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Theorem 1 (Green’s identity). Let Ω be a bounded open region in Rn

with smooth boundary ∂Ω and u, v : Ω ∪ ∂Ω→ R be smooth functions. Then∫
D

(
u∆v − v∆u

)
dV =

∫
∂Ω

(
u
∂v

∂ν
− v ∂u

∂ν

)
dS

where dV is the volume element, dS is the surface area element on ∂Ω, ∆ is
the Laplacian, and ∂/∂ν is the outward normal derivative.

Proof. Use the Divergence Theorem and that the Laplacian is the divergence
of the gradient.

2. The unit charge potential is the function Φ : Rn \ {0} → R+ defined
by

Φ(ξ) =
|ξ|
2

(n = 1)

Φ(ξ) =
log |ξ|

2π
(n = 2)

Φ(ξ) = kn|ξ|2−n (n ≥ 3)

where

kn = − 1

(n− 2)σn

and σn is the (n−1) dimensional volume of the unit sphere in Rn. Note that
for n > 2 the function Φ is negative, and for n = 2 it is negative near ξ = 0.
The function Φ satisfies ∆Φ = 0 and∫

∂Ba

∂Φ

∂ν
dS = 1,

∫
∂Ba

Φ dS = O(a),

∫
Ba

Φ dV = O(a2)
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where Ba is the ball of radius a about the origin. For each p ∈ Rn define a
function Φp : Rn \ {p} → R+ by

Φp(q) = Φ(q − p).

Theorem 3. If u is smooth on Ω ∪ ∂Ω

u(p) =

∫
Ω

Φp∆u dV +

∫
∂Ω

u
∂Φp

∂ν
dS −

∫
∂Ω

∂u

∂ν
Φp dS (#)

Proof. Let B be a small ball centered at p and read Ω \ B for Ω and Φp for
v in Green’s Identity. We get

−
∫

Ω

Φp∆u dV =

∫
∂Ω

(
u
∂Φp

∂ν
− Φp

∂u

∂ν

)
dS −

∫
∂B

(
u
∂Φp

∂ν
− Φp

∂u

∂ν

)
dS

where the normal derivative on the right is out of B (i.e. into Ω \ ∂B). But∫
∂B

(
u
∂Φp

∂ν
− Φp

∂u

∂ν

)
dS → u(p)

as the radius of B tends to 0.

4. Take Ω = Rn and let u have compact support. Then (#) reduces to

u(p) =

∫
Φp ∆u dV.

In the language of Schwartz distributions this says

δp = ∆Φp

where δp is the Dirac distribution at p.

5. For n = 3 (#) becomes

u(p) = − 1

4π

∫
Ω

∆u

r
dV − 1

4π

∫
∂Ω

u
∂

∂ν

1

r
dS +

1

4π

∫
∂Ω

∂u

∂ν

1

r
dS

for p ∈ Ω where r(q) = |q−p| for q ∈ Ω∪∂Ω. This has the following physical
interpretation. The quantity

Φp = − 1

4πr
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is the potential at the point p due to a unit charge at the point q. The
quantity

h
∂Φp

∂ν
= −h ∂

∂ν

1

4πr

corresponds (to first order in h) to the potential p produced by a dipole
at q ∈ ∂Ω, i.e. the superposition of a unit charge at q with an equal and
opposite charge located at a small distance h from q along the unit normal.
The potential U produced by a charge distribution ρ satisfies

ρ = −∆U.

Hence (#) represents the smooth function u as the sum of three potentials:
the one produced by the charge density ∆u on the interior of Ω, the one
produced by the charge distribution ∂u/∂ν on the boundary of Ω, and the
one produced by the dipole distribution u/h on the boundary of Ω. (See [2]
page 219.)

6. For a bounded connected region Ω with smooth boundary the problem

∆H = 0, H|∂Ω = −Φp.

is a special case of Dirichlet’s problem and has a unique solution (see ??
below); the function

Gp = Φp +H

is called the Green’s function at the point p. The function H is smooth
on Ω ∪ ∂Ω if the boundary ∂Ω is smooth. This follows from more general
regularity theorems for the Laplacian. See [1] page 457.

Proposition 7. Assume n ≥ 2, Ω ⊂ Rn is a bounded connected region with
smooth boundary, and p ∈ Ω. Then the Green’s function at p is uniquely
characterized by the following axioms.

(i) Gp is harmonic on Ω \ {p};

(ii) Gp − Φp extends to a continuous function on Ω ∪ ∂Ω;

(iii) Gp < 0;

(iv) If G satisfies (i-iii) then G ≤ Gp.

Proof. Maximum principle.
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8. The Green’s function Gp has the following physical interpretation. Place
a point charge at p and let the boundary ∂Ω be a metallic conductor. There
is no current in the boundary: the charges have arranged themselves so that
the net force on each charge is normal to the boundary. But the force is
the negative gradient of the potential so the potential is constant on the
boundary. Subtract a constant so the potential vanishes on the boundary
and the resulting potential is the Green’s function.

9. Repeat the proof of (#) with Gp in place of Φp. We get

u(p) =

∫
Ω

Gp ∆u dV +

∫
∂Ω

u
∂Gp

∂ν
dS

It follows that if u is the solution to the Dirichlet Problem

∆u = 0, u|∂Ω = φ

then

u(p) =

∫
∂Ω

φ
∂Gp

∂ν
dS,

and if u is the solution to the Poisson Problem

∆u = f, u|∂Ω = 0

then

u(p) =

∫
Ω

Gp f dV.

10. To justify these formulas rigorously we must first prove that the Dirich-
let problem and the Poisson problem have unique solutions and that these
solutions are C2 on Ω ∪ ∂Ω. It is not true that f ∈ Cr =⇒ u ∈ Cr+2 if r
is an integer (see [1] page 290), however this does hold if r is not an integer
(see [1] page 291). In particular, f ∈ Cr =⇒ u ∈ Cr+1 for r > 0.

11. The Green’s function is symmetric:

Gp(q) = Gq(p)

see e.g. [1] page 345. This can also be proved as follows. Green’s identity
implies that 〈∆u, v〉L2(Ω) = 〈u,∆v〉L2(Ω) for u, v ∈ H2

0 (Ω). The operator

∆ : H2
0 (Ω)→ L2(Ω)

is an isomorphism and the integral operator with kernel G(p, q) := Gp(q) is
its inverse.
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12. The Green’s function for the unit ball B in Rn (n ≥ 3) is

Gp(q) = kn

(∣∣p− q∣∣2−n − ∣∣∣∣ q|q| − |q|p
∣∣∣∣2−n

)

(It is easy to check that Gp(q) = Gq(p) so that Gp(q) = 0 for |q| = 1.) The
function P : B × ∂B → R+ defined by

P (p, q) =
∂Gp

∂ν
(q) = (2− n)kn

|q|2 − |p|2

|q − p|n
=

1− |p|2

σn|q − p|n

is called the Poisson kernel. Thus the following Poisson integral formula

u(p) =

∫
∂B

φ Pp dS, Pp(q) = P (p, q)

defines the unique harmonic function on B which agrees with φ on the unit
sphere ∂B. It is an immediate consequence of Poisson integral formula that
a uniform limit of harmonic functions is harmonic.

13. The Green’s function for the unit disk D in C = R2 is

Gz(ζ) =
1

2π
log

∣∣∣∣ ζ − zz̄ζ − 1

∣∣∣∣ .
(Note that Gz is the composition of G0 with an automorphism of D which
sends z to 0.) The Poisson kernel is

P (z, ζ) =
∂Gz

∂ν
(ζ) =

1

2π

|ζ|2 − |z|2

|ζ − z|2

as in higher dimensions. The function

u(z) =

∫ 2π

0

P (z, eiθ)φ(eiθ) dθ

is the harmonic function which agrees with φ on |z| = 1. Exercise: Take
φ = einθ and u(z) = zn for n ≥ 0 or u(z) = z̄n for n < 0 and check the last
formula by elementary integration.
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