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1 Introduction

The first thing taught in Math 340 is Gaussian Elimination, i.e. the process
of transforming a matrix to reduced row echelon form by elementary row
operations. Because this process has the effect of multiplying the matrix
by an invertible matrix it has produces a new matrix for which the solution
space of the corresponding linear system is unchanged. This is made precise
by Theorem 2.4 below.

The theory of Gaussian elimination has the following features:

1. There is an equivalence relation which respects the essential properties
of some class of problems. Here the equivalence relation is called row
equivalence by most authors; we call it left equivalence.

2. The equivalence classes of this relation are the orbits of a group action.
In the case of left equivalence the group is the general linear group
acting by left multiplication.

3. There is a characterization of the equivalence relation in terms of some
invariant (or invariants) associated to a matrix. In the case of left
equivalence the characterization is provided by Theorem 2.4 which says
that two matrices of the same size are left equivalent if and only if they
have the same null space.

4. There is a normal form and a theorem which says that each matrix
is equivalent to a unique matrix in normal form. In the case of left
equivalence the normal form is reduced row echelon form (not explained
in this paper).
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Our aim in this paper is to give other examples of equivalence relations
which fit this pattern. Two examples (right [column] equivalence and left
right equivalence) are (or should be) standard parts of the undergraduate
curriculum; two others (lower equivalence and lower upper equivalence) are
not as well known but not appreciably more difficult.

This paper is the result of a term paper I assigned in my Math 542 class
in the spring semester of 2001 at the University of Wisconsin. I provided the
students with an outline, criticized their first draft, and wrote this paper to
fulfill a promise that they would have my version of the term paper when they
handed in their final draft. You can generate the outline by modifying the
LATEX file that produced this document: replace the command \tellfalse

by \telltrue.

2 Statement of the Theorems

2.1. Throughout F is a field and Fm×n is the vector space (over F) of all m×n
matrices with entries from F. We write Fn instead of Fn×1. A square matrix
is diagonal iff all the entries off the diagonal vanish, upper triangular iff
all the entries below the diagonal vanish, lower triangular iff all the entries
above the diagonal vanish, and unitriangular iff it is upper triangular and
its diagonal entries are one. In other words, a matrix

• P is diagonal iff entryij(P ) = 0 for i 6= j,

• P is upper triangular iff entryij(P ) = 0 for i > j,

• Q is lower triangular iff entryij(Q) = 0 for i < j, and

• P is unitriangular iff entryij(P ) = 0 for i > j and entryii(P ) = 1.

2.2. The general linear group in dimension n is the set GLn(F) of all
invertible n× n matrices with entries from F . Define

Dn(F) = {P ∈ GLn(F) : P is diagonal},
Bn(F) = {P ∈ GLn(F) : P is upper triangular},
B
′
n(F) = {P ∈ GLn(F) : P is lower triangular},
Un(F) = {P ∈ GLn(F) : P is unitriangular}.
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2.3. Definition. Let A,B ∈ Fm×n be two matrices of the same size. We say
that

• A is left equivalent to B iff there exists Q ∈ GLm(F) such that

A = QB.

• A is right equivalent to B iff there exists P ∈ GLn(F) such that

A = BP−1.

• A is right left equivalent to B iff there exist Q ∈ GLm(F) and
P ∈ GLn(F) such that

A = QBP−1.

• A is lower equivalent to B iff there exists Q ∈ B′m(F) such that

A = QB.

• A is lower upper equivalent to B iff there exist Q ∈ B′m(F) and
P ∈ Un(F) such that

A = QBP−1.

These are all equivalence relations, i.e. where A ≡ B denotes any of these
four relations we have

A ≡ A; (Reflexive Law)

A ≡ B =⇒ B ≡ A; (Symmetric Law)

A ≡ B, B ≡ C =⇒ A ≡ C. (Transitive Law)

This follows immediately from the fact that GLm(F) and GLn(F) are groups
the sets B′m(F) ⊂ GLm(F) and Un(F) ⊂ GLn(F) are subgroups. (See Corol-
lary 3.5 below.)

Theorem 2.4. Suppose that A,B ∈ Fm×n. Then A and B are left equivalent
if and only if they have the same null space.

Theorem 2.5. Suppose that A,B ∈ Fm×n. Then A and B are right equiva-
lent if and only if they have the same range.
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Theorem 2.6. Suppose that A,B ∈ Fm×n. Then A and B are right left
equivalent if and only if they have the same rank.

2.7. Definition. For A ∈ Fm×n, p = 1, . . . ,m, q = 1, . . . , n, let Apq ∈ Fp×q
denote the p× q matrix which forms upper left hand corner of A so that

entryij(Apq) = entryij(A)

for i = 1, . . . , p, j = 1, . . . , q. The (p, q) corner rank of A is defined by

δpq(A) = rank(Apq).

Theorem 2.8. Suppose that A,B ∈ Fm×n. Then A and B are lower upper
equivalent if and only if they have the same corner ranks.

2.9. Definition. Let W be a vector space of dimension m over the field F.
A flag in W is a sequence of subspaces

{0} = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wm = W

such that dim(Wk) = k for k = 0, 1, 2, . . . ,m. The standard flag in Fm is
defined by

Wk = Span(e1, e2, . . . , ek)

where (e1, e2, . . . , em) is the standard basis, i.e. ei is the ith column of the
identity matrix Im. The reverse standard flag in Fm is defined by

W ′
k = Span(em−k+1, em−k+2, . . . , em).

Theorem 2.10. Suppose that A,B ∈ Fm×n. Then A and B are lower equiv-
alent if and only if

A−1(W ′
k) = B−1(W ′

k)

for k = 0, 1, 2, . . . ,m where W ′
0,W

′
1, . . . ,W

′
m is the reverse standard flag in

F
m.

Theorems 2.4, 2.5, and 2.6 are proved in Section 4; Theorem 2.8 is proved
in Section 5; and Theorem 2.10 is proved in Section 6.

2.11. Remark. Theorem 2.10 is Exercise 345E in [2]. The hint given there
is only appropriate when the matrices A and B have rank m.

4



3 Elementary Matrices

3.1. Recall from Math 340 that there are three kinds of elementary ma-
trices as follows.

Scale The elementary matrix Scale(Im, p, c) results from the m×m identity
matrix Im by multiplying the pth row by c.

Swap The elementary matrix Swap(Im, p, q) results from the m×m identity
matrix Im by interchanging rows p and q.

Shear The elementary matrix Shear(Im, p, q, c) results from the m×m iden-
tity matrix Im by adding c times the qth row to the pth row.

Shears and swaps are defined only if p 6= q. The Fundamental Theorem
on Row Operations (see [1] page 54) says that the matrix which results by
multiplying a matrix A ∈ Fm×n on the left by an elementary matrix is the
same as the matrix which results by applying the corresponding elementary
row operation to A, i.e.

• E = Scale(Im, p, c) =⇒ EA results from A by multiplying the pth
row by c;

• E = Swap(Im, p, q) =⇒ EA results from A by interchanging rows p
and q;

• E = Shear(Im, p, q, c) =⇒ EA results from A by adding c times the
qth row to the pth row.

The Fundamental Theorem on Column Operations says that multiplying on
the right performs the corresponding column operation, i.e.

• E = Scale(In, p, c) =⇒ AE results from A by multiplying the pth
column by c;

• E = Swap(In, p, q) =⇒ AE results from A by interchanging columns
p and q;

• E = Shear(In, p, q, c) =⇒ AE results from A by adding c times the
pth column to the qth column.

An upper shear is an upper triangular shear matrix. A lower shear is a
lower triangular shear matrix.
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3.2. Elementary matrices are invertible; in fact, the inverse of an elementary
matrix is an elementary matrix of the same type:

• E = Scale(In, p, c) =⇒ E−1 = Scale(In, p, 1/c);

• E = Swap(In, p, q) =⇒ E−1 = E;

• E = Shear(In, p, q, c) =⇒ E−1 = Shear(In, p, q,−c)

3.3. A set S of invertible matrices is said to generate a group G of invertible
matrices iff (1) S ⊆ G, and (2) every element of G is the product of a finite
number of elements of S. It is an easy consequence of the Fundamental
Theorem that

Theorem. The elementary matrices generate GLn(F).

For the proof see [1] Page 59 for example, or modify the arguments de-
scribed below. The following theorem is a refinement.

3.4. Factorization Theorem.

(i) The invertible scales generate Dn(F).

(ii) The upper shears generate Un(F).

(iii) The invertible scales and upper shears generate Bn(F).

(iv) The invertible scales and lower shears generate B′n(F).

Proof. An element D ∈ Dn(F ) is a product D = E1E2 · · ·En of elementary
scales where Ei = Scale(In, i, di) and di is the ith diagonal entry of D. This
proves (i).

To prove (ii) note first that if U ∈ Un(F) and E is an upper shear then
EU ∈ Un(F). This follows from the Fundamental Theorem; subtracting a
row of U from a row above leaves entries to the left of the diagonal unchanged.
Now let Ep,q = Shear(In, p, q,−up,q). Then, by the Fundamental Theorem,
the matrix E1,nE2,n · · ·En−1,nU agrees with U except in the nth column which
is replaced by the nth column of the identity matrix In. Repeat this process
for columns n− 1, n− 2, . . . , 3, 2 (in that order) and we obtain

E1,2(E1,3E2,3)(E1,4E2.4E3,4) · · · (E1,nE2,n · · ·En−1,n)U = In
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which (as the inverse of an elementary matrix is an elementary matrix of the
same type) proves (ii). In case n = 3 the above factorization takes the form 1 a b

0 1 c
0 0 1

 =

 1 0 0
0 1 c
0 0 1

 1 0 b
0 1 0
0 0 1

 1 a 0
0 1 0
0 0 1

 .
Item (iii) follows from (i) and (ii) as every element of Bn(F) is the product

of an element of Dn(F) and an element of Un(F). Item (iv) follows from
item (iii) as the transpose of an element of Bn(F) is an element of B′n(F)
(and vice versa) and the transpose of an upper shear is a lower shear.

Corollary 3.5. The sets Dn(F), Bn(F), B′n(F), and Un(F) are all subgroups
of the group GLn(F).

Proof. It is easy to see that each of these sets contains the identity matrix
and is closed under multiplication. That these sets are closed under the
inverse operation follows from the Factorization Theorem and the fact that
the inverse of an elementary matrix is an elementary matrix of the same
type.

4 Null Space, Range, and Rank

In this section we prove Theorems 2.4, 2.5, and 2.6. Recall that the null
space of a matrix A ∈ Fm×n is the subspace

N (A) = {v ∈ Fn : Av = 0},

the range of A is the subspace

R(A) = {Av : v ∈ Fn},

the nullity of A is the dimension ofN (A), and the rank of A is the dimension
of R(A).

Lemma 4.1. Suppose that γ1, . . . γr+k ∈ Fn satisfy

(i) Aγ1, . . . , Aγr form a basis for R(A), and

(ii) γr+1, . . . γr+k form a basis for N (A).
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Then γ1, . . . γr+k forms a basis for Fn.

Proof. We show γ1, . . . γr+k are linearly independent. Assume c1, . . . , cr+k ∈
F satisfy

c1γ1 + · · ·+ crγr + cr+1γr+1 + · · ·+ cr+kγr+k = 0. (1)

Multiply by A: as γr+1, . . . γr+k ∈ N (A) we obtain

c1Aγ1 + · · ·+ crAγr = 0.

By (i) c1 = · · · = cr = 0. Hence (1) becomes cr+1γr+1 + · · ·+ cr+kγr+k = 0 so
by (ii) we get cr+1 = · · · = cr+k = 0.

We show γ1, . . . γr+k span Fn. Choose v ∈ Fn. Then Av ∈ R(A) so by (i)
there exist c1, . . . , cr ∈ F such that

Av = c1Aγ1 + · · · crAγr.

Hence v− (c1γ1 + · · ·+ crγr) ∈ N (A) so by (ii) there exist cr+1, . . . , cr+k ∈ F
with

v − (c1γ1 + · · ·+ crγr) = cr+1γr+1 + · · ·+ cr+kγr+k

so v is a linear combination of γ1, . . . , γr+k as required.

Corollary 4.2 (Rank Nullity Relation). For A ∈ Fm×n the rank of A
plus the nullity of A is n.

Proof of 2.4. Assume that A and B are left equivalent, i.e. that A = QB
where Q ∈ GLm(F). Then as Q is invertible we have

Av = 0 ⇐⇒ QBv = 0 ⇐⇒ Bv = 0

Therefore N (A) = N (B) as required.
Conversely, assume that N (A) = N (B). Let γr+1, . . . , γn be a basis

for N (A) = N (B) and extend to a basis γ1, . . . , γn. Then Aγ1, . . . , Aγr
are linearly independent for otherwise some linear combination of γ1, . . . , γr
would lie in the null space of A contradicting the independence of γ1, . . . , γn.
Let αi = Aγi for i = 1, . . . , r and extend to a basis α1, . . . αm of Fm. Similarly
there is a basis β1, . . . βm of Fm such that βi = Bγi for i = 1, . . . , r. Define
Q by Qβi = αi for i = 1, . . . ,m. Then for i = 1, . . . , r we have

Aγi = αi = Qβi = QBγi.

This also holds for i = r+ 1, . . . , n as both sides are zero. Hence A = QB so
A and B are left equivalent as required.
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Proof of 2.5. Assume that A and B are right equivalent, i.e. that A = BP−1

where P ∈ GLn(F). Then P (F n) = Fn as P is invertible, so

R(A) = A(Fn) = A(P (Fn)) = AP (F n) = B(F n) = R(B)

as required.
Conversely assume R(A) = R(B). Let φ1, . . . , φr be a basis for this space

and choose γ1, . . . , γr and γ′1, . . . , γ
′
r so that

Aγi = φi = Bγ′i (2)

for i = 1, . . . , r. Let γr+1, . . . γn be a basis for N (A) and γ′r+1, . . . γ
′
n be a

basis for N (B). By 4.1 γ1, . . . , γn is a basis for Fn as is γ′1, . . . , γ
′
n. Then (2)

holds for i = r+ 1, . . . , n since both sides are zero. Define P by γi = Pγ′i for
i = 1, 2, . . . , n. Then APγ′i = Aγi = Bγ′i for i = 1, 2, . . . , n so AP = B as
required.

Proof of 2.6. Assume that A and B are left right equivalent, i.e. that A =
QBP−1 where Q ∈ GLm(F) and P ∈ GLn(F). Then

R(A) = A(Fn) = QBP−1(Fn) = QB(Fn) = QR(B),

i.e. the isomorphism Q : Fm → F
m restricts to an isomorphism from R(A)

to R(B). Hence

rank(A) = dimR(A) = dimR(B) = rank(B)

as required.
For the converse we introduce the matrix

Dm,n,r =

[
Ir 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
. (3)

It is easy to see that for any matrix A ∈ Fm×n there is a basis γ1, . . . , γn as
in Lemma 4.1. Moreover if γ1, . . . , γn are the columns of the identity matrix
In and Aγ1, . . . , Aγr are the first r columns of the the identity matrix Im then
A = Dm,n,r. It follows as in the proofs of 2.4 and 2.5 that that any matrix
is right left equivalent to some Dm,n,r. But the rank of Dm,n,r is r. Hence if
A and B have the same rank r they are each right left equivalent to Dm,n,r

and hence to each other.
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5 Rook Matrices

In this section we prove Theorem 2.8.

5.1. A matrix is called a rook matrix, iff all its entries are either 0 or 1 and
it has at most one nonzero entry in every row and at most one nonzero entry
in every column. An invertible rook matrix is also called a permutation
matrix. The matrix Dm,n,r ∈ Fm×n defined by (3) above is an example of a
rook matrix.

5.2. Remark. The n× n permutation matrices form a finite group isomor-
phic to the group Sn of permutations of the finite set {1, 2, . . . , n}. Just as
the transpositions generate the latter, the swap matrices generate the former.

In Math 340 it is proved that every matrix is left equivalent to a matrix
R in reduced row echelon form; one can show that this matrix R is unique.
The following theorem is analogous. (Another analog is Corollary 5.9 below.)

Theorem 5.3 (Rook Decomposition). Every matrix is lower upper equiv-
alent to a unique rook matrix.

Lemma 5.4. If Q ∈ B′m(F ) then Qpp ∈ B′p(F) for p = 1, 2, . . . ,m. Similarly,
If P ∈ Bn(F ) then Pqq ∈ Bq(F) for q = 1, 2, . . . , n.

Proof. It is clear that Qpp is triangular as it is the upper left hand corner of a
triangular matrix. A triangular matrix is invertible if and only if its diagonal
entries are nonzero; hence the fact that Q is invertible implies that Qpp is.
The proof for P is the same.

Lemma 5.5. Lower upper equivalent matrices have the same corner ranks.

Proof. Assume that AP = QB where Q ∈ B′m(F) and P ∈ Bn(F). Then

AP =

[
Apq ∗
∗ ∗

] [
Pqq ∗
0 ∗

]
=

[
ApqPqq ∗
∗ ∗

]
and

QB =

[
Qpp 0
∗ ∗

] [
Bpq ∗
∗ ∗

]
=

[
QppBpq ∗
∗ ∗

]
so ApqPqq = QppBpq so Apq = QppBpqP

−1
qq so

δpq(A) = rank(Apq) = rank(Bpq) = δpq(B)

as required.
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Lemma 5.6. For a matrix D in rook normal form the corner ranks are given
by

δpq(D) =

p∑
i=1

q∑
j=1

entryij(D).

Proof. The sum on the right is the number of nonzero columns of Dpq. These
columns are independent because they are distinct columns of the identity
matrix Ip.

Corollary 5.7. Two matrices in rook normal form are equal if and only if
they have the same corner ranks.

Proof. By Lemma 5.6 a rook matrix D satisfies

δpq(D) = δp−1,q(D) + δp,q−1(D)− δp−1,q−1(D) + entrypq(D).

Proof of 5.3. The theorem says that every matrix A can be transformed to
a rook matrix by elementary row and column operations where the only
row operations allowed are scales and lower shears and the only column
operations allowed are upper shears and that the resulting rook matrix is
independent of the order of the operations. Figure 1 gives an algorithm for
doing this. Uniqueness is proved as follows. If A is lower upper equivalent to
rook matrices D and D′ then, by Lemma 5.5, A and D have the same corner
ranks as do A and D′. Hence D = D′ by Lemma 5.7.

Corollary 5.8 (Bruhat Decomposition). Every invertible matrix is lower
upper equivalent to a unique permutation matrix.

Proof. This is a special case of: see 5.1.

Proof of 2.8. ‘Only if’ is Lemma 5.5. For the converse assume that A,B ∈
F
m×n have the same corner ranks. By Theorem 5.3 there are rook matrices
D and D′ with A right left equivalent to D and B right left equivalent to
D′. By Lemma 5.5 D and D′ have the same corner ranks, so by Lemma 5.7
D = D′. Hence A is right left equivalent to B.

Corollary 5.9. Every A ∈ Fm×n is left right equivalent to a unique matrix
Dm,n,r.
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for q=1:n % loop on columns

for p=1:m

if (A(p,q)!=0)

A(p,:) = A(p,:)/A(p,q) % scale

for i=p+1:m % shear

A(i,:) = A(i,:) - A(i,q)*A(p,:)

end

go to next_Col

end

end next_Col

end

for p=1:m % loop on rows

q=1;

while (A(p,q)==0) q=q+1 end

for j=q+1:n % shear

A(:,j) = A(:,j) - A(p,j)*A(:,q)

end

end

Figure 1: Computing the rook matrix
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Proof. This was proved in the proof of 2.6. We can also deduce it from 5.3 as
follows. According to the Fundamental Theorem left (resp. right) multiplica-
tion by a permutation matrix permutes the rows (resp. columns) accordingly.
More precisely, for each permutation σ ∈ Sn in the symmetric group Sn on
n symbols, the permutation matrix Q determined by

rowi(Q) = rowσ(i)(Im)

for i = 1, 2, . . . ,m satisfies

rowi(QA) = rowσ(i)(A)

for A ∈ Fm×n. A similar statement holds for columns; namely if

colj(P ) = colτ(j)(Im)

for i = 1, 2, . . . ,m and τ ∈ Sm, then

colj(AP ) = colτ(j)(A).

Now it is clear that for any rook matrix D there are permutation matrices Q
and P such that QDP−1 = Dm,n,r which proves existence in 5.9. Uniqueness
follows from 2.6 and the fact that the rank of Dm,n,r is r.

6 Flags

In this section we prove Theorem 2.10. As a warmup, consider the case n = 1
and m = 2. Then

A =

[
a1

a2

]
, B =

[
b1

b2

]
and a typical element Q ∈ B′2(F) has form

Q =

[
q1 0
q2 q3

]
where q1q3 6= 0. Then A−1(W ′

2) = {0} if and only if a1 6= 0 and the equation
A = QB can be solved for Q ∈ B′2(F) if and only if either a1b1 6= 0 or
a1 = b1 = 0 and a2b2 6= 0 or A = B = 0.
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Lemma 6.1. Suppose that Q ∈ GLm(F) is invertible. Then

Q ∈ Bm(F) ⇐⇒ QWk = Wk for k = 1, 2, . . . ,m

where W0, . . . ,Wm is the standard flag. Similarly

Q ∈ B′m(F) ⇐⇒ QW ′
k = W ′

k for k = 1, 2, . . . ,m

for k = 1, 2, . . . ,m where W ′
0, . . . ,W

′
m is the reverse standard flag.

Proof. Recall that Wk = Span(e1, . . . , ek) where ei is the ith column of the
identity matrix. For any matrix Q we have

Qek =
m∑
i=1

entryik(Q)ei

and Q is upper triangular if and only if

Qek =
k∑
i=1

entryik(Q)ei,

for all k i.e. if and only if Qek ∈ Wk for all k. The proof in the lower
triangular case is essentially the same.

Proof of 2.8. Assume that A = QB where Q ∈ B′m(F ). Then by Lemma 6.1
we have

A−1(W ′
k) = B−1(Q−1(W ′

k)) = B−1(W ′
k)

as required.
Conversely assume the preimages by A and B of the subspace Wk are

equal and denote this preimage by Vk. Thus

Vk = A−1(W ′
k) = B−1(W ′

k)

and
N (A) = N (B) = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vm = Fn×1.

Let
nk = dim(Vk).

Claim. There are bases (α1 . . . , αm) and (β1, . . . , βm) of Fm×1 and a basis
(γ1, . . . , γn) of Fn×1 such that for k = 0, 1, . . . ,m
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(i) W ′
k = Span(α1, . . . , αk) = Span(β1, . . . , βk);

(ii) (γ1, . . . , γnk) is a basis for Vk; and

(iii) Aγnk = αk and Bγnk = βk if nk−1 < nk.

To prove the claim take (γ1, . . . , γn0) to be any basis for the common null
space V0 of A and B. Now proceed inductively: assume that αi and βi have
been defined for i ≤ k − 1 and that γj has been defined for j ≤ nk−1.

Subclaim. Either nk = nk−1 or nk = nk−1 + 1. Indeed, otherwise there
are vectors v1 and v2 in Vk such that γ1, . . . , γnk−1

, v1, v2 are independent.
Now Av1 and Av2 lie in W ′

k so some linear combination c1Av1 + c2Av2 lies
in W ′

k−1. But then c1v1 + c2v2 lies in W ′
k−1 and is thus a linear combination

of γn1 , . . . , γnk−1
contradicting the assumption that γ1, . . . , γnk−1

, v1, v2 are
independent. This proves the subclaim.

Now if nk−1 = nk let αk = βk = ek the (n− k+ 1)st column of the m×m
identity matrix. Otherwise extend the basis γ1, . . . , γnk−1

of Vk−1 to a basis
(γ1, . . . , γnk) of Vk and define αk = Aγnk and βk = Bγnk . In either case αk
and βk are in W ′

k but not in W ′
k−1. Since (α1, . . . , αk−1) and (β1, . . . , βk−1)

are bases of W ′
k−1 it follows that (α1, . . . , αk) and (β1, . . . , βk) are bases of

W ′
k. This proves the claim.

Since (β1, . . . , βm) is a basis for Fm×1 there is a unique matrix Q such
that Qβk = αk for k = 1, 2, . . . ,m, and since (α1 . . . , αm) is also a basis,
the matrix Q is invertible. By (i) and Lemma 6.1 Q ∈ B′m(F). By (iii) we
have QBγj = Aγj for j = n1, . . . , nm = n and by (ii) (with k = 0) we have
QBγj = Aγj = 0 for j = 1, . . . , n0. Hence QBγj = Aγj for all j. By (ii)
(with k = m) the sequence (γ1, . . . , γn) is a basis for Fn×1 so QB = A.
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