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We describe the relation between algebraic curves and Riemann surfaces.
An elementary reference for this material is [1].

1 Riemann surfaces

1.1. A Riemann surface is a smooth complex manifold X (without bound-
ary) of complex dimension one. Let K → X denote the canonical line
bundle so that the fiber Kp over p ∈ X is the space of complex linear maps
from TpX to C. A section of K is called a differential on X. We define

M(X) = the field of meromorphic functions on X,

O(X) = the ring of holomorphic functions on X,

M(X,K) = the space of meromorphic differentials on X,

Ω(X) = the space of holomorphic differentials on X.

If X is compact, O(X) = C the constant functions. An element of M(X)
can be viewed as a holomorphic map to the Riemann sphere (projective line)

P := C ∪ {∞}

and the only holomorphic map which does not arise this way is the constant
map which sends all of X to∞. The genus g of a compact Riemann surface
X is defined by

2g = dimR H
1(X,R)
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so the Euler characteristic of X is χ(X) = 2 − 2g. The Riemann Roch
Theorem implies that for X compact we have

g = dimC(Ω(X))

the dimension of the space of holomorphic differentials.

1.2. Let p ∈ X and z be a local holomorphic coordinate on X with z(p) = 0.
Any f ∈M(X) \ {0} has form

f(z) = zkh(z)

in the coordinate z where h is holomorphic and h(0) 6= 0. The integer

Ordp(f) := k

is independent of the choice of the coordinate z; it is called the order of f at
p. A point p is called a zero of f if Ordp(f) > 0, a pole of f if Ordp(f) < 0,
and a singularity of f if it is either a zero or pole, i.e. if Ordp(f) 6= 0. (One
can define analogously the order of a singularity meromorphic section of any
holomorphic line bundle but here we only need the notion for differentials.)
Thus any ω ∈M(X,K) has form

ω = f dz

where f ∈M(X). The integer

Ordp(ω) := Ordp(f)

is independent of the choice of the coordinate z; it is called the order of ω
at p. The complex number

resp(ω) =
1

2πi

∮
γp

ω

is independent of the choice of the small circle γp about p having no pole
other than p in its interior; it is called the residue of ω at p.

Theorem 1.3 (Residue Theorem). Let X be a compact Riemann surface
and ω ∈M(X,K) \ {0}. Then∑

p∈X

resp(ω) = 0.

2



Proof. Away from the singularities we have ω = f(z) dz where f is holomor-
phic. Hence ∂ω = 0 (as dz ∧ dz = 0) and ∂̄ω = 0 (as f is holomorphic) so
dω = 0. Hence for any open subset Ω ⊂ X with smooth boundary and such
that Ω ∪ ∂Ω contains no pole we have∫

∂Ω

ω =

∫
Ω

dω = 0.

Choose a tiny disk ∆p about each pole p so that∫
∂∆p

ω = 2πiresp(ω).

For Ω = X \
⋃
p ∆p we have ∫

∂Ω

ω =
∑
p

∫
∂Ω

ω.

(See Theorem 4.8 on page 18 of [1].)

Corollary 1.4. Let X be a compact Riemann surface and f ∈M(X) \ {0}.
Then ∑

p∈X

Ordp(f) = 0.

Proof. Let ω = df/f . Then Ordp(f) = resp(ω).

1.5. The degree of a holomorphic map f : X → Y between compact Rie-
mann surfaces is the sum of the local degrees over the preimage of a given
point y ∈ Y . The local degree atp ∈ X of a holomorphic map is the same as
the order of the zero of of the local representative of the map in any holo-
morphic coordinates z centered at p and w centered at f(p). Thus when
Y = P, this local degree at p ∈ X is Ordp(f) if f(p) = 0 and −Ordp(f) if
f(p) =∞ so the corollary is also a corollary of the theorem that the degree
of a holomorphic map f : X → Y is well defined, i.e. independent of the
choice of y ∈ Y used to defined it.

Theorem 1.6 (Poincaré-Hopf). Let X be a compact Riemann surface and
ω ∈M(X,K) \ {0}. Then∑

p∈X

Ordp(ω) = −χ(X)

where χ(X) is the Euler characteristic of X.
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Proof. In a suitable holomorphic coordinate centered at p we have

ω = zν dz

where ν = Ordp(ω) so where z = x+ iy = reiθ we have

<ω = rν(cos(νθ) dx− sin(νθ) dy)

so the degree of the map

<ω
|<ω|

: {|z| = ε} → S1

is −Ordp(ω). The sum of these degrees is the Euler characteristic by the
Poincaré Hopf Theorem. (See Theorem 6.5 on page 24 of [1]).

Theorem 1.7 (Weil). Let X be a compact Riemann surface and f, g ∈
M(X) \ {0}. Assume that(f) and (g) are disjoint. Then∏

p∈X

f(p)Ordp(g) =
∏
p∈X

g(p)Ordp(f).

Proof. See [2] page 242.

1.8. The restriction of nonconstant holomorphic map f : X → Y to the
complement of the preimage of the set of critical values is a d-sheeted covering
space, i.e. if V ⊂ Y is a sufficiently small open set containing no critical
value of f , then f−1(V ) is a disjoint union of d open sets each mapped
diffeomorphicaly to V by f . The number d is the degree of f as defined in
paragraph 1.5. Near each a critical point f has the form z 7→ zk where
k = degp(f) is the local degree of the critical point. For this reason a
nonconstant holomorphic map is called a ramified cover and the critical
points of f are called ramification points. The number ep(f) = degp(f)−1
is called the ramification index so that ep(f) > 0 if and only if p is a
ramification point of f .

Theorem 1.9 (Riemann Hurwitz). If f : X → Y is a holomorphic map
between compact Riemann surfaces of degree d, then

χ(X) = dχ(Y )−
∑
p∈X

ep(f)

where χ(X) is the Euler characteristic of X.
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Proof. Triangulate X and Y so that the ramification points are vertices and
the map f is simplicial and use the fact that the Euler characteristic χ is the
number of vertices minus the number of edges plus the number of faces in
any triangulation. See [1] page 92.

2 Algebraic curves

2.1. An projective algebraic variety X is a subset of a complex projective
space PN of form

X = {x ∈ PN : F1(x) = · · · = Fk(x) = 0} (∗)

where F1, . . . , Fn are homogeneous polynomials. An affine algebraic vari-
ety is a subset of a complex affine space CN of form

Y = {y ∈ CN : f1(y) = · · · = fk(y) = 0}.

For every polynomial f(y1, . . . , yN) there is a unique homogeneous polyno-
mial F (x0, x1, . . . , xN) of the same degree such that

f(y1, . . . , yN) = F (1, y1, . . . , yN),

so every affine variety corresponds to a projective variety. We use the term
algebraic variety ambiguously to mean either projective algebraic variety or
affine algebraic variety. (There is an abstract notion of algebraic variety
which embraces both projective and affine algebraic varieties as special cases.)

2.2. An algebraic variety is irreducible iff it is not the union of two distinct
varieties. Every algebraic variety X may be written as

X = X1 ∪X2 ∪ · · · ∪Xk

where the Xi are irreducible and Xi 6= Xj for i 6= j; this decomposition
is unique up to a reindexing. The varieties Xi are called the irreducible
components of X.

2.3. Let X be an algebraic variety. A point p ∈ X is called a smooth point
iff it has a neighborhood U such that U ∩X is a holomorphic submanifold.
A point which is not smooth point is called a singular point. For an
irreducible variety the dimension of U ∩ X is independent of the choice of
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the smooth point p and is called the dimension of X. An algebraic curve
is an algebraic variety each of whose irreducible components has dimension
one; a plane algebraic curve is an algebraic curve of codimension one, i.e.
an algebraic curve which is a subset of P2.

2.4. Every compact Riemann surface admits a holomorphic embedding into
P

3. (See [1] page 213.) A closed holomorphic submanifold of PN is a smooth
algebraic variety (Chow’s Theorem, see [2] page 187); hence every Riemann
surface is isomorphic to a smooth algebraic curve.

2.5. Let C ⊆ PN be an algebraic curve and S ⊆ C be the set of singular
points of C. A normalization of C is a holomorphic map

σ : X → P
N

from a compact Riemann surface X such that σ(X) = C, σ−1(S) is finite
and the restriction

X \ σ−1(S)→ C \ S

is bijective. (Since the restriction is a holomorphic map between Riemann
surfaces it follows that it is biholomorphic.)

Theorem 2.6 (Normalization Theorem). Every algebraic curve admits
a normalization. The normalization is unique up to isomorphism in the
following sense: If σ : X → P

N and σ′ : X ′ → P
N are normalizations of

the same curve C, then the unique continuous map τ : X → X ′ satisfying
σ′ = τ ◦ σ is (a bijection and) biholomorphic.

Proof. See [1] page 5 and page 68.

Remark 2.7. The number k in equation (∗) of paragraph 2.1 is always
greater than or equal to the codimension of X; a variety which has form (∗)
with k equal to the codimension is called a complete intersection. The
twisted cubic

x0x3 = x1x2, x0x2 = x2
1, x1x3 = x2

2

(so called because its affine part may be parameterized by the equations
xi = ti) is a smooth algebraic curve in P3 which is not a complete intersection.
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2.8. Every plane algebraic curve C is a complete intersection (see [2] page 13)
and thus has form

C = {[x0, x1, x2] ∈ P2 : F (x0, x1, x2) = 0}

where F is a complex homogeneous polynomial; the polynomial F is called
a defining polynomial for C. Every curve has a defining polynomial of
minimal degree, i.e. one with no repeated factors; this polynomial is unique
up to multiplication by a nonzero constant. It is easy to see that a point of
C is a smooth point if and only if it is regular point of the minimal degree
defining polynomial, and that an algebraic plane curve is irreducible if and
only if it has a defining polynomial which is irreducible.

2.9. By affine coordinates at a point p ∈ P2 we mean coordinates (x, y) of
form

x =
a10x0 + a11x2 + a12x2

a00x0 + a01x2 + a02x2

, y =
a20x0 + a21x2 + a22x2

a00x0 + a01x2 + a02x2

,

where the matrix (aij) is invertible, the numerators vanish at p, and the
denominators do not. (Every choice of affine coordinates establishes a cor-
respondence between projective plane curves and affine plane curves as in
paragraph 2.1.

2.10. Let C ⊆ P2 be an algebraic curve, p ∈ C, (x, y) be affine coordinates
at p, and f(x, y) the defining polynomial of C in these coordinates. Since
p ∈ C we have f(0, 0) = 0. We call p a ktuple point of C iff djf(0, 0) = 0
for j = 1, 2, . . . , k − 1 and dkf(0, 0) 6= 0. A ktuple point is also called a
simple point if k = 1, a double point if k = 2, a triple point if k = 3,
etc. A point is a smooth point if and only if it is a simple point. Let p be a
ktuple point. The homogeneous polynomial

fk(x, y) :=
dk

dtk
f(tx, ty)

∣∣∣∣
t=0

factors into linear factors. The point p is called an ordinary point iff these
factors are distinct.

Theorem 2.11. Let X be a compact Riemann surface. Then there is an
algebraic curve C ⊆ P2 and a normalization σ : X → C such that (1) the
map σ is an immersion, and (2) the only singularities of C are ordinary
double points.
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Proof. See [1] page 213.

Theorem 2.12 (The Genus Formula). Let C ⊂ P2 be an irreducible plane
curve whose only singularities are double points. Then

g =
(d− 1)(d− 2)

2
− δ

where g is the genus of its normalization, d is the degree of its irreducible
defining polynomial, and δ is the number of double points.

Proof. Project C onto a projective line P1 from a point not on C. Using
suitable affine coordinates we see that the number of critical points of this
projection is d(d − 1). Apply the Riemann Hurwitz formula (Theorem 1.9)
to the composition of this projection with the normalization map. For more
details see [1] page 213.
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