→ ΦA of SL2(Z) on H × C induces an action
(denoted by the same symbol) of SL2(Z) on W ; the projection W → H is
equivariant. In other words, the diagram

H× C ΦA−→ H× Cy y
W

ΦA−→ Wy y
H

MA−→ H

commutes.

23. The stabilizer groups of the action on H are all finite: a point τ ∈ H has
nontrivial stabilizer if and only if it lies on one of the two orbits of elliptic
fixed points.

4 Cubic Curves

24. For each lattice Λ ⊂ C define the Weierstrass P function by the

PΛ(t) =
1

t2
+

∑
ω∈Λ\{0}

{
1

(t+ ω)2
− 1

ω2

}
.
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In case Λ = Λτ we write Pτ for PΛ. Define

PZ(t) =
1

t2
+

∑
m∈Z\{0}

{
1

(t+m)2
− 1

m2

}
.

The following facts are not hard to prove:

(i) The series defining PΛ and PZ converge uniformly on compact subsets to
holomorphic maps C→ P.

(ii) Hence the derivatives are given by

P ′Λ(t) = −
∑
ω∈Λ

2

(t+ ω)3
, P ′

Z
(t) = −

∑
m∈Z

2

(t+m)3
.

(iii) The limit
lim
τ→i∞

Pτ (t) = PZ(t)

holds uniformly on compact sets, i.e. for every neighborhood U of PZ
in the compact open topology on C0(C,P) and every a > 0 there exists
T > 0 such that Pτ ∈ U for =(τ) > T and −a ≤ <(τ) ≤ a.

(iv) The functions PZ and PΛ are respectively periodic and doubly periodic
in the sense that

PZ(t+m) = PZ(t), PΛ(t+ ω) = PΛ(t)

for m ∈ Z and ω ∈ Λ. (It is obvious that the derivatives P ′Z and P ′Λ
satisfy these relations.)

Lemma 25. The functions x = P and y = P ′ satisfy a cubic equation

y2 = 4x3 − g2x− g3.

(Here P is either PΛ or PZ.)

Proof. By Laurent expansion

P(t) =
1

t2
+ at2 + bt4 +O(t6)

P ′(t) = − 2

t3
+ 2at+ 4bt3 +O(t5)

P(t)3 =
1

t6
+

3a

t2
+ 3b+O(t2)

P ′(t)2 =
4

t6
− 8a

t2
− 16b+O(t)
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so P ′(t)2 − 4P(t)3 + 20aP + 28b = O(t). This function is doubly periodic,
has no pole, and vanishes at the origin. Hence it vanishes identically. Take
g2 = 20a and g3 = 28b.

26. To evaluate g2 and g3 calculate the Taylor expansion of F (t) = P(t)−t−2.
Then F ′′(0) = 6

∑
ω∈Λ\{0} ω

−4 and F (4)(0) = 120
∑

ω∈Λ\{0} ω
−6 so

g2 = 60
∑

ω∈Λ\{0}

1

ω4
, g3 = 140

∑
ω∈Λ\{0}

1

ω6
.

If Λ is replaced by Z this becomes g2 = 120 ζ(4) and g3 = 280 ζ(6) where
ζ(s) :=

∑∞
n=1 n

−s is the Riemann zeta function. It is easy to see that func-
tions

g2(τ) := g2(Λτ ), g3(τ) := g3(Λτ )

are modular forms of weights four and six respectively, i.e.

g2(MA(τ)) = (cτ + d)4g2(τ), g3(MA(τ)) = (cτ + d)6g3(τ)

for τ ∈ H and A ∈ SL2(Z) as in paragraph 1. We extend g2 and g3 to
H ∪ {∞} via

g2(∞) := g2(Z), g3(∞) := g3(Z).

27. An explicit formula for the map PZ is

PZ(t) = π2 csc2(πt)− π2

3
.

This follows from termwise differentiation of the series

π cot(πt) = S(t) :=
1

t
+

∑
n∈Z\{0}

(
1

t+m
− 1

m

)
together with Euler’s formula

∞∑
m=1

1

m2
=
π2

6
.

To prove that π cot(πt) = S(t) note that both have the same poles with the
same residues and that both are odd and have period one. This means that
the difference π cot(πt)− S(t) is bounded in a strip about the real axis and,
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as cot(w) = i(eiw + e−iw)/(eiw− e−iw), both are bounded on the complement
of this strip. Thus the difference π cot(πt)−S(t) = c a constant. To see that
c = 0 is zero evaluate at t = 1/2: We get S(1/2) = S(1/2− 1) = S(−1/2) =
−S(1/2) by periodicity and oddness so S(1/2) = 0 = cot(π/2) so c = 0.
To prove Euler’s formula calculate the Fourier series θ =

∑
n cne

inθ and use
Parseval’s equality.

28. Since PΛ has a pole of order two at the origin, the map C/Λ→ P induced
by PΛ has degree two and the origin is a critical point. The other critical
points are the zeros of the map C/Λ → P induced by P ′Λ. This map has
degree three (because it has a unique pole of order three) so P ′Λ has at most
three zeros modulo Λ. Let ω1 and ω2 be generators of Λ. The half periods
ω1/2, ω2/2 and (ω1 +ω2)/2 satisfy t = −t mod Λ and hence are zeros of the
odd doubly periodic function P ′Λ.

29. Similarly the map C/Z → P induced by PZ has degree two. To prove
this use the identities csc2(πt) = cot2(πt) + 1 and

cot(πt) = −ie
πit + e−πit

eπit − e−πit
= −iq + 1

q − 1

where q = e2πit. By paragraph 27 we have

PZ(t) = −π2

(
q + 1

q − 1

)2

+
2π2

3
, P ′

Z
(t) = 2iπ3

(
q + 1

q − 1

)2
q + 1

q − 1

where we have used P ′
Z
(t) = −2π3 csc2(πt) cot(πt) in the second formula.

The formula for P ′
Z
(t) shows that t is a critical point of PZ if and only if

t = n+ 1
2

where n ∈ Z.

30. For τ ∈ H ∪ {∞} denote by Xτ ⊂ P2 the cubic curve

Xτ := {[x, y, z] ∈ P2 : y2z = 4x3 − g2(τ)xz2 − g3(τ)z3}.

Define projections Qτ : C→ C/Λτ and Q∞ : C→ P \ {0,∞} by

Qτ (t) = t+ Λτ , Q∞(t) = e2πit.

For τ 6=∞ define Fτ : C/Λτ → P
2 by

Fτ (Qτ (t)) = [Pτ (t),P ′τ (t), 1]
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for t 6= 0 with Fτ (0) = [0, 1, 0]. Define F∞ : P→ P
2 by

F∞(Q∞(t)) = [PZ(t),P ′
Z
(t), 1]

with F∞(0) = F∞(∞) = [0, 1, 0].

Theorem 31. (i) For τ 6= ∞ the map Fτ : C/Λτ → P
2 is a holomorphic

embedding with image Xτ . (ii) The map F∞ : P → P
2 is a holomorphic

immersion, injective except for a single double point, with image X∞.

Proof. Lemma 25 says that the image of Fτ is a subset of Xτ . If Fτ is not
an immersion at some point q = Qτ (t0) where t0 ∈ C \ Λτ , then P ′(t0) =
P ′′(t0) = 0 so P − P(t0) has a zero of order three at t0 contradicting the
fact that the map induced by P has degree two. Near 0 the map Fτ ◦ Qτ

has the form Fτ ◦ Qτ (t) = [t + O(t2),−2 + O(t), t3] which shows that Fτ
is an automorphism at the points q ∈ Qτ (Λτ ) as well. The only case not
covered by these arguments is the case τ = ∞ and q = ∞. That F∞ is an
immersion at this point follows from the symmetry F∞(q−1) = T ◦ F∞(q)
where T ([x, y, z]) = [x,−y, z].

The map C/Λτ → P induced by P has degree two and its branch points
are the (projections of the) half periods of Λτ which are not periods (see
paragraphs 28 and 29). In particular, P(t1) = P(t2) implies that t1 = ±t2
modulo Λτ . Since the map C/Λτ → P is surjective and P ′ is odd it follows
from Lemma 25 that the image of Fτ is Xτ . For the injectivity properties of
Fτ note first that the preimage of [0, 1, 0] consists of one point if τ ∈ H and
exactly two points if τ = ∞ and that moreover [0, 1, 0] is the only point at
which the image of Fτ intersects the line at infinity. Hence it suffices to prove
that the restriction of Fτ to C/Λτ \ {0} is injective. Hence we assume that
P(t1) = P(t2), P ′(t1) = P ′(t2), t1, t2 ∈ C \Λτ and prove that t1 = t2 modulo
Λτ . If not, then t1 = −t2 modulo Λτ so, as P ′ is odd, P ′(t1) = P ′(t2) = 0.
Hence t1 and t2 are branch points of P . But the branch points of P are half
periods of Λτ and two half periods t1 and t2 which are distinct modulo Λτ

cannot be negatives of one another modulo Λτ .

Corollary 32. For τ ∈ H ∪ {∞} the discriminant g2(τ)− 27g3(τ) vanishes
if and only if τ =∞.

Proof. The discriminant vanishes precisely when the polynomial 4x3−g2x−g3

has a double root and this occurs precisely when Xτ is not a submanifold.
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5 A Projective Embedding

Theorem 33. For Γ = SL2(Z) the Riemann surface X(Γ) defined in Theo-
rem 9 is isomorphic to the Riemann sphere P.

Lemma 34. There is a holomorphic map J : H→ P such that for τ, τ ′ ∈ H
we have J(τ) = J(τ ′) if and only if τ and τ ′ lie in the same SL2(Z) orbit.
Thus J induces a bijection H/SL2(Z)→ C = P \ {∞}.

Proof. The cross ratio (e1, e2, e3, e4) of four distinct points e1, e2, e3, e4 of C
is defined by

(e1, e2, e3, e4) =
e1 − e2

e1 − e3

· e4 − e2

e4 − e3

;

the definition extends to four distinct points of P = C ∪ {∞} by continuity.
The symmetric group Σ4 permutes the four numbers ei and permutes their
cross ratios accordingly:

Σ4(λ) = {λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ}.

It is easy to check that the polynomial

S(λ) =
(λ2 − λ+ 1)3

λ2(1− λ)2

has the property that S(λ) = S(λ′) if and only if λ′ ∈ Σ4(λ).
For τ ∈ H the four branch points of the map C/Λτ → P induced by Pτ

are e4 =∞ and

e1 = Pτ (1/2), e2 = Pτ (τ/2), e3 = Pτ ((1 + τ)/2)

(see paragraph 28). Let λ be the cross ratio of the four branch points so
λ = (e1−e2)/(e1−e3) and then define J(τ) = 4S(λ)/27. (The factor of 4/27
is traditional.)

Remark 35. Since e1, e2, e3 are the zeros of the polynomial 4x3 − g2x − g3

we have

e1 + e2 + e3 = 0, e1e2 + e2e3 + e3e1 = −g2

4
, e1e2e3 =

g3

4
.

It follows easily that

J(τ) =
g2(τ)3

g2(τ)3 − 27g3(τ)2
.
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36. Recall the cubic curve Xτ defined in paragraph 30 for τ ∈ H ∪ {∞}.
Define

V := {([x, y, z], τ) ∈ P2 ×H ∪ {∞} : [x, y, z] ∈ Xτ}

and subsets

V1 := {([x, y, z], τ) ∈ V : τ ∈ H}, V2 := {([x, y, z], τ) ∈ V : τ ∈ U∪{∞}}

where U is as in Lemma ??.

Lemma 37. For A ∈ SL2(Z) and ([x, y, z], τ) ∈ V1 the point

RA([x, y, z], τ) := ([(cτ + d)2x, (cτ + d)3y, z],MA(τ))

(see paragraph 26) also lies in V1. For A ∈ SL2(Z)∞ and ([x, y, z], τ) ∈ V2

the point
RA([x, y, z], τ) := ([x, ay, z], τ + n)

also lies in V2. (See Lemma ??.)

Proof.

6 A Projective Model

Lemma 38. Let B = C2 \ {0} and W be the set of all pairs ([x, y, z], a, b) in
P

2 ×B such that
y2z = 4x3 − axz2 − bz3.

Then

(i) The set W is a complex submanifold of P2 ×B.

(ii) The set of critical values of the projection W → B onto the second
factor is the zero set of the discriminant a3 − 27b2 of the polynomial
4x3 − ax− b.

(iii) Over each critical value (a, b) there is a unique critical point namely the
point [x0, 0, 1] where x0 is the double root of the polynomial 4x3−ax−b.
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39. Define actions of the complex multiplicative group C∗ on B and W , by

λB(a, b) = (λ4a, λ6b), λW ([x, y, z], (a, b)) = ([λ2x, λ3y, z], λB(a, b)).

so the projection W → B is equivariant. It is easy to see that the set of
critical values of the projection W → B form a single orbit of the action of
C
∗ on B. Define Φ : V → W by

Φ([x, y, z], τ) = ([x, y, z], (g2(τ), g3(τ))).

Lemma 40. The map Φ|V1 induces a bijection from the SL2(Z) orbits of V1

onto the C∗ orbits of the set of regular points of the projection W → B. The
map Φ|V2 induces a bijection from the Z orbits of V2 onto the C∗ orbits of a
neighborhood of the set of critical points of the projection W → B.

References

[1] D. Mumford: Tata lectures on theta, Progress in mathematics 28, 43,
97 Birkhuser, 1983-1991.

[2] E. Reyssat: Quelques Aspects des Surface de Riemann, Progress in
mathematics 77, Birkhäuser, 1989.
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