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1 Abelian Groups

1.1. Let {Gα}α∈Λ be an indexed family of Abelian groups. The direct product∏
α∈Λ Gα of this family is the set of all functions g defined on the index set Λ

such that g(α) ∈ Gα for α ∈ Λ; the direct sum is the subgroup
⊕

α∈Λ

Gα ⊂
∏

α∈Λ

Gα

of those g of finite support, i.e. g(α) = 0 for all but finitely many α. A free
Abelian group is a group which is isomorphic to G =

⊕
α∈Λ Z for some index

set Λ. The elements eα ∈
⊕

α∈Λ Gα defined by eα(α) = 1 and αα(β) = 0 for
β 6= α have the property that every element g ∈ G is uniquely expressible as a
finite sum

g =
∑
α

nαeα

where the coefficients nα are integers; such a system of elements of a free Abelian
group is call a free basis. It is easy to see that the cardinality a free basis is
independent of the choice of the basis; it is called the rank of the free group.
An Abelian group G is said to be finitely generated iff there is a surjective
homomorphism h : Zn → G.

1.2. A graded Abelian group is an Abelian group C equipped with a with
a direct sum decomposition

C =
⊕

n∈Z
Cn.

Unless otherwise specified we assume the grading is nonnegative meaning that
Cn = 0 for n < 0. A subgroup A of C is called graded iff

A =
⊕

n∈Z
An where An := A ∩ Cn.

It is easy to see that the quotient is then also graded, i.e.

C/A =
⊕

n∈Z
(Cn/An).
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The usage of the direct sum is a notational convenience only; it is better to
think of a graded Abelian group as a sequence {Cn}n of Abelian groups.

1.3. homomorphism h : A → B between graded Abelian groups is said to shift
the grading by r iff h(An) ⊂ Bn+r for all n; h is said to preserve the grading
iff it shifts the grading by 0. The kernel, image, and hence also cokernel of h is
graded. The graded Abelian groups and grade shifting homomorphisms form a
category as do the graded Abelian groups and grade preserving homomorphisms,

1.4. Suppose that α : A → B and β : B → C are homomorphisms of Abelian
groups. We say that the sequence

A
α // B

β // C

is exact at B iff the kernel of β is the image of α, i.e. α(A) = β−1(0). A
sequence

· · · // Cn+1
// Cn

// Cn−1
// · · ·

is called exact iff it is exact at each Cn. When the sequence terminates (at either
end), no condition is placed on the group at the end. To impose a condition an
extra zero is added. Thus a short exact sequence is an exact sequence

0 // A
α // B

β // C // 0,

i.e. it is exact at A, B, and C. For a short exact sequence the map α is injective,
the map β is surjective, and C is isomorphic to the quotient B/α(A). Often A
is a subgroup of B and α is the inclusion so C ≈ B/A. More generally, an exact
sequence

0 // K // A
α // B,

gives an isomorphism from K to the kernel α−1(0) of α, and an exact sequence

A
α // B // C // 0,

gives an isomorphism from C to the cokernel B/α(A) of α.

Exercise 1.5. Show that for a short exact sequence as in 1.4 the following are
equivalent:

(1) There is an isomorphism φ : A⊕ C → B with φ|A = α and β ◦ φ|C = idC .

(2) There is a homomorphism λ : B → A with λ ◦ α = idA.

(3) There is a homomorphism ρ : C → B with β ◦ ρ = idC .

When these three equivalent conditions hold we say that the exact sequence
splits or that the subgroup α(A) ⊂ B splits in B.
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Exercise 1.6. Show that a short exact sequence as in 1.4 always splits when
C is free but give an example of a short exact sequence which doesn’t split even
though A and B are free.

Exercise 1.7. The concepts of 1.4 remain meaningful for non Abelian groups
although it is customary to use multiplicative notation (1, ab, A × B) rather
than additive notation (0, a+b, A⊕B). Show that the implications (1) ⇐⇒ (2)
and (1) =⇒ (3) remain true in the non Abelian case but give an example where
(3) =⇒ (1) fails.

Lemma 1.8 (Smith Normal Form). For any integer matrix A ∈ Zm×n there
are square integer matrices P ∈ Zm×m and Q ∈ Zn×n of determinant ±1 (so
P−1 and Q−1 are integer matrices by Cramer’s rule) such that

PAQ−1 =
[

D 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]

where D is a diagonal integer matrix of form

D =




d1 0
. . .

0 dr


 ,

di > 0, and di divides di+1.

Proof. Use row and column operations to transform to a matrix where the least
common denominator of the entries is in the (1, 1) position and then use row and
column operations to transform so that the other entries in the first row and the
first column to vanish. Then use induction on the remaining (m− 1)× (n− 1)
matrix. As in elementary linear algebra, the row operations give P and the
column operations give Q. See Theorem 11.3 Page 55 of [7] for more details.

Corollary 1.9. A subgroup of a free Abelian group is free Abelian of lower or
equal rank.

Proof. It follows from Smith Normal Form that the range of A is a free subgroup.
It is easy to see that any subgroup of Zm is the range of A for some integer
matrix A. Hence Smith Normal Form implies that See Lemma 11.1 page 53
of [7] for a more direct argument. Lemma 11.2 page 54 of [7] shows that a
subgroup of a free Abelian group is free Abelian even without the hypothesis
that the ambient group is finitely generated.

1.10. The torsion subgroup T (G) of an Abelian group G is the subgroup of
elements of finite order. It is not hard to see that if G is finitely generated the
quotient G/T (G) is free and hence splits by Exercise 1.6. Lemma 1.8 yields the
following stronger
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Corollary 1.11 (Fundamental Theorem of Abelian Groups). Let A
finitely generated Abelian group G has a direct sum decomposition

G = F ⊕ T (G), T (G) = Z/d1 ⊕ · · ·Z/dr

where F is free, di > 0, and di divides di+1.

Remark 1.12. The rank of the free group G/T (G) is also called the rank of G
itself. The tensor product Q⊗G of G with the rational numbers Q is a vector
space over Q. It is easy to see that the dimension of the vector space Q⊗G is
the rank of G.

Exercise 1.13. The torus T 2 may be viewed as the quotient R2/Z2 of the
group R2 by the subgroup Z2. Consider the linear map R2 → R2 and its inverse
represented by the matrices

A =
[

3 5
4 7

]
, A−1 =

[
7 −5

−4 3

]
.

As A has integer entries it defines a map f : T 2 → T 2 by

f(x + Z2) = Ax + Z2

for x ∈ R2. As A−1 also has integer entries, this map is a homeomorphism.
How many fixed points does it have? (A fixed point of f is a point p ∈ T 2 such
that f(p) = p.)

Lemma 1.14 (Five Lemma). Consider a commutative diagram

A
i //

α

²²

B
j //

β

²²

C
j //

γ

²²

D
k //

δ

²²

E

ε

²²
A′

i′ // B′ j′ // C ′
k′ // D′ `′ // E′

of Abelian groups and homomorphisms. Assume that the rows are exact and
that α, β, δ, and ε are isomorphisms. Then γ is an isomorphism.

2 Abstract Homology

2.1. A chain complex is a pair (C, ∂) consisting of a

C =
⊕

n∈Z
Cn,

and a homomorphism ∂ : C → C called the boundary operator such that
∂(Cn+1) ⊂ Cn and ∂2 = 0. The chain complex (C, ∂) will be denoted simply
by C when no confusion can result. If there are several chain complexes in the
discussion we write ∂C for ∂. A chain map from a chain complex (A, ∂A) to
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a chain complex (B, ∂B) is a group homomorphism φ : A → B which preserves
the grading and satisfies

∂B ◦ φ = φ ◦ ∂A.

Chain complexes and chain maps form a category, i.e. the identity idC : C → C
is a chain map and the composition of chain maps is a chain map.

Remark 2.2. Unless otherwise specified we assume that chain complexes are
nonnegative meaning that Cn = 0 for n < 0.

2.3. Let (C, ∂) be a chain complex, Z(C) = ∂−1(0) denote the kernel of ∂, and
B(C) = ∂(C) denote the image of ∂. As ∂ shifts the grading by −1 these are
graded subgroups, i.e. B(C) =

⊕
n Bn(C) and Z(C) =

⊕
n Zn(C) where

Bn(C) := ∂(Cn+1) = B(C) ∩ Cn and Zn(C) := Z(C) ∩ Cn.

The condition ∂2 = 0 is equivalent to the condition B(C) ⊂ Z(C). The quotient
H(C) := Z(C)/B(C) is called the homology group of C. This is also graded,
namely H(C) =

⊕
n Hn(C) where

Hn(C) := Zn(C)/Bn(C).

By Remark 2.2 Z0(C) = C0. An elements of B(C) is called a boundary, an
element of Z(C) is called a cycle, and an element of H(C) is called a homology
class. A chain map φ : A → B sends boundaries to boundaries and cycles to
cycles and hence induces a graded homomorphism

φ∗ : Hn(A) → Hn(B)

for each n. The operation which sends the chain complex C to the graded
group H(C) and sends the chain map φ : A → B to the graded homomorphism
φ∗ : H(A) → H(B) is a functor, i.e.

(
idC

)
∗ = idH(C) and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Remark 2.4. A chain complex

· · · ∂ // Cn+1
∂ // Cn

∂ // Cn−1
∂ // · · ·

is exact at Cn (where n > 0) if and only if Hn(C) = 0. A chain complex whose
homology vanishes is sometimes called acyclic.

2.5. An augmented chain complex is a nonnegative chain complex C which
is equipped with an augmentation, i.e. a surjective homomorphism ε : C0 →
Z such that ε ◦ ∂|C1 = 0. We use the augmentation to produce a modified
nonnegative chain complex C̃ defined by

C̃n = Cn for n > 0 and C̃0 = ε−1(0).

For an augmented chain complex, the reduced homology group H̃(C) is the
homology of the modified complex, i.e.

H̃n(C) := Z̃n(C)/B̃n(C)
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where Z̃n(C) := Zn(C) for n > 0, Z̃0(C) := ε−1(0), and B̃n(C) := Bn(C) for
n ≥ 0. Obviously H̃n(C) = Hn(C) for n > 0. A chain map φ : A → B between
two augmented chain complexes is said to be augmentation preserving iff
εB ◦ (φ|A0) = εA. Just as for chain maps, an augmentation preserving chain
map induces a graded homomorphism

φ∗ : H̃(A) → H̃(B)

on reduced homology.

Remark 2.6. An exact sequence 0 → A → B → C → 0 of augmented chain
complexes gives rise to an exact sequence 0 → Ã → B̃ → C̃ → 0 of the
modified chain complexes. An augmented chain complex can be viewed as
chain complex with C−1 = Z and ∂|C0 = ε. This construction gives a chain
complex with the same homology as C̃ but is inconvenient because it does not
preserves exact sequence of chain complexes in the aforementioned sense: a
sequence 0 → Z→ Z→ Z→ 0 is never exact.

2.7. Consider short exact sequence

0 // A
i // B

j // C // 0,

of chain complexes, i.e. the homomorphisms i and j are chain maps. It is not
hard to show that there is a unique homomorphism ∂∗ : H(C) → H(A) called
the boundary homomorphism such that for c ∈ Z(C) and a ∈ Z(A) we have

∂∗[c] = [a] ⇐⇒ ∃b ∈ B such that i(a) = ∂B(b) and j(b) = c.

where the square brackets signify the homology class of the cycle it surrounds.

Theorem 2.8 (Long Exact Homology Sequence). The homology sequence

· · · ∂∗ // Hn(A)
i∗ // Hn(B)

j∗ // Hn(C)
∂∗ // Hn−1(A)

i∗ // · · ·
associated to the short exact sequence of chain complexes of 2.7. The sequence
is also natural meaning that a commutative diagram

0 // A
i //

α

²²

B
j //

β

²²

C //

γ

²²

0

0 // A
i′ // B

j′ // C // 0

of chain complexes and chain maps gives rise to a commutative diagram

· · · ∂∗ // Hn(A)
i∗ //

α∗
²²

Hn(B)
j∗ //

β∗
²²

Hn(C)
∂∗ //

γ∗
²²

Hn−1(A)
i∗ //

α∗
²²

· · ·

· · · ∂∗ // Hn(A′)
i′∗ // Hn(B′)

j′∗ // Hn(C ′)
∂∗ // Hn−1(A′)

i′∗ // · · ·
of long exact sequences.
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Theorem 2.9 (Standard Basis Theorem). Assume that C is a chain com-
plex such that each group Cn is free and of finite rank. Then there is a direct
sum decomposition

Ck = Uk ⊕ Vk ⊕Wk

such that ∂(Uk) ⊂ Wk−1 and ∂(Vk) = ∂(Wk) = 0. Moreover, there are bases
for Uk and Wk−1 relative to which ∂ : Uk → Wk−1 is represented by a diagonal
integer matrix

D =




d1 0
. . .

0 dr




where D is as in Lemma 1.8. Hence Zk = Vk ⊕Wk and

Hk−1(C) ≈ Vk−1 ⊕ Z/d1 ⊕ · · · ⊕ Z/dr

where Z/d = 0 if d = 1.

Proof. Let Zk ⊂ Ck denote the cycles and Bk ⊂ Ck denote the boundaries as
usual. Let Wk denote the weak boundaries, i.e. those elements w ∈ Ck such
that mw ∈ Bk for some m ∈ Z. Then

Bk ⊂ Wk ⊂ Zk ⊂ Ck.

By Smith Normal Form (Lemma 1.8) there is a basis e1, . . . , en for Ck, a basis
f1, . . . , fm for Ck−1, and integers di as in the theorem such that ∂ei = difi for
i = 1, . . . , r and ∂ei = 0 for i = r + 1, . . . , n. It follows that

1. er+1, . . . , en is a basis for Zk.

2. f1, . . . , fr is a basis for Wk−1.

3. d1f1, . . . , dkfr is a basis for Bk−1.

Then one shows Wk splits in Vk (i.e. that there is a subgroup Vk of Zk with
Zk = Vk ⊕ Wk) and takes Uk to be spanned by e1, . . . , er. See Theorem 11.4
page 58 of [7] for more details.

Remark 2.10. Smith Normal Form is a special case of Theorem 2.9. The
sequence

0 // Zn A // Zm // 0

is a chain complex.

2.11. Here is an algorithm for computing homology for a free finitely
generated chain complex. Assume that Ck+1 = Zp, Ck = Zn, and Ck−1 = Zm

so that ∂ : Ck+1 → Ck is represented by a matrix B ∈ Zn×p and ∂ : Ck → Ck−1

is represented by a matrix A ∈ Zm×n where AB = 0. The homology group Hk
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is the quotient of the kernel of A by the image of B. Assume w.l.o.g. that B is
in Smith Normal Form

B =
[

D 0r×(p−r)

0(n−r)×r 0(n−r)×(p−r)

]
, D =




d1 0
. . .

0 dr


 .

Then as D is invertible over Q and AB = 0 the matrix A must have the form

A =
[

0m×r A′
]
, A′ ∈ Zm×(n−r).

The rank of A equals the rank of A′ so the nullity of A′ is ν := n− r− rank(A).
The homology is

Ker(A)
Im(B)

≈ Zν ⊕ Z/d1 ⊕ · · · ⊕ Z/dr.

2.12. The algorithm in 2.11 can easily be modified to produce the direct sum
decomposition Ck = Uk ⊕ Vk ⊕ Wk of Theorem 2.9, i.e. given a sequence
A1, A2, . . . , An of matrices with Ak ∈ Znk×nk−1 and Ak−1Ak = 0, the modified
algorithm constructs matrices Pk ∈ Znk×nk of determinant ±1 such that

Pk−1AkP−1
k =




0uk−1×uk
0uk−1×vk

0uk−1×wk

0vk−1×uk
0vk−1×vk

0vk−1×wk

D 0wk−1×vk
0wk−1×wk




where uk + vk + wk = nk, uk = wk−1, where D is as in Lemma 1.8. Assume
inductively that Pn, . . . , Pk−1 have been constructed. Then, as in 2.11,

Ak−1P
−1
k−1 =

[
A′ 0nk−1×uk

]
.

Apply the Smith Normal form algorithm to Ak−1P
−1
k−1 avoiding column opera-

tions which modify the last wk−1 columns. This will modify Pk−1 but will not
change Pk−1AkP−1

k . Then apply row operations to move the nonzero block in
the upper left hand corner to the lower left hand corner. This modifies Pk−2

but not Pk−1.

Exercise 2.13. Assume A ∈ Rm×n and B ∈ Rn×p satisfy AB = 0. Show that
Rn = U ⊕ V ⊕W where U = Im(A∗), W = Im(B), and V = ker(A∗A + BB∗).

2.14. Two chain maps φ, ψ : A → B are called chain homotopic iff there is
a chain homotopy between them, i.e. a homomorphism P : A → B such that
P (An) ⊂ Bn+1 and

ψ − φ = ∂B ◦ P + P ◦ ∂A.

Chain homotopy is an equivalence relation and compositions of chain homotopic
maps are chain homotopic so the chain complexes and chain homotopy classes
form a category. An isomorphism of this category is called a chain homotopy
equivalence. A chain complex C is called chain contractible iff the identity
map of C is chain homotopy equivalent to the zero map.
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Theorem 2.15. If two chain maps φ, ψ : A → B are chain homotopic, they
induce the same map on homology, i.e. φ∗ = ψ∗ : H(A) → H(B).

Proof. Assume that φ−ψ = ∂BP +P∂A. If ∂Ax = 0 then φ(x) = ψ(x)+∂BPx
so φ∗[x] = ψ∗[x].

3 Singular Homology

3.1. Let X be a topological space. A map σ : ∆n → X is called a singular
n-simplex in X. The free Abelian group generated by the singular n-simplices
is denoted by Cn(X) and its elements are called singular n-chains. A singular
n-chain c is a finite formal sum of singular n-simplices, i.e.

c ∈ Cn(X) ⇐⇒ c =
r∑

k=1

ckσk

where each σk is a singular n-simplex and ck ∈ Z. The boundary operator
∂ : Cn(X) → Cn−1(Y ) is defined by

∂σ =
n∑

i=0

(−1)kσ ◦ ιk

where ιk : ∆n−1 → ∆n is defined by

ιk(x1, . . . , xn) = (x1, . . . , xk−1, 0, xk, . . . , xn).

It is easy to see that the sequence

· · · ∂ // Cn+1
∂ // Cn

∂ // Cn−1
∂ // · · ·

is a chain complex, i.e. that ∂2 = 0. We write

C(X) :=
⊕

n∈Z
Cn(X)

where Cn(X) := 0 for n < 0. The cycles of this complex are denoted by
Z(X) and the boundaries by B(X). As usual Zn(X) := Z(X) ∩ Cn(X) and
Bn(X) := B(X) ∩ Cn(X). The quotient

H(X) :=
⊕

n

Hn(X), Hn(X) := Zn(X)/Bn(X)

is called the singular homology group of the space X.

3.2. Let A ⊂ X be a subspace of X. Then C(A) is a subcomplex of C(X). The
quotient complex is denoted

C(X, A) :=
⊕

n

Cn(X, A), Cn(X, A) := Cn(X)/Cn(A).
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Elements of the groups

Zn(X, A) := ∂−1Cn(A), Bn(X, A) := Bn(X) + Cn(A)

are called relative singular cycles and relative singular boundaries re-
spectively. The homology

H(X, A) :=
⊕

n

Hn(Z, A), Hn(X, A) := Zn(X, A)/Bn(X,A)

is called the relative singular homology of the pair (X, A).

3.3. The standard augmentation ε : C0(X) → Z of the singular chain com-
plex C(X) is defined by

ε

(∑

i

cipi

)
=

∑

i

ci.

Here we identify the point p ∈ X with the singular simplex ∆0 → X : 1 7→ p.
(Recall that ∆0 = {1}.) The corresponding reduced homology group is denoted
H̃(X) and is called the reduced singular homology group of X. Thus

H̃(X) =
⊕

n

H̃n(X)

where H̃n(X) = Hn(X) for n > 0 and

H̃0(X) =
ε−1(0)
B0(X)

⊂ H0(X).

3.4. A map f : X → Y induces a homomorphism

f# : Cn(X) → Cn(Y )

defined by f#(σ) := f ◦σ for each singular n-simplex in X. This homomorphism
is a chain map, i.e. f# ◦ ∂ = ∂ ◦ f#. This implies that f#(Bn(X)) ⊂ Bn(Y )
and f#(Zn(X)) ⊂ Zn(Y ). Hence f induces a map

f∗ : H(X) → H(Y ).

The chain map preserves the standard augmentation so f∗(H̃n(X)) ⊂ H̃n(Y ).
Moreover, if f : (X, A) → (Y, B) then f#(Cn(A)) ⊂ Cn(B) so f induces a map
f∗ : Hn(X, A) → Hn(Y,B) on relative homology.

Remark 3.5. The three constructions H(X), H(X, A), and H̃(X) determine
one another as follows. The unique map q : X → {∗} from the space X to the
one point space gives a set theoretic equality

H̃(X) = Ker(q∗) ⊂ H(X).
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For p ∈ X the sequence {p} → X → {p} gives a splitting

H(X) = H̃(X)⊕H({p}).
The composition C̃(X) → C(X) → C(x, {p}) induces an isomorphism

H̃(X) ≈ H(X, {p}).
In Corollary 5.7 below we will prove that for “nice pairs” (X,A) the projection
(X, A) → (X/A,A/A) induces an isomorphism

H(X,A) ≈ H(X/A,A/A) ≈ H̃(X/A).

Note the obvious identification X → X/∅. The empty sum is zero so C(∅) =
{0}. The map C(X) → C(X, ∅) : c 7→ c + {0} = {c} gives a corresponding
isomorphism

H(X) = H(X, ∅).
Theorem 3.6 (Dimension Axiom). If X is a point p, then Hn(X) = 0 for
n > 0 and H0(X) = Z.

Proof. Cn(p) = Z for n ≥ 0 and ∂|Cn(p) = 0 or the identity according as n is
odd or even.

Proposition 3.7. If X is pathwise connected, then H0(X) = Z.

Proposition 3.8. Let {Xα}α∈Λ be the path components of X. Then Hn(X) =⊕
α∈Λ Hn(Xα).

Proof. Zn(X) =
⊕

α∈Λ Zn(Xα) and Bn(X) =
⊕

α∈Λ Bn(Xα).

Theorem 3.9 (Homotopy Axiom). If f, g : X → Y are homotopic, then the
chain maps f# and g# are chain homotopic so f∗ = g∗.

Proof. Let F : X × I → Y satisfy F (x, 0) = f(x) and F (x, 1) = g(x). Define
the prism operator P : Cn(X) → Cn+1(Y ) by

P (σ)(x0, . . . , xn) =
n+1∑

k=0

(−1)kF (σ
(
x0, . . . , xn), x0 + · · ·+ xk−1

)

for each singular n-simplex σ in X. The prism operator is a chain homotopy.
The geometric interpretation is that the prism ∆n × I is written as a union of
(n + 1)-simplices

∆n × I =
n⋃

k=0

[v0, . . . , vk, wk, . . . , wn]

where vi = (ui, 0), wi = (ui, 1), ui are the vertices ∆n, and [. . .] denotes convex
hull. The formula ∂P = g# − f# + P∂ expresses the boundary of the prism as
the top minus the bottom minus the prism on the faces of ∆n. The internal
faces of the decomposition cancel. See [3] page 112.
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4 Simplicial Homology

In this section we define two subcomplexes ∆(X) and ∆′(X) of the singular
chain complex C(X) of a ∆-complex X and state analogs of the basic theorems
in homology theory. The analogs are easier to understand than the correspond-
ing theorems on singular theory since the subcomplexes are finitely generated.
In section 6 we present a more general theory which makes singular homology
even easier to compute. The inclusions

∆(X) → ∆′(X) → C(X)

induce isomorphisms in homology.

4.1. Let {Φα : Dα → X}α∈Λ be a ∆-complex. Each characteristic map Φα :
∆n → X may be viewed as a singular n-simplex: denote by ∆n(X) the subgroup
of the singular chain group Cn(X) generated by the characteristic maps. By
the definition of ∆-complex there is a function β = β(α, k) which assigns to the
index α the (unique) index β such that Φβ = Φα ◦ ιk where ιk : ∆n−1 → ∆n is
inclusion into the kth face. Hence

∂Φα =
n∑

k=0

(−1)kΦβ(α,k)

which shows that
∆(X) :=

⊕

n∈N
∆n(X)

is a subcomplex of the singular chain complex C(X). The homology

H∆(X) =
⊕

n∈N
H∆

n (X)

of this subcomplex is called the simplicial homology of the ∆-complex X.
Thus

H∆
n (X) := Z∆

n (X)/B∆
n (X)

where Z∆
n (X) := ∆n(X) ∩ Zn(X) and B∆

n (X) := ∂(∆n+1(X)). The inclusion
∆(X) → C(X) is a chain map and induces a homomorphism H∆(X) → H(X).
Theorem 4.21 below asserts that this homomorphism is an isomorphism.

Example 4.2. The torus T 2 is the surface obtained from the unit square I2
with the identifications (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y). The Klein bottle
K2 is the surface obtained from the unit square I2 with the identifications
(x, 0) ∼ (x, 1) and (0, y) ∼ (1, 1− y). The projective plane P 2 is the surface
obtained from the unit square I2 with the identifications (x, 0) ∼ (1− x, 1) and
(0, y) ∼ (1, 1− y). For X = T 2,K2, P 2 there is a ∆-complex Φ as indicated in
Figure 1. For X = T 2 and X = K2 there are one 0-simplex v, three 1-simplices
a, b, c, and two 2-simplices U and L. For X = P 2 we must adjoin another
0-simplex w. In each case the bijections Φα is determined by the diagram in
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Figure 1: Three ∆-complexes

the only way possible so that the corresponding maps to I2 are affine and the
arrows on the edges match up. Note that had we reversed the arrows marked a
in P 2 the vertices of triangle U would be cyclically (not linearly) ordered. The
figure would still represent the projective plane but not a ∆-complex.

Proposition 4.3. The simplicial homology of the ∆-complex for the torus T 2

is
H∆

2 (T 2) = Z, H∆
1 (T 2) = Z2, H∆

0 (T 2) = Z

with H∆
n (T 2) = 0 for n > 2.

Proof. The chain groups are ∆2(T 2) = Z2 with generators U,L, ∆1(T 2) =
Z3 with generators a, b, c, and ∆0(T 2) = Z with generator v. The boundary
operator is given by

∂U = b− c + a, ∂L = a− c + b, ∂a = ∂b = ∂c = 0.

Using row and column operations we find the Smith Normal Form for the matrix
representing ∂ : ∆2(T 2) → ∆1(T 2) is

B := P




1 1
1 1

−1 −1


 Q−1 =




1 0
0 0
0 0




and the matrix representing ∂ : ∆1(T 2) → ∆0(T 2) is of course

A :=
[

0 0 0
]
.

In the notation of 2.11 ν := n − r − rank(A) = 3 − 1 − 0 = 2 so H∆
1 (T 2) =

Zν ⊕ Z/1 = Z2. From B2 = 0 and rank(B) = 1 we get H∆
2 (T 2) = Z∆

2 (T 2) = Z
and from A = 0 we get H∆

0 (T2) = ∆0(T 2) = Z.

Proposition 4.4. The simplicial homology of the ∆-complex for the Klein bottle
K2 is

H∆
2 (K2) = 0, H∆

1 (K2) = Z⊕ (Z/2), H∆
0 (K2) = Z

with H∆
n (P 2) = 0 for n > 2.

13



Proof. The chain groups are as for T 2 but the boundary operator is given by

∂U = b− c + a, ∂L = a− b + c, ∂a = ∂b = ∂c = 0.

Using row and column operations we find the Smith Normal Form for the matrix
representing ∂ : ∆2(K2) → ∆1(K2) is

B := P




1 1
1 −1

−1 1


 Q−1 =




1 0
0 2
0 0




and the matrix representing ∂ : ∆1(K2) → ∆0(K2) is again A = 01×3. In
the notation of 2.11 ν := n − r − rank(A) = 3 − 2 − 0 = 1 so H∆

1 (K2) =
Zν ⊕ (Z/1) ⊕ (Z/2) = Z ⊕ (Z/2). From B2 = 0 and rank(B) = 2 we get
H∆

2 (K2) = Z∆
2 (K2) = 0 and H∆

0 (K2) = Z as for T 2.

Proposition 4.5. The simplicial homology of the ∆-complex for the projective
plane P 2 is

H∆
2 (P 2) = 0, H∆

1 (P 2) = Z/2, H∆
0 (P 2) = Z

with H∆
n (P 2) = 0 for n > 2.

Proof. The chain groups are ∆2(P 2) = Z2 and ∆1(P2) = Z3 as before but
∆0(P 2) = Z2 with generators v and w. The boundary operator is given by

∂U = b− a + c, ∂L = a− b + c, ∂a = ∂b = w − v, ∂c = 0.

Using row and column operations we find the Smith Normal Form for the matrix
representing ∂ : ∆2(T 2) → ∆1(T 2) is

B := P




1 1
1 −1

−1 1


 Q−1 =




1 0
0 2
0 0




and the matrix representing ∂ : ∆1(P 2) → ∆0(P 2) is

A =
[

1 1 0
−1 −1 0

]
.

In the notation of 2.11 ν := n − r − rank(A) = 3 − 2 − 1 = 0 so H∆
1 (P 2) ≈

Zν ⊕ (Z/1) ⊕ (Z/2) = Z/2. As for K2 we have H∆
2 (P 2) = Z∆

2 (P 2) = 0. The
Smith normal form for A is

M

[
1 1 0

−1 −1 0

]
N−1 =

[
1 0 0
0 0 0

]

so B∆
0 (P 2) ≈ Z× 0 ⊂ Z2 = ∆0(P 2) =: Z∆

0 (P 2) and hence H∆
0 (P 2) = Z.

14



4.6. The standard n-simplex ∆n is itself a simplicial complex with a character-
istic map Φα : ∆k → ∆n for each subset α = {α0, α1, . . . , αk} ⊂ {0, 1, . . . , n},
(α0 < α1 < · · · < αk), namely φα(x) = y where xi = yαi

for i = 0, 1, . . . , k and
yj = 0 for j /∈ α. The space ∆n is homeomorphic to the disk Dn, its boundary

Σn−1 := {x ∈ ∆n : some xi 6= 0}
is a subcomplex of ∆n homeomorphic to the sphere Sn−1.

Proposition 4.7. The ∆-homology of ∆n is given by

H∆
0 (∆n) = Z, H∆

k (∆n) = 0 for k 6= 0.

The ∆-homology of Σn−1 is given by

H∆
0 (Σn−1) = H∆

n−1(Σ
n−1) = Z, H∆

k (∆n) = 0 for k 6= 0, n.

The boundary ∂id∆n of the identity map of ∆n (viewed as an element of ∆n−1(Σn−1))
gives a generator of H∆

n−1(Σ
n−1).

Proof. Define a chain homotopy Kk : ∆k(∆n) → ∆k+1(∆n) by

Kk(Φα) =

{
Φ{0}∪α if 0 /∈ α,
0 if 0 ∈ α,

so Kk∂ +∂Kk+1 = id and ∂K0 = id−Φ{0}. Also K : ∆k(Σn−1) → ∆k+1(Σn−1)
for k < n and the complexes ∆(∆n) and ∆(Σn−1) are the same except that
∆n(∆n) = Z and ∆n(Σn−1) = 0.

4.8. Let {Φα : Dα → X}α∈Λ be a ∆-complex and ∆′
k(X) ⊂ Ck(X) be the

subgroup of the nth singular chain group of X generated by all maps of form
Φα ◦ g where Φα : ∆n → X is a characteristic map of the ∆-complex X and
g : ∆k → ∆n is simplicial, i.e. it sends each vertex vi of ∆k to a vertex g(vi) of
∆n and preserves convex combinations. Then

∆′(X) :=
⊕

n∈N
∆′

n(X)

is a subcomplex of the singular chain complex. We denote by

H∆′(X) =
⊕

n∈N
H∆′

n (X)

the homology of this subcomplex. Thus

H∆′
n (X) := Z∆′

n (X)/B∆′
n (X)

where Z∆′
n (X) := ∆′

n(X)∩Zn(X) and B∆′
n (X) := ∂(∆′

n+1(X)). The chain map
f# : C(X) → C(Y ) induced by a ∆-map f : X → Y satisfies

f#(∆′(X)) ⊂ ∆′(Y ).
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Thus H∆′ defines a functor from the category of ∆-complexes to the category
of chain groups. By contrast, usually f# will not map ∆(X) to ∆(Y ) an so the
operation H∆ is not obviously functorial. However H∆ has the advantage that
it is much easier to compute since the group ∆n(X) has much lower rank than
the group ∆′

n(X).

4.9. For a ∆-complex the standard augmentation ε : C0(X) → Z of 3.3 restricts
to augmentations of ∆(X) and ∆′(X). The corresponding reduced chain groups
are denoted by ∆̃(X) and ∆̃′(X) so that ∆̃n(X) = ∆n(X) and ∆̃′

n(X) = ∆′
n(X)

for n > 0 and

∆̃0(X) = ∆̃′
0(X) =

{ ∑

x∈X0

cxx :
∑

x∈X0

cx = 0

}

where the sums are understood to be finite even if X0 is infinite. The corre-
sponding reduced homology groups are denoted H̃∆(X) and H̃∆′(X).

4.10. Let (X,A) be a ∆-pair and define the quotient chain complexes

C∆(X, A) := C∆(X)/C∆(A), C∆′(X, A) := C∆′(X)/C∆′(A).

The homology groups of these complexes are denoted respectively H∆(X, A)
and H∆′(X, A).

Theorem 4.11. Let X be a ∆-complex. Then the inclusion φ : ∆(X) → ∆′(X)
is a chain homotopy equivalence.

Proof. Equip the vertices of the standard simplex ∆n with the lexicographical
ordering i.e. where vi denotes the vertex with 1 in the ith place and 0 elsewhere
we have vi < vj ⇐⇒ i < j. An injective simplicial map g : ∆k → ∆n

determines a unique simplicial automorphism σ of ∆k such that g ◦ σ is an
order preserving embedding from the vertices of ∆k to the vertices of ∆n. Let
sgn(σ) denote the sign of the corresponding permutation of the vertices. Define
ψ : ∆′(X) → ∆(X) by

ψ(Φα ◦ g) =

{
sgn(σ)Φα(g ◦ σ) if g is injective
0 otherwise.

Then ψ is a chain map, ψ ◦ φ is chain homotopic to the identity of ∆(X), and
φ ◦ ψ is chain homotopic to the identity of ∆′(X). See [7] page 77.

Exercise 4.12. Let p be a point viewed as a ∆-complex in the only way possible.
Show that H∆

n (p) = H∆′
n (p) = 0 for n > 0 and H∆

0 (p) = H∆′
0 (p) = Z. Hence

H̃∆(p) = H̃∆′(p) = 0.

Exercise 4.13. Two ∆-maps f, g : X → Y are said to be ∆-homotopic iff
there is a ∆-map F : X × I → Y such that F (·, 0) = f and F (·, 1) = g. Here
X × I is the product ∆-complex described in Theorem 2.10 on page 111 of [3].
Show that If two ∆-maps f, g : X → Y are ∆-homotopic, then the induced
maps f#, g# : ∆′(X) → ∆′(Y ) are ∆-homotopic.
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Exercise 4.14. Let (X,A) be a ∆-pair, i : A → X denote the inclusion, and
p : X → X/A denote the projection. Show that the sequence

0 // ∆̃(A)
i# // ∆̃(X)

p# // ∆̃(X/A) // 0

is exact. This gives a long exact sequence

· · · ∂ // H̃∆
k (A)

i# // H̃∆
k (X)

p# // H̃∆
k (X/A)

∂ // H̃∆
k−1(A)

i# // · · ·

Exercise 4.15. Continue the notation of 4.14. The exact sequence

0 // ∆(A)
i# // ∆(X)

p# // ∆(X)/∆(A) // 0

is exact and gives a long exact sequence

· · · ∂ // H∆
k (A)

i# // H∆
k (X)

p# // H∆
k (X, A) ∂ // H∆

k−1(A)
i# // · · ·

Remark 4.16. For a finite zero-dimensional ∆-complex (i.e. a finite set) X
the exact sequence of 4.15 is

0 → Z#(A) → Z#(X) → Z#(X)−#(A) → 0

and the exact sequence of Theorem 4.14 is

0 → Z#(A)−1 → Z#(X)−1 → Z#(X)−#(A) → 0.

Exercise 4.17. Let (X, A) be a ∆-pair and Z ⊂ A be an open subset of X
such that A \ Z is a subcomplex of A. Then X \ Z is a subcomplex of X and
the inclusion (X \ Z,A \ Z) ⊂ (X,A) induces an isomorphism

H∆(X \ Z, A \ Z) ≈ H∆(X, A).

This might be called the Excision Theorem for simplicial homology.

Exercise 4.18. In the situation of 4.17 the map

(X \ Z)/(A \ Z) → X/A

induced by the inclusion is a ∆-isomorphism and thus induces an isomorphism
H̃∆

(
(X \ Z)/(A \ Z)

) → H̃∆(X/A). Show that this is the same as the isomor-
phism obtained by combining the isomorphisms of 4.17 and 4.15.

Exercise 4.19. Let A and B be subcomplexes of a ∆-complex X. Then A∩B
and A ∪B are also subcomplexes. Show that there is an exact sequence

· · · → H∆
n (A ∩B) → H∆

n (A)⊕H∆
n (B) → H∆

n (A ∪B) → H∆
n−1(A ∩B) → · · ·
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This might be called the Mayer Vietoris Theorem for simplicial homology.
Hint: The sequence

0 → ∆(A) ∩∆(B) → ∆(A)⊕∆(B) → ∆(A ∪B) → 0

is exact. The map ∆(A)∩∆(B) = ∆(A∩B) → ∆(A)⊕∆(B) is the direct sum
of the inclusions and the map ∆(A)⊕∆(B) → ∆(A∪B) is the difference of the
inclusions of the summands.

Remark 4.20. For a finite zero-dimensional ∆-complex (i.e. a finite set) X
the exact sequence of 4.19 is

0 → Z#(A∩B) → Z#(A) ⊕ Z#(A) → Z#(A∪B) → 0

which shows that the Mayer Vietoris Theorem is a generalization of the Inclusion-
Exclusion Principle of combinatorics.

Theorem 4.21. Let X be a ∆-complex. Then the inclusion ∆(X) → C(X)
induces an isomorphism H∆(X) → H(X) between simplicial homology and sin-
gular homology.

Proof. This is proved for the k-skeleton X(k) by induction on k, the long exact
sequences (in both homology theories) for the pair (X(k), X(k−1)), and the Five
Lemma 1.14. See [3] Page 128.

5 Subdivision

5.1. For a ∆-pair (X, A) the sequence

0 → ∆(A) → ∆(X) → ∆̃(X/A) → 0

is exact and induces a long exact sequence in simplicial homology. The analogous
sequence

0 → C(A) → C(X) → C̃(X/A) → 0

in singular theory is not exact. For example, if X = I2, A = {1
2} × I, and

σ ∈ C1(X/A) is defined by σ(t) = (0, t) for t < 1
2 and σ(t) = (1, t) for t > 1

2
then σ does not lift to X. This nonexactness is the main reason why the relative
homology groups H(X,A) are used in place of the reduced homology groups
H̃(X/A). Corollary 5.7 asserts that H(X,A) and H̃(X/A) are isomorphic. The
proof requires the following

Theorem 5.2. Let X be a topological space and U = {Uλ}λ∈Λ be a collection
of subsets of X whose interiors cover X. Let CU (X) be the subcomplex of the
singular chain complex of X generated by the singular simplices σ : ∆n → X
such that σ(∆n) ⊂ Uλ for some λ ∈ Λ and let HU (X) denote the homology of
this subcomplex. Then the inclusion CU (X) → C(X) induces an isomorphism
HU (X) → H(X).
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5.3. Fix a convex subset K of Rm. Denote by LC(K) the subcomplex of the
singular chain complex C(K) generated by all singular simplices σ : ∆n → Rm

of form

σ(t0, t1, . . . , tn) =
n∑

i=0

tiwi

where w0, w1, . . . , wn ∈ K. The singular simplex σ is called the linear simplex
with vertices w0, w1, . . . , wn. The elements of LC(K) are called linear singular
chains. Each point b ∈ K determines a cone operator b : Cn(K) → Cn+1(K)
denoted by the same symbol via the formula

b(σ)(s−1, s0, s1, . . . , sn) = s−1b +
n∑

i=0

siwi.

For each linear n-simplex σ the point

bσ :=
1

n + 1

n∑

i=0

wi

is called the barycenter of σ. The map S : LCn(K) → LCn(K) defined
inductively by

S([w]) = [w], S(σ) = bσ(S∂σ)

is called linear barycentric subdivision.

Lemma 5.4. The map S is a chain map and is chain homotopic to the identity,
i.e. there are maps T : LCn(K) → LCn+1(K) such that

∂T + T∂ = id− S.

Proof. See [3] page 121-2.

5.5. We now specialize to the K = ∆n the standard n-simplex. Denote the ver-
tices of ∆n of v0, v1, . . . , vn. For a set I ⊂ {0, 1, . . . , n} of indices let ∆I denote
the convex hull of {vi : i ∈ I}. Each permutation α of {0, 1, . . . , n} determines
a linear simplex σα ∈ LCn(∆n) whose kth vertex wk is the barycenter of ∆Ik

where Ik = {α(0), . . . , α(k)}. Let idn denote the identity map of ∆n viewed as
a linear simplex. Then

idn =
⋃
α

εασα

where εα = ±1; the choice of these signs assures that the internal faces cancel. In
particular, ∆n =

⋃
α σα(∆n) and the interiors (in ∆n) of the simplices σα(∆n)

are pairwise disjoint. The chain homotopy T is determined by the formula

T (idn) = p#

(
τ +

∑
α

εατα

)
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where p : ∆n × I→ ∆n is projection on the first factor and τ : ∆n+1 → ∆n × I
are linear simplex whose vertices are (b, 1) [here b is the barycenter of ∆n] and
(vi, 0) for i = 0, . . . , n and where τα : ∆n+1 → ∆n × I is the linear simplex
whose vertices are (vα(0), 0) and (vα(i), 1) for i = 0, . . . , n. See [3] page 122.

Proof of Theorem 5.2. Let X be any topological space. Define a chain map
S : Cn(X) → Cn(X) and a chain homotopy T : Cn(X) → Cn+1(X) by

S(σ) = σ#(S(idn)), T (σ) = σ#(T (idn)).

The formula ∂T + T∂ = id − S holds so S is chain homotopic to the identity
id. By induction and the fact that compositions of chain homotopic maps are
chain homotopic we have that the mth iterate Sm of S is chain homotopic to
the identity, in fact

∂Dm + Dm∂ = id− Sm

where Dm =
∑

i<m TSi. Etc.

Corollary 5.6 (Excision). Let X be any topological space and Z ⊂ A ⊂ X be
such that the closure of Z is a subset of the interior of A. Then the inclusion
(X \ Z, A \ Z) → (X, A) induces an isomorphism

H(X \ Z,A \ Z) ≈ H(X, A)

of the relative homology groups.

Proof. Let U = {X \ Z, A}. The map C(X \ Z)/C(A \ Z) → CU (X)/C(A) is
an isomorphism and the map CU (X)/C(A) → C(X)/C(A) induces an isomor-
phisms in homology by Theorem 5.2. Hence

H(X \ Z,A \ Z) ≈ HU (X, A) ≈ H(X, A)

where HU (X, A) denotes the homology of CU (X)/C(A). See page 124 of [3].

Corollary 5.7. Assume that (X, A) is a nice pair, i.e. that A has a neigh-
borhood V in X which deformation retracts onto A. Then the projection

(X, A) → (X/A,A/A)

induces an isomorphism is relative homology and hence

H(X,A) ≈ H(X/A,A/A) ≈ H̃(X/A).

Proof. In the commutative diagram

H(X, A)

²²

// H(X,V )

²²

H(X \A, V \A)oo

²²
H(X/A,A/A) // H(X/A, V/A) H(X/A \A/A, V/A \A/A)oo

the horizontal maps on the left are isomorphisms by homotopy, the horizontal
maps on the right are isomorphisms by excision, the vertical map on the right
is an isomorphism as it is induced by a homeomorphism, and hence the other
two vertical maps are isomorphisms. See Proposition 2.22 page 124 of [3].

20



Corollary 5.8 (Mayer Vietoris). Let X be any topological space and A,B ⊂
X be two subsets whose interiors cover X. Then there is an exact sequence

· · · → Hn(A ∩B) → Hn(A)⊕Hn(B) → Hn(X)
∂∗ // Hn−1(A ∩B) → · · ·

where the map H(A∩B) → H(A)⊕H(B) is the direct sum of the maps induced
by the inclusions A∩B → A and A∩B → A, the map H(A)⊕H(B) → H(X)
is the difference of the maps induced by the inclusions A → X and B → X, and
the boundary operator ∂∗ is defined in the proof.

Proof. The collection U = {A,B} satisfies the hypothesis of Theorem 5.2, and

0 → C(A ∩B) → C(A)⊕ C(B) → CU (X) → 0

is an exact sequence of chain complexes.

6 Cellular Homology

Definition 6.1. By Proposition 4.7 and Theorem 4.21 we have Hn(Sn) = Z.
Hence each continuous map f : Sn → Sn determines an integer deg(f) called
the degree of f via the equation

f∗[Sn] = deg(f)[Sn]

where [Sn] is a generator of Hn(Sn).

6.2. Now let Φ = {Φα : Dα → X}α∈Λ be a cell complex, nα be the dimension
of the disk Dα, Let

Cn(Φ) :=
⊕

nα=n

ZΦα

be the free Abelian group generated by the n-dimensional cells of the complex.
For each pair of indices α, β ∈ Λ with nβ = nα − 1 = n− 1 define

φαβ : ∂Dα = Sn−1 → Dβ/∂Dβ = Dn−1/Sn−2 ≈ Sn−1

by φαβ = Φ−1
β ◦ qβ ◦ φα where φα = Φα|∂Dα is the attaching map, qβ :

X(n−1)/X(n−2) → ēβ/X(n−2) is the identity on eβ and sends the complement
of eβ to the wedge point, and Φ−1

β is induced by the inverse of the characteristic
map. Define ∂ : Cn(Φ) → Cn−1(Φ) by

∂Φα =
∑

β

deg(φαβ)Φβ

Theorem 6.3. The homomorphism ∂ : C(Φ) → C(Φ) is a chain complex, i.e.
∂2 = 0. The homology H(Φ) of this chain complex is isomorphic to the singular
homology H(X) of the space X.
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Proof. See [3] pages 137-141. An important point is that for each n character-
istic map Φ induces a homeomorphism

∨
nα=n

Sα ≈ X(n)/X(n−1), Sα := Dα/∂Dα

from a wedge of n-spheres to the quotient of the n skeleton by the (n − 1)-
skeleton. and that homeomorphism in turn induces an isomorphism

Cn(Φ) ' Hn(X(n)/X(n−1))

of Abelian groups.

Example 6.4. The standard representation P/∼ of the compact orientable
surface Mg of genus g (connected sum of g copies of the torus) is obtained from
a 4g-gon P with boundary

∂P = α1 ∪ α2 ∪ β1 ∪ β2 ∪ · · · ∪ α2g−1 ∪ α2g ∪ β2g−1 ∪ β2g,

where the sides are enumerated and oriented in the clockwise direction and
where αi and βi are identified by an orientation reversing homeomorphism.
This gives a cell complex structure Φ whose cellular chain complex is

0 // Z 0 // Z2g 0 // Z // 0

so the homology is

H0(Mg) = Z, H1(Mg) = Z2g, H1(Mg) = Z.

See Example 2.36 page 141 of [3].

Example 6.5. The standard representation P/∼ of the compact nonorientable
surface Nk of genus k (connected sum of k copies of the projective plane) is
obtained from a 2k-gon P with boundary

∂P = α1 ∪ β1 ∪ · · · ∪ αk ∪ βk,

where the sides are enumerated and oriented in the clockwise direction and
where αi and βi are identified by an orientation preserving homeomorphism.
This gives a cell complex structure Φ whose cellular chain complex is

0 // Z ∂ // Z2g 0 // Z // 0

where ∂(1) = (2, 2, . . . , 2) so the homology is

H0(Ng) = Z, H1(Ng) = Zg−1 ⊕ Z/2, H2(Ng) = 0.

See Example 2.37 page 141 of [3].
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Example 6.6. The 3-torus T 3 = S1 × S1 × S1 may be viewed as a cube with
opposite faces identified. This gives a cell complex structure Φ whose cellular
chain complex is

0 // Z 0 // Z3 0 // Z3 0 // Z // 0

so the homology is

H0(T 3) = Z, H1(T 3) = Z3, H3(T 3) = Z3, H3(T 3) = Z.

See Example 2.39 page 142 of [3].

Example 6.7. The Moore Space See Example 2.40 page 143 of [3].

Example 6.8. The real projective space RPn See Example 2.41 page 144
of [3].

Example 6.9. The complex projective space CPn

Example 6.10. The lens space Lm(p, q) See Example 2.42 page 144 of [3].
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