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1 The Classifying Map

A reference for the material in this section is [3].

1.1. Let V be a vector space over C. We denote by Gk(V ) the Grassman-
nian of k-dimensional subspaces of V and by

P(V ) = G1(V )

the projective space of V . Two vector bundles over the Grassmannian Gk(V )
are the tautological bundle

T → Gk(V ), Tλ := λ ⊂ V

and the co-tautological bundle

H → Gk(V ), Hλ := T ∗λ = V ∗/λ⊥

where V ∗ is the dual space to V and λ⊥ = {α ∈ V ∗ : α|λ = 0}. In case
k = 1 the bundle H → P(V ) is also called the hyperplane bundle. Note
the canonical isomorphism

GN−k(V )→ Gk(V
∗) : λ 7→ λ⊥

where N = dimC(V ). For any holomorphic bundle E → X we denote by
O(X,E) the vector space of its holomorphic sections.
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Theorem 1.2. Each functional α ∈ V ∗ determines a section sα of the co-
tautological bundle H → Gk(V ) via

sα(λ) = α|λ.

The map
V ∗ → O(Gk(V ), H) : α 7→ sα

is an isomorphism.

Proof. It is clear that the map is injective; to show it is surjective we choose
s ∈ O(X,H); we must find α ∈ V ∗ with s = sα. This can be found via a
power series argument using the standard affine coordinates on the Grass-
mannian as follows. . . .

1.3. Let E → X be a holomorphic vector bundle of rank k over a compact
complex manifold X. The vector space O(X,E) of holomorphic sections of
E is finite dimensional by elliptic theory. A base point of E is a point p ∈ X
where the space {s(p) : s ∈ O(X,E)} is a proper subspace of the fiber Ep;
the bundle is called base point free iff it has no base points. If p is not a
base point of E we have

{s ∈ O(X,E) : s(p) = 0} ∈ GN−k(O(X,E))

here N := dimC(O(X,E)) and hence, via the canonical isomorphism of para-
graph 1.1,

f(p) := {s ∈ O(X,E) : s(p) = 0}⊥ ∈ Gk(O(X,E)∗).

For a base point free bundle E → X this defines a map

f : X → Gk(O(X,E)∗)

called the classifying map of E.

Theorem 1.4. Let E → X a base point free holomorphic bundle and let
H → Gk(O(X,E)∗) be the cotautological bundle. Then the pull back of H by
the classifying map is E.

Proof. For each p ∈ X we have a linear isomorphism

Ep → Hf(p) := {s ∈ O(X,E) : s(p) = 0}⊥ : v 7→ ηv

where ηv(α) = α(s) for α ∈ {s ∈ O(X,E) : s(p) = 0}⊥ ⊂ O(X,E)∗ and
s ∈ O(X,E) with s(p) = v.
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Theorem 1.5. A compact Riemann surface X can be (1) embedded in P3

and (2) immersed in P2 so that its image has only transverse double points.

Sketch of Proof. Theorem 1.4 says that vector bundles without base point
correspond to maps to the Grassmannian. In particular, line bundles with-
out base point correspond to maps to projective space. If X is a Riemann
surface, Theorem 9.5 below says that a holomorphic line bundle of sufficiently
high degree has no base point and that the classifying map is injective and
the derivative of the classifying map is never zero. Thus shows that any
Riemann surface can be embedded in projective space PN . Suppose PN−k

and Pk are transverse projective subspaces of PN of the indicated dimen-
sions. By transversality theory, for k ≥ 2, a generic PN−k misses the image
of X. Then projection onto Pk along PN−k gives a map from X into Pk.
By transversality theory this projection is generically an embedding of X for
k = 3 and generically an immersion with at worst transverse double points
for k = 2.

2 Degree

2.1. Let E → X be a smooth fiber oriented vector bundle over a compact
smooth oriented manifold X. Assume that the rank (=fiber dimension) of
E is the same as the dimension n of X. For an isolated zero p ∈ X of a
smooth section s of E define the local degree degp(s) of s at p by

degp(s) = degree

(
Sp → S(Ep) : q 7→ s(q)

|s(q)|

)
where Sp is the boundary of a small disk D in X centered at p and S(Ep) is
the boundary of the unit disk of the fiber Ep in some trivialization of E over
D. Here the disk D is small in the sense that the only zero of s in its closure
is the point p. Because the degree of a map between spheres of the same
dimension is a homotopy invariant, the local degree of a smooth section s at
an isolated zero is independent of the choice of the small disk D ⊂ X about
p and of the choice of the local trivialization of E|D used in the definition.

Definition 2.2. By transversality theory (see Milnor, Topology from the
differentiable viewpoint) the number

deg(E) =
∑
s(p)=0

degp(s)
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is independent of the choice of the smooth section with isolated zeros used
to defined it. This number is called the degree or Euler number of the
bundle E → X. The cohomology class e(E) ∈ Hn(X) defined by

〈e(E), [X]〉 = deg(E)

is called the Euler class of the bundle E → X; here [X] ∈ Hn(X) is the
fundamental class. In the case X is a surface (i.e. a smooth manifold of real
dimension two) and L → X is a complex line bundle the Euler class of L is
called the Chern class and denoted by c1(L).

Theorem 2.3. The Euler number of the cotangent bundle T ∗X → X (and
hence also of the tangent bundle TX → X) is the Euler characteristic χ(X).

Proof. Let f : X → R be a Morse function. Then the section df of T ∗X has
isolated zeros. At a critical point p the Morse lemma tells us that there are
coordinates x1, . . . , xn such that

f(q) = −x(q)
2 − · · · − xk(q)2 + xk+1(q)2 + · · ·+ xn(q)2

so
df(q)

|df(q)|
= −x1 dx− · · · − xk dxk + xk+1 dxk+1 + · · ·+ xn dxn.

Hence degp(df) = (−1)k. The result now follows by Morse theory.

3 Line Bundles

3.1. Assume that X is a Riemann surface and E = L→ X is a holomorphic
line bundle over X. Let s be a meromorphic section of L not identically
zero. Then near a singularity (i.e. zero or pole) of s we may choose a local
trivialization of L and a holomorphic coordinate z = reiθ such that

s(q) = z(q)k = rkeikθ.

The integer k is independent of the choice of the local trivialization and
local coordinate and is called the order of s at p and denoted Ordp(s). The
order is the degree of the map q 7→ |s(q)|1s(q) from a small circle about the
singularity to the unit circle of the fiber. Hence

degp(s) = Ordp(s).
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The formula
deg(L) =

∑
p

degp(s)

holds for meromorphic sections since we may modify s near each pole so
as to produce a smooth s with a zero of the same degree via the formula
s̃(q) = φ(r)eikθ where φ(r) = rk for r near the boundary of the domain of z,
φ(r) > 0 for r > 0, and φ(0) = 0.

Definition 3.2. The canonical bundle over a Riemann surface X is the
bundle K → X whose fiber Kp over a point p ∈ X is the vector space

Kp = LC(TpX,C)

of C-linear maps from the tangent space TpX to C. This bundle should be
distinguished from the cotangent bundle T ∗X → X whose fiber is the real
dual space

T ∗pX = LR(TpX,R)

for p ∈ X. Each holomorphic coordinate z gives a nonzero local section dz
of K and on the overlap of the domains of two holomorphic coordinates z
and w we have

dw = φ′ dz

where where φ is the holomorphic function such that w(q) = φ(z(q)). A
meromorphic section of K is called a meromorphic differential. A holo-
morphic section of K is called a holomorphic differential or (in some
books) an abelian differential.

Theorem 3.3. Let X be a compact Riemann surface. Then the degree of
the canonical bundle over X is

deg(K) = −χ(X)

where χ(X) is the Euler characteristic of X.

Proof. Let ω be a meromorphic differential on X. The real valued form
ξ = <(ω) is a section of the cotangent bundle. Near a singularity ω = zk dz
in a suitable holomorphic coordinate. Now zk = rk(cos kθ + i sin kθ) and
dz = dx + idy so ξ = rk cos(kθ) dx − rk sin(kθ) dy and hence deg(K) =
degp(ω) = − degp(ξ) = −χ(X).
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4 Divisors

4.1. A divisor on a compact1 Riemann surface X is a Z valued function on
X with finite support. We represent a divisor as a formal finite sum

D =
m∑
k=1

nkpk

where nk is the value of D at the point pk. A meromorphic section s of
a holomorphic line bundle L → X (in particular a meromorphic function)
determines a divisor

(s) =
∑
p∈X

degp(s)p

whose support is the set of all singularities (zeros and poles) of s. The degree
of the divisor D is the integer

deg(D) =
m∑
k=1

nk;

thus
deg((s)) = deg(L)

for a meromorphic section s of a holomorphic line bundle L → X. A prin-
cipal divisor is one of form (f) where f is a meromorphic function. two
divisors are called linearly equivalent iff they differ by a principal divisor.
The notation D ≥ 0 means that D takes only nonnegative values. A divisor
D is called positive or effective iff D ≥ 0. For any divisor D we define the
complex vector space

L(D) := {f ∈M(X) : f = 0 or (f) +D ≥ 0}

and
`(D) := dimC(L(D)).

HereM(X) is the function field of X, i.e. the field of meromorphic functions
on X and M∗(X) =M(X) \ {0} is the multiplicative group of this field.

Theorem 4.2. A divisor and a meromorphic section of a holomorphic line
bundle are essentially the same thing. More precisely

1In paragraph 11.1 we extend this definition to non compact Riemann surfaces.
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(i) Every holomorphic line L→ X admits a meromorphic section s.

(ii) A meromorphic section s is holomorphic if and only if its divisor (s) is
effective.

(iii) For every divisor D there is a holomorphic line bundle LD → X and a
meromorphic section sD of LD with D = (sD).

(iv) Assume that s and s′ are meromorphic sections of holomorphic line
bundles L and L′ respectively. Then (s) = (s′) if and only if there is an
isomorphism L→ L′ of holomorphic line bundles which carries s to s′.

(v) Two divisors are linearly equivalent if and only if the corresponding holo-
morphic line bundles are isomorphic.

(vi) Let D be the divisor of a meromorphic section s of a holomorphic line
bundle L→ X. Then the map

L(D)→ O(X,L) : f 7→ fs

is an isomorphism from the vector space L(D) onto the vector space
O(X,L) of holomorphic sections of L.

Proof. For the proof of (i) see Theorem 8.3 below. Part (ii) is obvious; a
meromorphic section is holomorphic if and only if it has no poles. Given a
divisorD =

∑m
k=1 nkpk we will construct a line bundle LD and a meromorphic

section sD. Choose a cover U = {Uk}0≤k≤m of X such that Uk is the domain
of a holomorphic coordinate zk centered at pk for k = 1, 2, . . . ,m and U0 =
X \{p1, p2, . . . , pm}. Define a meromorphic function sk on Uk by sk = znkk for
k = 1, 2, . . . ,m and s0 = 1. The holomorphic functions gjk : Uj ∩ Uk → C

∗

defined by

gjk =
sj
sk

satisfy gijgjkgki = 1 and thus form the transition functions for a line bundle
L = LD. The formula sj = gjksk says that the functions sk fit together to
form a (meromorphic) section sD of LD and by construction (sD) = D. This
proves (iii).

For part (iv) note that trivializations of L and L′ over a common open
set U determine a unique function φ on U with s′ = φs and φ is holomorphic
and nowhere zero on U since (s) = (s′). For part (v) assume that s and s′

7



are meromorphic sections of L. Then the unique function ψ on X such that
s′ = ψs is meromorphic and satisfies (s′) = (ψ) + (s). Conversely assume
that s and s′ are meromorphic sections of L and L′ respectively and that
(s′) = (ψ) + (s) for some meromorphic function ψ on X. Choose an open
cover {Uk}k such that both L|Uk and L′|Uk are trivial and let sk = s|Uk,
s′k = s′|Uk, and ψk = ψ|Uk. Then s′k and ψksk have the same divisor in Uk
so s′k = φkψksk where φk : Uk → C

∗. Thus

gjk :=
sj
sk

=
s′j
s′k

=: g′jk

which shows that the corresponding line bundles L and L′ are isomorphic.
For part (vi) first note that the condition (f) + (s) ≥ 0 implies that fs

is holomorphic so the map f 7→ fs carries L(D) to O(X,L). This map is
clearly injective. Let gjk = sj/sk be the transition functions of part (iii).
Then a holomorphic section of L is a collection of holomorphic functions σk
such that σj = gjkσk. It follows that σj/sj = σk/sk on Uj ∩Uk, i.e. there is a
meromorphic function f defined on X with f |Uk = σk/sk, i.e. σ = fs. Since
σ is holomorphic we have (f) + (s) = (σ) ≥ 0, i.e. f ∈ L(D). This shows
that the map f 7→ fs is surjective.

4.3. The isomorphism classes of holomorphic line bundles over a Riemann
surface X form an abelian group called the Picard group and denoted by
Pic(X). The trivial line bundle is the identity element of Pic(X), the group
operation is tensor product, and the inverse of a line bundle is its dual bundle.
Theorem 4.2 defines an isomorphism

Pic(X) = Div(X)/ ∼

where Div(X) is the group of divisors on X and ∼ denotes linear equivalence
of divisors. This isomorphism is an isomorphism of groups since

(s1 ⊗ s2) = (s1) + (s2)

for meromorphic sections s1 and s2 of L1 and L2 respectively. The degree of
a holomorphic bundle defines a homomorphism of groups

Pic(X)→ Z : L 7→ deg(L).

Remark 4.4. Some authors mean by the term Picard group the subgroup
Pic0(X) = Div0(X)/ ∼ of line bundles of degree zero.
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5 Sheaves

In this section C denotes the category of abelian groups but much of the
theory described here works for any category C which admits inverse limits.

5.1. Let X be a topological space. A presheaf on X is contravariant functor
S from the category of open subsets of X and inclusions to the category C.
Usually the value S(U) of S on an open subset U is a space of functions
defined on U (or more generally a space of sections of a bundle over U) so
we use the notation

s|V = S(ιV U)(s)

for open sets V ⊂ U ⊂ X, s ∈ S(U), and where ιV U : V → U is the inclusion;
we call s|V the restriction of s to V . A sheaf is a presheaf S which satisfies
the following completeness axiom: For every open set U ⊂ X and every
indexed open cover {Ui}i∈I of U the map

S(U)→

{
s ∈

∏
i∈I

S(Ui) : s|Ui ∩ Uj = sj|Ui ∩ Uj

}
: s 7→ (s|Ui)i∈I

is a bijection.

5.2. Let S be a presheaf over X. Consider triples (s, U, x) where U ⊂ X is
open, s ∈ S(U), and x ∈ U . Define an equivalence relation on these triples
by [s1, U1, x1] = [s2, U2, x2] iff x1 = x2 and there exists an open set U ⊂ X
with x ∈ U ⊂ U1 ∩ U2 and s1|U1 = s2|U2. The equivalence class [s, U, x] is
called the germ of s at x; the stalk Sx is the set of germs [s, U, x] at x. The
natural projections

S(U)→ Sx : s 7→ [s, U, x]

commute with restrictions so each stalk Sx is an object of C.

Remark 5.3. To any presheaf S over X we can associate the disjoint union
S :=

∐
x∈X Sx. Denote by π : S → X the obvious projection π([s, U, x]) = x.

Each s ∈ S(U) determines a section γs of π over U via the formula γs(x) =
[s, U, x]. Equip S with the topology that makes each of these sections a
homeomorphism onto its image. Then π is a local homeomorphism. For
each open set U ⊂ X let O(X,U) denote the set of continuous sections of π
over U , i.e. the set of continuous maps γ : U → π−1(U) such that π◦γ(x) = x
for x ∈ U . It is not hard to prove that

9



• the functor U 7→ O(X,U) is a sheaf, and

• a presheaf S is a sheaf if and only if the map S(U)→ O(X,U) : s 7→ γs
is a bijection for every open set U ⊂ X.

A local homeomorphism is called an etale space. Some authors (e.g.[4])
use the term sheaf to signify an etale space where each π−1(x) is an abelian
group, and the term complete presheaf, for what we have called a sheaf. The
topology on S is confusing (it is often not Hausdorff) and we will avoid it.

5.4. Let S and S ′ be sheaves over X. A morphism from the sheaf S to
the sheaf S ′ is a natural transformation T : S → S ′, i.e. an operation which
assigns to each open set U ⊂ X a morphism T : S(U) → S ′(U) which
intertwines the restriction morphisms. The morphism induces a morphism
Tx : Sx → S ′x of stalks for each x ∈ X.

5.5. A sequence of sheaves and morphisms between them is called exact iff
induces an exact sequence on stalks for each x ∈ X. A sheaf S is a subsheaf
of the sheaf T iff S(U) is a subgroup of T (U) for every open set U ⊂ X. It
is easy to prove that when S is a subsheaf of T there is an exact sequence

0→ S → T → T /S → 0

where the morphism S → T is the inclusion; the sheaf T /S is unique up
to isomorphism. WARNING: It can happen that (T /S)(U) 6= T (U)/S(U).
For example, this happens for the exponential sequence (see below)

0→ Z→ E exp−→E∗ → 0

when U is not simply connected.

5.6. Here is a list of some important sheaves.

E smooth functions;
Ep smooth p-forms (E = E0);
E∗ nowhere zero smooth functions;
Ep,q smooth (p, q)-forms;
O holomorphic functions;
O∗ nowhere zero holomorphic functions;
Ωp holomorphic p-forms (O = Ω0);
M meromorphic functions;
M∗ not identically zero meromorphic functions;
P principal parts, P =M/O;
D divisors, D =M∗/O∗.
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The sheaves E , Ep, and E∗ are defined on any smooth manifold X and the
sheaf M∗ is defined on an almost complex manifold; the remaining sheaves
are defined only on complex manifolds. Unless otherwise specified the func-
tions are complex valued. The group operation in all these is addition of
functions except for E∗, O∗, and M∗ where the operation is multiplication.
When E → X is a vector bundle and S is one of the above sheaves we denote
by S(E) the corresponding sheaf of sections of E and we use the abbreviation

S(U,E) := S(E)(U)

so that the elements of S(X,E) are sections of E → X. For example, E(E)
denotes the sheaf which assigns to the open set U the space of smooth sections
of E|U and Ep,q(E) denotes the sheaf which assigns to the open set U the
space of smooth E valued forms of type (p, q) defined on U . These sheaves
are defined for smooth complex vector bundles; the subsheaves O(E) ⊂ E(E)
and Ωp(E) ⊂ Ep,0(E) are defined only for holomorphic bundles.

Remark 5.7. For any holomorphic line bundle the sheafM of meromorphic
functions and the sheaf M(L) of meromorphic sections of L are isomorphic.
Each meromorphic section s ∈M(X,L) determines an isomorphism via the
formula

M(U)→M(U,L) : f 7→ fs.

5.8. For each abelian group G we denote the corresponding constant sheaf
by the same symbol, i.e. G(U) = G. For each point p we define the
skyscraper sheaf Gp by Gp(U) = G if p ∈ U and Gp(U) = 0 if p /∈ U .

5.9. Here are some important exact sequences of sheaves.

the smooth exponential sequence:

0→ Z→ E exp−→E∗ → 0

the holomorphic exponential sequence:

0→ Z→ O exp−→O∗ → 0

the principal part sequence:

0→ O →M→ P → 0
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the divisor sequence:
0→ O∗ →M∗ → D → 0

the de Rham complex:

0→ R→ E0 d−→E1 d−→ . . . .

the pth Dolbeault complex:

0→ Ωp → Ep,0 ∂̄−→Ep,1 ∂̄−→ . . . .

6 Sheaf Cohomology

A good reference for the material in this section is [4].

6.1. Let X be a topological space. An open cover of X is an indexed
collection U = {Ui}i∈I of open subsets of X such that X =

⋃
i∈I Ui. A

refinement of the open cover U is open cover V = {Vj}j∈J such that there
is a map and τ : J → I is a map such that Vj ⊂ Uτ(j) for j ∈ J ; the map τ is
called a refining map from V to U . The nerve of the open cover U is the
set

Nerve(U) =
⋃
k≥0

Nk(U)

where Nk(U) consists of all finite subsequences

σ = (i0, i1, . . . , ik) ∈ Ik+1

such that the open set

Uσ :=
k⋃
r=0

Uir

is nonempty.

6.2. Let S be a sheaf over X and U = {Ui}i∈I be an open cover of X. We
define a chain complex

0
δ−→C0(U ,S)

δ−→C1(U ,S)
δ−→C2(U ,S)

δ−→· · ·

by

Ck(U ,S) :=
⊕

σ∈Nk(U)

S(Uσ)
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and

(δµ)σ =
k∑
r=0

(−1)rµσ(r)|Uσ

where σ = (i0, i1, . . . , ik) and σ(r) = (i0, i1, . . . , ir−1, ir+1, . . . ik). The kth
cohomology group of the sheaf S for the cover U is

Hk(U ,S) :=
Kernel(δ : Ck(U ,S)→ Ck+1(U ,S))

Image(δ : Ck−1(U ,S)→ Ck(U ,S))

Remark 6.3. Our use of the term nerve is not quite standard; the standard
definition takes sets {i0, i1, . . . , ik} of cardinality k+1 rather than sequences.
With this definition one must linearly order I to define δ; changing the
linear order changes the sign of δ. The kernel and image and (hence also the
cohomology) are independent of the choice and the two notions of nerve lead
to the same cohomology.

Remark 6.4. If δµ = 0 then µσ is a skew symmetric function of the indices.

6.5. Let S be a sheaf, U be an open cover, and V be a refinement of U .
Each refining map τ induces a chain map τ∗ : C∗(V ,S) → C∗(U ,S) and
two refining maps induce chain homotopic chain maps. Hence there is a well
defined map H∗(V ,S) → H∗(cU,S). The open covers of X form a directed
set under refinement. The kth cohomology group of S is defined by

Hk(S) := lim
U→∞

Hk(U ,S).

When (as is usually the case) the sheaf S takes values in the category of
complex vector spaces, we denote the dimension of the cohomology group by

hk(S) := dimCH
k(S).

Theorem 6.6. For any sheaf S over a topological space X we have that
Hk(S) = 0 for k > n where n is the covering dimension of X.

Proof. By the definition of covering dimension any open cover has a refine-
ment U with Nk(U) = ∅ for k > n.

6.7. Let S be a sheaf. A partition of unity on S is a collection {ηi}i∈I
of sheaf homomorphisms ηi : S → S which is locally finite (i.e. for every
point of X has a neighborhood which intersects the supports of only finitely
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many ηi) and satisfies
∑

i∈I ηi = 1 the identity. The partition of unity is
subordinate to the cover U = {Ui}i∈I if the support of ηi is a subset if Ui.
A sheaf S is called a fine sheaf iff for any open cover U there is partition of
unity subordinate to it.

Theorem 6.8. Let S be a fine sheaf. Then Hk(S) = 0 for k > 0.

Corollary 6.9. Let Gp be a skyscraper sheaf. Then H0(Gp) = G and
Hk(Gp) = 0 for k > 0.

Proof. Let U = {Ui}i∈I be an open cover. Choose i0 with p ∈ Ui0 and take
ηi0 the identity and ηi = 0 for i 6= i0.

6.10. Let
0→ A→ B → C → 0

be a short exact sequence of sheaves. Then there is a long exact sequence

0→ H0(A)→ H0(B)→ H0(C) δ−→

H1(A)→ H1(B)→ H1(C) δ−→

H2(A)→ H2(B)→ H2(C) δ−→· · ·

(When X is a Riemann surface the · · · may be replaced by 0 according to
Theorem 6.6.)

6.11. Let L → X be line bundle, U = {Ui}i∈I be an open cover such that
L|Ui is trivial and si ∈ O∗(Ui, L) be a nowhere zero holomorphic section
of L over Ui. Then the transition functions gij ∈ O∗(Ui ∩ Uj) defined
by si = gijsj form a cocycle in C1(U ,O∗) and hence a cohomology class in
H1(O∗) where O∗ is the sheaf of nowhere zero holomorphic functions. It is
not hard to see that this defines a group isomorphism

Pic(X) = H1(O∗)

where Pic(X) is the Picard group, i.e. the multiplicative group (under
tensor product) of isomorphism classes of line bundles over X.

6.12. The sheaf O∗ fits into two exact sequences, namely the divisor exact
sequence

0→ O∗ →M∗ → D → 0
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and the exponential exact sequence

0→ Z→ O → O∗ → 0

where the map O(U) → O∗(U) is s 7→ exp(2πis). A common notation for
the global divisors on X is

Div(X) := H0(D) = D(X).

When X is compact, it is not hard to see a global section is a divisor in the
sense of paragraph 4.1 and that where L = LD is the line bundle constructed
in part (iii) of Theorem 4.2 we have LD = δ(D) where δ : H0(D)→ H1(O∗)
is the boundary operator in the long exact sequence associated to the divisor
sequence. (See paragraph 11.2 below.)

6.13. A double complex consists of a collection {Cp,q}p,q≥0 of abelian
groups indexed by the nonnegative integers together with homomorphisms
d : Cp,q → Cp,q+1 and δ : Cp,q → Cp+1,q such that d2 = 0, δ2 = 0, and
dδ = δd. For notational convenience define C−1,q = Cp,−1 = 0 and define d
and δ as the inclusion of zero. Define cohomology groups

Hp,q
d =

Kernel(d : Cp,q → Cp,q+1)

Image(d : Cp,q−1 → Cp,q)

and

Hp,q
δ =

Kernel(δ : Cp,q → Cp+1,q)

Image(δ : Cp−1,q → Cp,q)

for p, q ≥ 0.

6.14. We may represent the double complex as an array as follows

...
...

...xd xd xd
0 → C0,2 δ−→ C1,2 δ−→ C2,2 δ−→ . . .xd xd xd
0 → C0,1 δ−→ C1,1 δ−→ C2,1 δ−→ . . .xd xd xd
0 → C0,0 δ−→ C1,0 δ−→ C2,0 δ−→ . . .

↑ ↑ ↑
0 0 0
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We will say that an y ∈ C0,k with dy = 0 and an element x ∈ Ck,0 with
δx = 0 are zig zag related iff there exist zj ∈ Cj,k−j with z0 = y, zk = x,
and dzj = δzj+1 for j = 0, 1, . . . , k− 1. When k = 2 this may be represented
by

0xd
z0 = y

δ−→ δz0 = dz1xd
z1

δ−→ δz1 = dz2xd
z2 = x

δ−→ 0

Theorem 6.15. Assume that the rows and columns of the double complex are
exact except for the leftmost column and the bottom row, i.e. that Hp,q

d = 0
for p > 0 and q ≥ 0 and that Hp,q

δ = 0 for q > 0 and p ≥ 0. Then the

groups H0,k
d and Hk,0

δ are isomorphic. More precisely there is an isomorphism

T : H0,k
d → Hk,0

δ such that for y ∈ C0,k with dy = 0 and x ∈ Ck,0 with δx = 0
we have T [y] = [x] if and only if y and x are zig zag related.

Corollary 6.16. Suppose that

0→ S0 → S1 → S2 → · · ·

is a fine resolution of S0, i.e. an exact sequence of sheaves with Sk a fine
sheaf for k > 0. Then there is an isomorphism

Hp(X,S0) =
Kernel(Sp(X)→ Sp+1(X))

Image(Sp−1(X)→ Sp(X))

Proof. Choose an open cover U of X. Let

Cp,q := Cp(U ,Sq)

denote the space of Cêch p-cochains on the cover U with values in Sq and
apply the Zig Zag Theorem.

Corollary 6.17 (De Rham). Let X be a compact smooth manifold. Then
there is an isomorphism

H∗DR(X,C) = Ĥ∗(X,C)

between the de Rham cohomology and the Cêch cohomology.

16



Proof. Let Ep be the sheaf of smooth p-forms on X. Then we have a fine
resolution

0→ C→ E0 d−→E1 d−→ . . . .

That the sequence is exact is the Poincaré Lemma.

Corollary 6.18 (Dobeault). Let E → X be a holomorphic vector bundle
over a complex manifold X and Ωp(E) be the sheaf of holomorphic E valued
p-forms on X. Then there is an isomorphism

Hp,q

∂̄
(X,E) = Hq(X,Ωp(E))

between the Dolbeault cohomology of E-valued forms of type (p, q) and the
sheaf cohomology of Ωp(E).

Proof. Let Ep,q(E) be the sheaf of smooth E-valued forms of type (p, q).
Then we have a fine resolution

0→ Ωp(E)→ Ep,0(E)
∂̄−→Ep,1(E)

∂̄−→ . . . .

That the sequence is exact is the ∂̄-Poincaré Lemma.

7 Serre Duality

7.1. Let X be a compact complex manifold of complex dimension n, E → X
be a holomorphic vector bundle, and E∗ → X denote the dual bundle. For
p, q,= 0, 1, . . . , n define a pairing

En−p,n−q(X,E∗)× Ep,q(X,E)→ C : (α, β) 7→
∫
X

α ∧ β.

By integration by parts∫
X

∂̄γ ∧ β = (−1)p
∫
X

γ ∧ ∂̄β

for α ∈ En−p,n−q−1(X,E∗) and β ∈ Ep,q(X,E) so

∂̄∗ := (−1)p∂̄ : En−p,n−q−1(X,E∗)→ En−p,n−q(X,E∗)

is a formal adjoint to the ∂̄ operator

∂̄ : Ep,q(X,E)→ Ep,q+1(X,E).

17



This defines a map

Hn−p,n−q
∂̄

(X,E∗)→ Hp,q

∂̄
(X,E)∗ (∗)

between the Dolbeault cohomology groups. Using the Dolbeault isomorphism
of Corollary 6.18 this induces a map

Hn−q(Ωn−p(E∗))→ Hq(Ωp(E))∗

between the sheaf cohomology groups.

Theorem 7.2 (Serre Duality). The pairing is nondegenerate, i.e. the
map (∗) is an isomorphism.

Sketch of proof. Let Ep,q(X,E)∗ denote the dual space of the Frechét space
Ep,q(X,E). The above pairing gives an inclusion

En−p,n−q(X,E∗)→ Ep,q(X,E)∗.

If, in the statement of Serre duality, the cohomology group Hn−p,n−q
∂̄

(X,E∗)
of the formal dual complex

· · · → En−p,n−(q+1)(X,E∗)
∂̄∗−→En−p,n−q(X,E∗) ∂̄∗−→En−p,n−(q−1)(X,E∗)→ · · ·

is replaced by the cohomology group of the dual complex

· · · → Ep,q+1(X,E∗)∗
∂̄∗−→Ep,q(X,E∗)∗ ∂̄∗−→Ep,q−1(X,E∗)∗ → · · ·

the Serre theorem becomes an exercise in linear algebra. The replacement is
justified by elliptic regularity; i.e. a linear functional in the kernel of ∂̄∗ is
given by integration against smooth form. For the details see [4].

7.3. In case X is a Riemann surface, its complex dimension is n = 1 and
simpler notations are used: the sheaf of germs of holomorphic one forms is
denoted by Ω rather than Ω1 and the sheaf of germs of holomorphic aero
forms (functions) is denoted by O rather than Ω0. In this case

H1(O(E))∗ = H0,1

∂̄
(X,E)∗ = H1,0

∂̄
(X,E∗) = H0(Ω(E∗))

where the middle isomorphism is Serre duality and the outer ones are the
Dolbeault isomorphisms. Taking dimensions we get

h1(O(E)) = h0(Ω(E∗)) = h0(O(K ⊗ E∗))

where K is the canonical bundle.

18



Remark 7.4. A line bundle L of negative degree can have no holomorphic
sections so

deg(L) < 0 =⇒ h0(O(L)) = 0.

Since deg(K ⊗ L∗) = deg(K) − deg(L) = 2g − 2 − deg(L) where g is the
genus of X we have

deg(L) > 2g − 2 =⇒ h1(O(L)) = h0(O(K ⊗ L∗)) = 0.

8 Existence Theorem

In this section we will prove part (i) of Theorem 4.2. We follow [4]. We derive
the Riemann Roch Theorem for holomorphic line bundles as a corollary.
Throughout X is a compact Riemann surface.

8.1. For any line bundle L define an integer

ν(L) := h0(O(L))− h1(O(L))− deg(L).

The Riemann Roch Theorem (Theorem 8.5 below) is that ν(L) = 1−g where
g is the genus of X,

Lemma 8.2. Let LD be the line bundle associated with the divisor D as in
Theorem 4.2. Then

ν(L⊗ LD) = ν(L)

for any divisor D and any line bundle L.

Proof. By induction and the fact that LD+p = LD ⊗ Lp it suffices to prove
this in case D = p. There is a short exact sequence

0→ O(L)→ O(L⊗ Lp)→ Cp → 0;

the map O(L)→ O(L⊗ Lp) is given by s 7→ s⊗ sp. Hence (by 6.9) there is
a long exact sequence

0→ H0(O(L))→ H0(O(L⊗ Lp))→ C
δ−→

H1(O(L))→ H1(O(L⊗ Lp))→ 0.

Now use the fact that the alternating sums of the dimensions in an exact
sequence is zero and the fact that deg(L⊗ Lp) = deg(L) + 1.
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Theorem 8.3. A holomorphic line bundle admits a meromorphic section.

Proof. Let L be a holomorphic line bundle. Since the line bundle LD has a
holomorphic section, to show that L has a meromorphic section it suffices
to show that L ⊗ LD has a holomorphic section for some divisor D. If
not, then h0(O(L ⊗ LD)) = 0 for all D and so by Lemma 8.2 we have
ν(L) = ν(L⊗LD) = −h1(O(L⊗LD))− deg(L⊗LD). By Serre Duality this
gives

ν(L) = −h0(O(K ⊗ L∗ ⊗ L−D))− deg(L⊗ LD).

Now deg(K ⊗ L∗ ⊗ L−D) = deg(K) − deg(L) − deg(LD) which is negative
for D large. If the degree of a holomorphic bundle is negative it has no
holomorphic sections so h0(O(K ⊗ L∗ ⊗ L−D)) = 0 for D large and hence
ν(L) = − deg(L ⊗ LD) = − deg(L) − deg(LD) for all D which is clearly
absurd.

Corollary 8.4. Every line bundle is the line bundle of a divisor.

Proof. Let s be a meromorphic section of L and D = (s). Then L is isomor-
phic to LD.

Theorem 8.5 (Riemann Roch for Line Bundles). For any holomorphic
line bundle L→ X over a Riemann surface X of genus g we have

h0(O(L))− h0(Ω(L)) = deg(L) + 1− g.

In particular, h0(Ω) = g.

Proof. In other words, we must show ν(L) = 1 − g where ν(L) was defined
in Lemma 8.2. By Corollary 8.4 it is enough to show that ν(LD) = 1 − g
for every divisor D. By Lemma 8.2 ν(LD) = ν(L0) where L0 denotes the
trivial bundle; so it is enough to show ν(L0) = 1− g. Now h0(O(L0)) = 1 (a
holomorphic function is constant) and deg(L0) = 0 so

ν(L0) = h0(O(L0))− h0(O(K ⊗ L∗0))− deg(L0) = 1− h0(O(K)).

Also K ⊗K∗ = L0 and by Theorem 3.3 deg(K) = 2g − 2 so

ν(K) = h0(O(K))− h0(O(K ⊗K∗))− deg(K) = h0(O(K))− 1− (2g − 2).

By Lemma 8.2 ν(L0) = ν(K) so h0(O(K)) = g so ν(L0) = 1− h0(O(K)) =
1− g as required.
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9 Riemann Roch for Vector Bundles

9.1. Let E → X be a holomorphic vector bundle over a compact Riemann
surface. By the definition of cohomology the sequence

0→ H0
∂̄(X,E)→ E0(X,E)

∂̄−→E0,1(X,E)→ H0,1

∂̄
(X,E)→ 0

is exact, i.e. H0
∂̄
(X,E) is the kernel of ∂̄ and H0,1

∂̄
(X,E) is the cokernel. The

operator ∂̄ is elliptic so these spaces are finite dimensional. The number

ind(∂̄) := dimCH
0(X,E)− dimCH

0,1(X,E)

is called the index of the ∂̄ operator of E. By Serre duality the exact
sequence my be written

0→ O(X,E)→ E0(X,E)
∂̄−→E0,1(X,E)→ O(X,K ⊗ E∗)∗ → 0

where K → X is the canonical bundle and so the index may be written as

ind(∂̄) = h0(O(E))− h0(Ω(E∗)).

9.2. By a transversality argument, any complex vector bundle E of rank
great than one over a Riemann surface X has a smooth nowhere vanishing
section. Hence E has decomposition E = L1 ⊕ · · · ⊕ Ln as a direct sum of
line bundles. (Warning: It is not true that a holomorphic vector bundle is a
direct sum of holomorphic line bundles.) The number

c(E) :=
n∑
k=1

deg(Lk)

is called the Chern number of the vector bundle E. The Chern number is
the value of the first Chern class c1(E) ∈ H2(X) on the fundamental cycle
[X] ∈ H2(X) so it is independent of the decomposition used to define it.

Theorem 9.3 (Riemann Roch). The index of the ∂̄ operator of E of a
holomorphic vector bundle E → X over a compact Riemann surface X of
genus g is given by

ind(∂̄) = n(1− g) + c(E).

Proof. . . .
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Remark 9.4. By Theorem 3.3 the degree of the canonical bundle K → X
is

deg(K) = −χ(X) = 2g − 2

Since c(E∗) = −c(E) and the Chern number is additive and agrees with the
degree for line bundles, the Riemann Roch theorem has the suggestive form

dimR Γ(E)− dimR Γ(K ⊗ E) = c(E)− c(K ⊗ E∗).

Theorem 9.5 (Kodaira Embedding for Riemann Surfaces). Let L→
X be a holomorphic line bundle over a Riemann surface X of genus g and
assume that deg(L) > 2g + 1. Then

(i) For p, q ∈ X with p 6= q there is a holomorphic section s ∈ O(X,L) with
s(p) = 0 and s(q) 6= 0; and

(ii) For p ∈ X there is a holomorphic section s ∈ O(X,L) with s(p) = 0
and ds(p) 6= 0. Here ds(p) : TpX → Lp is the canonical derivative.

Hence the corresponding map X → P
N = P(O(X,L))∗), N = h0(O(L)) − 1

is an embedding.

Proof. . . .See [1] page 144.

10 The Canonical Map

Lemma 10.1. If X has positive genus, then the canonical bundle K → X
has no base point.

Proof. Suppose every ω ∈ O(X,K) = Ω(X) vanishes at some point p ∈
X; we will show that X has genus zero. Let Lp denote the line bundle
corresponding to the divisor D = p as in Theorem 4.2. Then O(X,K ⊗
L∗p) and O(X,K) are isomorphic so h0(O(K) = h0(O(K ⊗ L∗p). Hence by
Riemann Roch, h0(O(Lp)) = h0(O(K ⊗ L∗p) + deg(Lp) + 1 − g = 2. Hence
there is a meromorphic function with a simple pole at p and no other pole
so X is isomorphic to P and hence has genus zero.

Definition 10.2. The classifying map X → P
g−1 = P(Ω(X)) for the canon-

ical bundle K → X of a Riemann surface is called the canonical map of X.
The automorphism group Aut(X) of X acts on K and hence on the target
projective space of the canonical map; the canonical map is equivariant.
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11 Divisors and Principal Parts

11.1. Throughout this section X is a Riemann surface, not necessarily com-
pact. LetM be the sheaf of germs of meromorphic functions, O the subsheaf
of germs of holomorphic functions, and P the quotient sheaf. We call P the
sheaf of principal parts in X and the exact sequence

0→ O →M→ P → 0

the principal part exact sequence. Let M∗ be the sheaf of germs of
nonzero meromorphic functions, O∗ the subsheaf of germs of nowhere zero
holomorphic functions, and D the quotient sheaf. We call P the sheaf of
divisors on X and the exact sequence

0→ O∗ →M∗ → D → 0

the divisor exact sequence. If U ⊂ X is connected and open thenM∗(U)
is the multiplicative group the field M(U) and O∗(U) is the multiplicative
group the integral domain O(U). The group operation in M∗ is multiplica-
tion but we write the group operation in D additively.

11.2. The sheaf D assigns to each open set U the space D(U) of all formal
sums

D =
∑
p∈U

npp

where np is an integer and the support (i.e. the closure in U of the set of
points p where np 6= 0) is discrete. In particular, when X is compact the
support of a global section is finite, i.e.

H0(X,D) = Div(X)

where Div(X) is as in paragraph 6.12. The map H0(M∗) → H0(D) in
the cohomology exact sequence of the divisor exact sequence assigns to each
global meromorphic function f ∈M∗(X) its divisor

(f) =
∑
p∈X

Ordp(f)p.

The sheaf P assigns to each open set U the space P(U) of all formal sums

P =
∑
p∈U

hpp

23



with discrete support (as for divisors) and where hp a finite Laurent series

hp =

np∑
k=1

ak(p)z
−k.

(Here z is a holomorphic coordinate centered at p so the values ak(p) depend
on the choice of Z.) The map H0(M) → H0(P) in the cohomology exact
sequence of the principal part exact sequence assigns to each meromorphic
function f the formal sum P , supported at the poles of f where hp is the
sum of the negative terms in the Laurent expansion for f at p. We next
interpret the boundary operators H0(D)→ H1(O∗) and H0(P)→ H1(O) in
a parallel fashion.

11.3. A Weierstrass distribution is a pair (f,U) where U = {Ui}i∈I is
an open cover of X, fi ∈ M∗(Ui), and fi/fj ∈ O∗(Ui ∩ Uj); a solution to
(f,U) is a meromorphic function f ∈ M∗(X) with fi = f |Ui. For a Weier-
strass distribution the number Ordp(fi) is independent of the choice if i with
p ∈ Ui; this gives an cocycle D(f,U) ∈ C0(U ,D) and every cocycle arises as a
D(f,D). The boundary operator δ : H0(D)→ H1(O∗) assigns to the cocycle
D the cocycle fi/fj where D = D(f,U). Hence by the cohomology exact se-
quence a Weierstrass distribution (f,U) has a solution ⇐⇒ δ[D(f,U)] = 0
in H1(O∗). Note that under the identification Pic(X) = H1(O∗) of para-
graph 6.11 we have

δ(D) = LD

where LD is the line bundle associated with the divisor D as in Theorem 4.2.

11.4. A Mittag Leffler distribution is a pair (f,U) where fi ∈ M(Ui)
and fi − fj ∈ O(Ui ∩ Uj); a solution to (f,U) is a meromorphic function
f ∈ M(X) with fi = f |Ui. A Mittag Leffler distribution determines a
cocycle P (f,U) ∈ C0(U ,P) and every cocycle arises as a P (f,U). The
boundary operator δ : H0(P)→ H1(O) assigns to the cocycle P the cocycle
fi−fj where P = P (f,U). Hence by the cohomology exact sequence a Mittag
Lefler distribution (f,U) has a solution ⇐⇒ δ[P (f,U)] = 0 in H1(O).

Remark 11.5. In the theory of several complex variables a Mittag Lefler
distribution is called a Cousin-I distribution and a Weierstrass distribution
is called a Cousin-II distribution. The problem of finding f with f |Ui = fi
is called the Cousin problem.
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Lemma 11.6. The sheaves D and P are fine. Hence Hk(D) = Hk(P) = 0
for k > 0.

Proof. Choose any open cover {Ui}i. Then write X as a disjoint union of sets
Xi with Xi ⊂ Ui; the sets Xi are neither closed nor open. Define ηi : D → D
by

ηi(D) =
∑

p∈Xi∩U

npp

for U ⊂ X open and D ∈ D(U) a local section of D. Then
∑
ηi = 1.

Theorem 11.7. H2(O) = H2(O∗) = H2(M∗) = H2(M) = 0.

Proof. By Dolbeault H2(O) = 0. In the exponential cohomology exact se-
quence H2(O∗) lies between H2(O) and H3(Z) so H2(O∗) = 0. In the
divisor cohomology exact sequence H2(M∗) lies between H2(O∗) and H2(D)
so H2(M∗) = 0. In the principal part cohomology exact sequence H2(M)
lies between H2(O) and H2(P) so H2(M) = 0.

Theorem 11.8. If X noncompact, H1(O) = H0,1(X,C) = 0.

Proof. The Dolbealt isomorphism H1(O) = H0,1(X,C) follows from the ex-
actness of the sheaf sequence

0→ O → E0 ∂̄−→E0,1 → 0

and holds whether or not X is compact. To show that H0,1(X,C) = 0 we
must show that for every ω ∈ E0,1(X) there is an f ∈ E0(X) with ω = ∂̄f .
The proof uses Runge approximation and an exhaustion argument. See [1]
page 200.

Corollary 11.9. If X noncompact, H1(O∗) = 0, i.e. every holomorphic line
bundle over X is trivial.

Proof. In the exponential exact sequence H1(O∗) is between H1(O) = 0 and
H2(X,Z) = 0.

Corollary 11.10 (Weierstrass). Assume that X is not compact. Then
every divisor is the divisor of a meromorphic function. Hence every Weier-
strass distribution (f,U) has a solution.

Proof. By the sequence H0(O∗) → H0(M∗) → H0(D) → H1(O∗) = 0 is
exact so H0(M∗)→ H0(D) is onto and δF (f,U) = 0.
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Corollary 11.11 (Mittag Lefler). Assume that X is not compact. Then
every principal part is the principal part of a meromorphic function. Hence
every Mittag Lefler distribution has a solution.

Proof. The sequence H0(O)→ H0(M)→ H0(P)→ H1(O) = 0. is exact so
H0(M)→ H0(P) is surjective and δP (f,U) = 0.

Theorem 11.12. H1(M∗) = H1(M) = 0.

Proof. In the noncompact case the group this follows immediately from the
corresponding cohomology exact sequences and the results already proved:
H1(M∗) lies between H1(O∗) = 0 and H1(D) = 0 and H1(M) lies between
H1(O) = 0 and H1(P) = 0. Assume the compact case. By Corollary 8.4 the
first map in the sequence H0(M∗) → H1(O∗) → H1(M∗) → H1(D) = 0 is
surjective so second map is zero and hence H1(M∗) = 0. Next assume fij
represents an element of H1(M). Refine the cover if necessary so that the
number of poles of the fij is finite. Choose a divisor D of degree > 2g−2 such
that fij is a cycle in C1(U ,O(LD)). By Remark 7.4 H1(O(LD)) = 0. Hence
the cycle fij is cohomologous to zero in C∗(U ,O(LD))) and thus certainly in
C∗(U ,M).

Remark 11.13. A complex manifold (of any dimension) which is isomorphic
to a closed submanifold of CN for some N is called a Stein manifold. One
can prove that a noncompact Riemann surface is a Stein manifold. The
various cohomology vanishing theorems proved in this section are special
cases of more general theorems for Stein manifolds. If X is a submanifold
of projective space then X has a finite open cover U = {Ui}i∈I where each
Uσ for σ ∈ Nerve(U) is Stein. Thus for the various sheaves S = O,Ωp, . . .
the homologies Hk(Uσ,S) vanish for k > 1, i.e. U is what is called a Leray
cover for the sheaf S. A theorem of Leray (see [4] page 44) implies that
Hk(S) = Hk(U ,S), i.e. in computing the sheaf cohomology we don’t need
to take the limit over all covers.

12 Serre Duality and Divisors

12.1. Now suppose that LD is the line bundle associated to a divisor D.
Then Theorem 4.2 gives isomorphisms

OD := O(X,LD) = L(D), Ω−D := Ω(X,L∗D) = L(K −D)
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where, as is traditional, we have used the same letter K for the canonical
line bundle K → X and the divisor of a meromorphic section of K, i.e. a
meromorphic one form. Serre duality takes the form

H1(OD) = H0(Ω−D)∗.

Our aim is to find a formula for the pairing

H1(OD)×H0(Ω−D)→ C.

We will use the principal part exact sequence

0→ O(K)→M(K)→ P(K)→ 0

for one forms.

12.2. Where D =
∑

p npp and U ⊂ X is open, an element of OD(U) is a
meromorphic function f ∈ M(U) such that for p ∈ U with np < 0 the pole
of f has order ≤ −np at p; similarly an element of Ω−D(U) is a meromorphic
one form ω ∈ M(U,K) with zero of order ≥ −np at each p where np < 0.
Thus for each open set U there is a bilinear map

OD(U)× Ω−D(U)→ Ω(U) : (f, ω) 7→ fω

defined by pointwise multiplication. In particular this induces a pairing

H0(U ,OD)×H1(U ,Ω−D)→ H1(U ,Ω) : ((fi)i, (ωij)ij) 7→ (fiωij)ij.

for each open cover U and hence a pairing

H0(OD)×H1(Ω−D)→ H1(Ω).

12.3. The sum of the residues of a meromorphic one form in H0(M(K)) is
zero but there is a map

Res : H1(Ω) = H1(O(K))→ C

defined as follows. Choose µ ∈ H1(Ω). Since H1(M(K)) = 0 the boundary
map δ : H0(P) → H1(O(K)) = H1(Ω) is surjective. Therefore there is a
Mittag Lefler distribution (ν,U) representing µ, i.e. νi ∈ M(Ui, K) and the
cocycle νi−νj ∈ O(Ui∩Uj, K) represents µ. Since the νi−νj is holomorphic
on Ui ∩ Uj we have that resp(µ) := resp(νi) is independent of the choice of i
with p ∈ Ui used to define it. Define

Res(µ) =
∑
p∈X

resp(µ).
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Theorem 12.4. The composition

H0(OD)×H1(Ω−D)→ H1(Ω)
Res−→C

is the Serre Duality pairing.

Proof. . . .

Theorem 12.5. Let f ∈ C0(U ,M) be a Mittag Lefler distribution of mero-
morphic functions on a compact Riemann surface X. Then f has a solution
if and only if

Res(fω) = 0 for all ω ∈ Ω(X).

Proof. . . .See [1] page 147,

Theorem 12.6 (Abel). Let D ∈ Div0(X) be a divisor of degree zero on a
compact Riemann surface X. Then D = (f) for some f ∈M(X) if and only
if there is a singular one chain c on X with ∂c = D and∫

c

ω = 0 for all ω ∈ Ω(X).

Proof. . . .See [1] page 163.

13 Abel Jacobi

13.1. Let X be a compact Riemann surface, M∗(X) be the multiplicative
group of nonzero meromorphic functions on X, Div(X) be the group of divi-
sors on X, Div0(X) be the subgroup of divisors of degree zero, Pic(X) be the
Picard group of holomorphic line bundles on X, Pic0(X) be the subgroup line
bundles of degree zero, M(X,K) be the space of meromorphic differentials
in X, Ω(X) = O(X,K) be the space of holomorphic differentials on X, and
Ω(X)∗ be its dual as a complex vector space. Each γ ∈ H1(X,Z) determines
a functional Iγ ∈ Ω(X)∗ via the formula

Iγ(ω) =

∫
γ

ω.

Define Λ ⊂ Ω(X)∗ by

Λ = {Iγ : γ ∈ H1(X,Z)}.
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It is easy to see that the map γ → Iγ is a homomorphism of groups so that Λ
is a subgroup of the additive group of the vector space Ω(X)∗. The Jacobian
of X is the quotient group

Jac(X) := Ω(X)∗/Λ.

Lemma 13.2. Fix o ∈ X and let D =
∑

k nkpk ∈ Div(X). Then the class
u(D) ∈ Jac(X) of the linear functional defined by

Ω(X)→ C : ω 7→
∑
k

nk

∫ pk

o

ω

is independent of the choice of the arcs from o to pk used to define the in-
tegrals. If D ∈ Div0(X) then u(D)(ω) is also independent of the choice of
o ∈ X. The map u : Div0(X)→ Jac(X) thus defined is called Abel Jacobi
map of X.

Theorem 13.3 (Abel-Jacobi). The sequence

M∗(X)→ Div0(X)
u−→Jac(X)→ 0

is exact. Here the map M∗(X) → Div0(X) assigns to each meromorphic
function f its divisor (f). Moreover, Λ is a lattice so Jac(X) is a (compact)
torus.

Remark 13.4. The cohomology exact sequence of the divisor exact sequence
restricts to

M∗(X)→ Div0(X)→ Pic0(X)→ 0

so as a corollary we have that that the Abel Jacobi map induces an isomor-
phism

Pic0(X) = Jac(X)

also denoted by u. The assertion that the map u is injective is Abel’s Theo-
rem; the assertion that it is surjective is the Jacobi Inversion Theorem.

13.5. Let P ⊂ C be a fundamental polygon for X, i.e. the sides of P are
given by

∂P = α1 ∪ β1 ∪ α′1 ∪ β′1 ∪ · · · ∪ β′g
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(in the indicated order) where g is the genus of X and there is a holomorphic
map from a neighborhood of P onto X which is injective in the interior of P
and identifies α′i and α−1

i and also identifies β′i and β−1
i . Define

αg+i = βi, βg+1 = α−1
i .

Fix a point o in the interior of P .

Lemma 13.6. Let ω be a meromorphic differential in X having no pole on
∂P , φ be a holomorphic differential on P , and f : P → C be holomorphic
function defined by

f(p) =

∫ p

o

φ.

Then

2πi
∑
p∈X

resp(fω) = −
2g∑
i=1

wibi, where wi =

∫
αi

ω, bi =

∫
βi

φ.

Proof. By the Residue Theorem

2πi
∑
p∈X

resp(fω) =

∫
∂P

fω.

If p ∈ αi is identified with p′ ∈ α−1
i then f(p′) − f(p) = bi so

∫
αi∪α′i

fω =

biwi.

13.7. Now choose a basis φ1, . . . , φg for Ω(X) and use vector notation

Φ = (φ1, . . . , φg), F (p) =

∫ p

o

Φ ∈ Cg,

and for i = 1, 2, . . . , 2g define Ai, Bi ∈ Cg by

Ai =

∫
αi

Φ, Bi =

∫
βi

Φ.

For x = (x1, . . . , x2g ∈ C2g define A(x), B(x) ∈ Cg by

A(x) =

2g∑
i=1

xiAi, B(x) =

2g∑
i=1

xiBi,
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and for y ∈ Cg define A#(y), B#(y) ∈ C2g by

A#(y) = (y · A1, . . . , y · A2g), B#(y) = (y ·B1, . . . , y ·B2g)

where (y1, . . . , yg) · (z1, . . . , zg) =
∑

i yizi. Thus

A#(y)(x) = y · A(x), B#(y)(x) = y ·B(x)

for x ∈ C2g, y ∈ Cg.

Lemma 13.8. The sequence

0→ C
g A

#

−→C2g B−→Cg → 0

is exact (and similarly if A and B are reversed).

Proof. To see that B : C2g → C is surjective we show that B# is injective.
Choose x = (x1, . . . , xg) ∈ Cg with B#(x) = 0; we will show that x = 0. Let
ω =

∑
k xkφk. Then ω is holomorphic and

∫
βi
ω = 0 for all i. Hence p 7→

∫ p
o
ω

is single valued and thus constant, so ω = 0 so (as the φi are independent)
x = 0.

To see that B ◦ A# = 0 assume x = A#(y). Let ω =
∑

I yiφi. The ω is
holomorphic so, by the Lemma,

∑
iwiBi = 0 where wi =

∫
αi
ω = A#(y)i =

xi, i.e. B(w) = B(x) = 0.
Exactness at C2g follows since the proof that B is surjective showed that

B# injective and the same argument shows that A# is injective.

13.9. Now we prove Abel’s Theorem, i.e. that u is injective. Suppose that
D ∈ Div0(X) and that u(D) = 0; we must find f ∈ M∗(X) with D = (f).
Let D =

∑
p∈X npp. As

∑
p np = 0 there is a meromorphic differential ω with

resp(ω) = np. Suppose first that
∫
αj
ω ∈ 2πiZ. Then f(q) =

∫ q
o
ω is well

defined, meromorphic, and satisfies (f) = D. It remains to reduce to the
case where wj :=

∫
αj
ω ∈ 2πiZ. By the Lemma

−1

2πi

∑
j

wjBj =
∑
p

resp(Fω) =
∑
p

npF (p) = u(D) ∈ Λ

and thus it has the form
∑

jmjBj where mj ∈ Z. Hence
∑

j(wj+2πimj)Bj =

0 so wj + 2πimj = A#(y)j for some y ∈ Cg, Now ψ = ω −
∑

j yjφj has the

same poles and residues as ω and
∫
αj
ψ ∈ 2πiZ.
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13.10. Now we prove the Jacobi Inversion Theorem, i.e. that u is surjec-
tive. It is enough to show that the image of u contains an open set since
u is a homomorphism of groups. For this choose q1, . . . , qg ∈ X such that
ω(q1) = · · ·ω(qj) = 0, ω ∈ Ω(X) =⇒ ω = 0. Then the derivative of u at
D =

∑
j qj is injective and hence by the Inverse Function Theorem there are

neighborhoods Vi of q)i such that u maps V1 × Vg onto an open set.

Lemma 13.11. Fix o ∈ X and define ι : Xg → Pic0(X) by

ι(p1, . . . , pg) =

g∑
j=1

(pj − o).

Then ι is surjective.

Proof. Choose D ∈ Div0(X). Riemann Roch gives

`(−ι(p1, . . . , pg) +D) ≥ `(go+D) ≥ deg(go+D) + 1− g = 1

so there is an f with (f) ≥ ι(p1, . . . , pg) − D. Since both sides have degree
zero we must have equality, i.e. ι(p1, . . . , pg) = D in Pic0(X).

13.12. Finally we show that A1, . . . A2g are independent over R, i.e. that
Λ is a lattice. If this fails, Λ lies in a hyperplane in R2g−1 and Cq/Λ is not
compact. Both ι and u are surjective and hence also the composition u ◦ ι.
But Xg is compact so it follows that that the image Cg/Λ of u ◦ ι is compact
as required.
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