Math 541

Worked Homework

Last Change: September 29, 2000

1 Home Work I

§1 Definition. A field is a set F equipped with two binary operations

and two distinguished elements 0 (zero) and 1 (one) which satisfies the following laws:

Addition is associative:

$$
\forall a \forall b \forall c \quad (a+b)+c = a+(b+c)
$$

Addition is commutative:

$$
\forall a \forall b \quad a + b = b + a
$$

0 is an additive identity:

 $\forall a \quad a+0=a$

Every number has an additive inverse:

$$
\forall a \exists b \quad a+b=0.
$$

Multiplication is associative:

$$
\forall a \forall b \forall c \quad (a \cdot b) \cdot c = a \cdot (b \cdot c)
$$

Multiplication is commutative:

$$
\forall a \forall b \quad a \cdot b = b \cdot a
$$

1 is an multiplicative identity:

$$
\forall a \quad a \cdot 1 = 1 \cdot a = a
$$

Every nonzero number has an multiplicative inverse:

 $\forall a \neq 0 \exists b \quad a \cdot b = b \cdot a = 1.$

Multiplication is distributive over addition:

$$
\forall a \forall b \forall c \quad a \cdot (b+c) = (a \cdot b) + (a \cdot c),
$$

$$
\forall a \forall b \forall c \quad (b+c) \cdot a = (b \cdot a) + (c \cdot a).
$$

(This is the first law which involves both operations.) §2 Lemma. $a + b_1 = 0$ and $a + b_2 = 0 \implies b_1 = b_2$ **Proof:** Assume $a + b_1 = 0$ and $a + b_2 = 0$. Then

$$
b_1 = b_1 + 0 \t (ident.)
$$

= b₁ + (a + b₂) (hyp.)
= (b₁ + a) + b₂ (ass.)
= (a + b₁) + b₂ (comm.)
= 0 + b₂ (hyp.)
= b₂ + 0 \t (comm.)
= b₂ (ident.)

§3 Definition. Since a number a has exactly one additive inverse we can denote it by $[-a]$. Thus

$$
b = [-a] \iff a + b = 0.
$$

The operation of subtraction is defined by

$$
a - b = a + [-b].
$$

We use the brackets to emphasize the difference between the unary operation

$$
F \to F : a \mapsto [-a]
$$

and the binary operation

$$
F \times F \to F : (a, b) \mapsto a - b.
$$

§4 Theorem. $[-[-c]] = c$ for all $c \in F$. **Proof:** Let $a = [-c]$, $b_1 = c$, $b_2 = [-[-c]]$ and use lemma 2. \Box §5 Exercise. Prove the following for all $a, b, c, d \in F$:

- (i) $[-(a + b)] = [-a] + [-b].$ (ii) $(a - b) + (c - d) = (a + c) - (b + d)$. (iii) $a - b = (a + c) - (b + c)$. (iv) $(a - b) - (c - d) = (a - b) + (d - c)$.
- **Proof of (i):** By the associative and commutative laws

$$
(a + b) + ([-a] + [-b]) = (a + [-a]) + (b + [-b]).
$$

Hence

$$
(a + b) + ([-a] + [-b]) = 0 + 0 = 0
$$

by the definition of the additive inverse. Hence $[-(a + b)] = ([-a] + [-b])$ by Lemma 2.

Proof of (ii):

.

$$
(a - b) + (c - d) = (a + [-b]) + (c + [-d])
$$
 definition of $x - y$
= $(a + c) + ([-b] + [-d])$ ass. and comm.
= $(a + c) + [-(b + d)]$ by (i)
= $(a + c) - (b + d)$ definition of $x - y$

Proof of (iii): By (ii) with $c = d$ we have

$$
(a - b) + (c - c) = (a + c) - (b + c).
$$

But $c - c = c + [-c] = 0$ so $(a - b) + (c - c) = (a - b)$. **Proof of (iv):** Read c for a, d for b, d for c, and c for d in (ii). The result is

$$
(c-d) + (d-c) = (d+c) - (c+d) = 0 + 0 = 0.
$$

Hence $[-(c-d)] = (d-c)$. Now add $a-b$ to both sides. §6 Lemma. The multiplicative inverse is unique:

 $a \cdot b_1 = 1$ and $a \cdot b_2 = 1 \implies b_1 = b_2$

Proof: Like Lemma 2.

§7 Definition. We denote the multiplicative inverse by a^{-1} . Hence for $a, b \in F$

$$
b = a^{-1} \iff a \cdot b = 1.
$$

The operation of **division** is defined (for $a \in F$, $b \in F \setminus \{0\}$) by

$$
a/b = a \cdot b^{-1}.
$$

§8 Theorem. $(a^{-1})^{-1} = a$ for $a \in F \setminus \{0\}$. Proof: Like theorem 4.

§9 Exercise. Prove the following for all $a, b, c, d \in F \setminus \{0\}$:

(i) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$

(ii)
$$
\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}
$$

$$
\dots, a \quad a \cdot c
$$

(iii)
$$
\frac{a}{b} = \frac{a \cdot c}{b \cdot c}
$$

(iv)
$$
\frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}
$$

Proof: The proof is exactly the same as for Exercise 5. Simply replace $x+y$ by $x \cdot y$, $[-x]$ by x^{-1} , $x - y$ by x/y throughout.

§10 Theorem. $a \cdot 0 = 0$ for $a \in F$.

Proof: Choose $a \in F$. Then

$$
0 = a - a
$$
 (def, inv.)
\n
$$
= a \cdot 1 - a
$$
 (ident.)
\n
$$
= a \cdot (0 + 1) - a
$$
 (ident, comm.)
\n
$$
= (a \cdot 0) + (a \cdot 1)) - a
$$
 (dist.)
\n
$$
= ((a \cdot 0) + a) - a
$$
 (ident.)
\n
$$
= (a \cdot 0) + (a - a)
$$
 (as.)
\n
$$
= (a \cdot 0) + 0
$$
 (def, inv.)
\n
$$
= a \cdot 0
$$
 (ident.)

§11 Exercise. Prove the following

(i)
$$
\frac{a}{b} + \frac{c}{d} = \frac{(a \cdot d) + (c \cdot b)}{b \cdot d}
$$

(ii)
$$
[-a] = [-1] \cdot a
$$

(iii)
$$
[-a] \cdot [-b] = a \cdot b
$$

Proof of (i): By Lemma 9 part (iii)

$$
\frac{a}{b} = \frac{a \cdot d}{b \cdot d}, \qquad \frac{c}{d} = \frac{c \cdot b}{d \cdot b}.
$$

Hence by the definition of x/y

$$
\frac{a}{b} = (a \cdot d) \cdot (b \cdot d)^{-1}, \qquad \frac{c}{d} = (c \cdot b)(d \cdot b).
$$

Hence by $b \cdot d = d \cdot b$ and the distributive law

$$
\frac{a}{b} + \frac{c}{d} = (a \cdot d + c \cdot b) \cdot (b \cdot d)^{-1}
$$

so the result follows by the definition of x/y .

Proof of (ii): $a + [-1] \cdot a = 1 \cdot a + [-1] \cdot a = (1 + [-1]) \cdot a = 0 \cdot a = 0$ by the distributive law and Theorem 10. Hence $[-1] \cdot a = [-a]$ by Lemma 2. **Proof of (iii):** By part (ii) it is enough to prove this for $a = b = 1$, i.e. to prove that $[-1] \cdot [-1] = 1$. By Theorem 10 (and other laws) we have

$$
0 = ([-1] + 1) \cdot [-1] = [-1] \cdot [-1] + [-1].
$$

Now add 1 to both sides and use the identity law $0 + 1 = 1$, the associative law

$$
([-1] \cdot [-1] + [-1]) + 1 = [-1] \cdot [-1] + ([-1] + 1),
$$

and the inverse law $[-1] + 1 = 0$, etc.

2 Home Work II

§12 Composition. Given mappings $f : X \to Y$ and $g : Y \to Z$ the composition of f and g is denoted $g \circ f$ (read " g after f") and defined by $g \circ f : X \to Z$ with

$$
(g \circ f)(x) = g(f(x))
$$

for $x \in X$. The operation of composition is associative:

$$
(h \circ g) \circ f = h \circ (g \circ f).
$$

For any set X the **identity map** I_X of X is the map $I_X : X \to X$ defined by $I_X(x) = x$ for $x \in X$. Note that for $f : X \to Y$ we have

$$
f \circ I_X = I_Y \circ f = f.
$$

§13 Maps act on sets. Suppose that $f : X \to Y X_0 \subset X$ and $Y_0 \subset Y$. Define

$$
f(X_0) = \{ f(x) : x \in X_0 \}
$$

and

$$
f^{-1}(Y_0) = \{ x \in X : f(x) \in Y_0 \}.
$$

Theorem. (i) $I_X(X_0) = X_0$ and $g \circ f(X_0) = g(f(X_0))$. Hence (ii) If $f: X \to Y$ is one-one onto, then $f^{-1}(f(X_0)) = X_0$ and $f(f^{-1}(Y_0)) = Y_0$. (Warning: These last two formulas are not always true for maps which are not one-one onto.)

§14 Restriction and Extension. Suppose we are given a mapping f : $X \to Y$ and a subset $X_0 \subset X$. The **restriction of f to** X_0 , denoted $f|X_0$, is the mapping $(f|X_0): X_0 \to Y$ defined by

$$
(f|X_0)(x) = f(x) \quad \text{for all } x \in X_0.
$$

For example, if $f : \mathbb{R} \to \mathbb{R}$ is a mapping whose graph is the straight line given by $f(x) = 2x$, and if [0, 1] denotes the unit interval, then $f|[0,1]$, the restriction of f to $[0, 1]$, is a mapping whose graph is the closed line segment from the $(0, 0)$ to $(1, 2)$.

The opposite of *restricting* a mapping to a smaller source is *extending* a mapping to a larger source. Suppose $q : X \to Y$ is a mapping and $X \subset Z$. Then any mapping $h: Z \to Y$ is called an extension of g to Z if $h|X = g$, i.e., if

$$
h(x) = g(x) \quad \text{for all } x \in X.
$$

Thus, for example, if g is the mapping defined earlier by $g: X \to \mathbb{R} : x \mapsto \frac{1}{1-x}$ with source $X = \{x \in \mathbb{R} : x \neq 1\}$, then q has an extension \tilde{q} defined by

$$
\tilde{g}(x) = \begin{cases} \frac{1}{1-x} & \text{if } x \neq 1\\ 0 & \text{if } x = 1. \end{cases}
$$

The reader may recall from a calculus course that the mapping g described above is *continuous* on its source X, but has no *continuous extension* to \mathbb{R} . In particular, $\tilde{q} : \mathbb{R} \to \mathbb{R}$ is not continuous.

§15 Recall that for any set S the group of all permutations of S is denoted by $A(S)$; i.e.

 $f \in A(S) \iff f : S \to S$, and f is one-one and onto.

§16 (Problem 1.4.14) Suppose $X_0 \subset X$, e.g.

$$
X_0 = \{1, 2, \dots, m\}, \qquad X = \{1, 2, \dots, n\}
$$

where $m \leq n$. Define $E : A(X_0) \to A(X)$ by

$$
E(f)(x) = \begin{cases} f(x) & \text{for } x \in X_0, \\ x & \text{for } x \in X \setminus X_0, \end{cases}
$$

for $f \in A(X_0)$. For $f, g \in A(X_0)$ and $x \in X_0$ we have

$$
E(f \circ g)(x) = f(g(x)) = E(f)(g(x)) = (E(f) \circ E(g))(x)
$$

(since $g(x) \in X_0$) while for $x \in X \setminus X_0$ we have

$$
E(f \circ g)(x) = x = E(f)(x)(E(g))(x) = E(f)(= E(f) \circ E(g))(x).
$$

In either case $E(f \circ g)(x) = (E(f) \circ E(g))(x)$ so $E(f \circ g) = (E(f) \circ E(g)).$ §17 (Problem 1.4.18) Suppose $X_0 \subset X$ and define

$$
U(X, X_0) = \{ f \in A(X) : f(X_0) = X_0 \}.
$$

Then $U(X, X_0)$ is a subgroup of $A(X)$, i.e.

- (i) $I_X \in U(X, X_0);$
- (ii) If $g \in U(X_0, X)$ and $f \in U(X, X_0)$ then $g \circ f \in U(X, X_0)$;
- (iii) If $f \in U(X, X_0)$ then $f^{-1} \in U(X, X_0)$,

Proof: (i) Since $I_X(X_0) = X_0$ we have $I_X \in U(X, X_0)$. (ii) If $g \in U(X, X_0)$ and $f \in U(X, X_0)$, then

$$
g \circ f(X_0) = g(f(X_0)) = g(X_0) = X_0
$$

so $g \circ f \in U(X, X_0)$. (iii) If $f \in U(X, X_0)$ then $f(X_0) = X_0$ so $X_0 = f^{-1}(X_0)$ so $f^{-1} \in U(X, X_0)$.

§18 (Problem 1.4.19) For $f \in U(X, X_0)$ define $R(f) : X_0 \to X_0$ by

$$
R(f)(x) = f(x) \qquad \text{for } x \in X_0.
$$

(Note that $f(x) \in X_0$ by the definition of $U(X, X_0)$.) Then

$$
R: U(X, X_0) \to A(X_0)
$$

and

$$
R(g \circ f) = R(g) \circ R(f).
$$

The proof is obvious. Since $R(E(q)) = q$ for $q \in A(X_0)$ it follows that R is onto.

§19 (Problem 1.4.20) Since any element of $A(X)$ is one-one onto we have

 $U(X, X_0) = U(X, X \setminus X_0).$

Thus the set $R^{-1}(g)$ is in one-one correspondence with $A(X \setminus X_0)$. In particular, R is one-one when $X \setminus X_0$ consists of a single point.

3 Home Work III

§20 Problem 2.1.1 (b) Consider the set $\mathbb Z$ of integers with the operation

$$
a * b = a + b + ab
$$

is not a group. The one-one onto map $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(z) = z + 1$ satisfies

$$
a * b = (a + 1) \cdot (b + 1) - 1 = f^{-1}(f(a) \cdot f(b))
$$

for $a, b \in \mathbb{Z}$ (where $u \cdot v$ is the usual multiplication operation.) Thus $(\mathbb{Z}, *)$ satisfies the same laws as (\mathbb{Z}, \cdot) . In particular the associative and commutative laws hold and 0 is an identity:

$$
0 * a = a * 0 = a
$$

for all $a \in \mathbb{Z}$. However there is no inverse operation since

$$
a*(-1) = -1
$$

for all $a \in \mathbb{Z}$.

§21 2.2.3 Let $i \in \mathbb{Z}$. We say that a group G has property $P(i)$ iff the identity

$$
(ab)^i = a^i b^i \qquad \qquad P(i)
$$

holds for all $a, b \in G$.

Assume that there is an integer i for which the group G satisfies $P(i - 1)$, $P(i)$, and $P(i + 1)$. We show that the group G is abelian.

Step 1. If a group satisfies $P(i + 1)$ and $P(i)$ then it satisfies

$$
a^i b^i = b^i a^i \qquad Q(i)
$$

for all $a, b \in G$. Proof: By $P(i + 1)$

$$
a(ba)^{i}b = (ab)^{i+1} = a^{i+1}b^{i+1} = a(a^{i}b^{i})b.
$$

Cancelling the a on the left and the b on the right gives

$$
(ba)^i = a^i b^i.
$$

Now use $P(i)$ to obtain $b^i a^i = (ba)^i = a^i b^i$.

Step 2. If a group satisfies $P(i)$ and $P(i-1)$ then it satisfies

$$
a^{i-1}b^{i-1} = b^{i-1}a^{i-1} \t Q(i-1)
$$

for all $a, b \in G$. Proof: Replace i by $i - 1$ in Step 1. Step 3. Now

$$
(ab)^{i+1} = (ab)(ab)^i = (ab)a^i b^i = (ab)b^i a^i = (ab)(ba)^i
$$

and

$$
(ba)^i = (ba)(ba)^{i-1} = (ba)b^{i-1}a^{i-1} = (ba)a^{i-1}b^{i-1} = (ba)(ab)^{i-1}.
$$

Hence

$$
(ab)^{i+1} = (ab)(ba)(ab)^{i-1}.
$$

Now multiply by $(ab)^{-1}$ on the left and $(ab)^{1-i}$ on the right.

§22 Remark. The problem in the book asks you to prove that If G is a group for which $(ab)^i = a^i b^i$ for three consecutive integers i, then G is abelian. To me the wording is ambiguous. Which is asserted?

$$
[\forall i \in \mathbb{Z} \ P(i-1) \text{ and } P(i) \text{ and } P(i+1)] \implies G \text{ is abelian} \tag{1}
$$

i.e.

$$
\exists i \in \mathbb{Z} \ [P(i-1) \text{ and } P(i) \text{ and } P(i+1) \implies G \text{ is abelian}] \tag{1'}
$$

or

$$
\forall i \in \mathbb{Z} \ [P(i-1) \text{ and } P(i) \text{ and } P(i+1) \implies G \text{ is abelian}] \tag{2}
$$

i.e.

$$
[\exists i \in \mathbb{Z} \ P(i-1) \text{ and } P(i) \text{ and } P(i+1)] \implies G \text{ is abelian} \tag{2'}
$$

However had the author intended (1) he would have said

 $[\forall i \in \mathbb{Z} \ P(i)] \implies G$ is abelian

which is equivalent but shorter. The author must intend (2).

4 Homework IV

§23 Problem 2.4(2-3). Let S be a set and R a relation on S, i.e. $R \subset S \times S$. For $a, b \in S$ we write $a \equiv b$ instead of $(a, b) \in R$. We say that the relation R is

- reflexive iff $\forall a \in S \; a \equiv a$;
- weakly reflexive iff $\forall a \in S \exists b \in S \ a \equiv b;$
- symmetric iff $\forall a, b \in S \ a \equiv b \implies b \equiv a;$
- transitive iff $\forall a, b, c \in S$ $a \equiv b, b \equiv c \implies a \equiv c$.

A reflexive relation is obviously weakly reflexive: take $b = a$. The relation defined in 2.4(2) is the empty relation $R = \emptyset$ on a nonempty set S. It is symmetric since for all $a, b \in S$ the implication $(a, b) \in \emptyset \implies (b, a) \in \emptyset$ is true: it has the form [false \implies false]. Similarly the empty relation is transitive. The empty relation is not reflexive (or even weakly reflexive) on

a nonempty set S: since $S \neq \emptyset$ there exists an $a \in S$; but for this a, we have $a \not\equiv b$, i.e. $(a, b) \notin \emptyset$ for all $b \in S$. The argument in 2.4(3) proves that a relation which is weakly reflexive, symmetric, and transitive is also reflexive.

§24 Problem 2.4(20) Recall that the transformation $T_{a,b}$ may be represented by the matrix

$$
T_{a,b} = \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)
$$

so

$$
T_{a,b} \circ T_{a,b} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ac & ad+b \\ 0 & 1 \end{pmatrix}
$$

and

$$
T_{a,b}^{-1} = \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix}.
$$

The conjugacy class $[T_{c,d}]$ of the element $T_{c,d}$ is the set

$$
[T_{c,d}] := \{ T_{a,b} \circ T_{c,d} \circ T_{a,b}^{-1} \} : a, b \in \mathbb{R}, a \neq 0 \}.
$$

By matrix multiplication

$$
T_{a,b} \circ T_{c,d} \circ T_{a,b}^{-1} = T_{c,g}, \qquad g = ad + b(1 - c).
$$

If $c \neq 1$ then every $g \in \mathbb{R}$ has the form $g = ad + b(1 - c)$ with $a \neq 0$; we take $a = 1$ and $b = (g - d)/(c - 1)$. If $c = 1$ and $d \neq 0$, then g has the form $g = ad + b(1 - c)$ if and only if $g \neq 0$. Hence

$$
[T_{c,d}] = \{T_{c,g} : g \in \mathbb{R}\} \text{ if } c \neq 1;
$$

$$
[T_{1,d}] = \{T_{1,g} : g \in \mathbb{R}, g \neq 0\} \text{ if } d \neq 0;
$$

$$
[T_{1,0}] = \{T_{1,0}\}.
$$

§25 Problem 2.4.(6-7) In cycle notation (see Chapter 3)

$$
H = \{(), (12)\} \subset G = S_3
$$

The left cosets are

$$
H = \{(), (12)\}, \qquad (13)H = \{(13), (123)\}, \qquad (23)H = \{(23), (132)\}.
$$

There are three left cosets and each is a two element set. The right cosets are

 $H = \{(), (12)\},$ $H(13) = \{(13), (132)\},$ $H(23) = \{(23), (123)\}.$

There are three right cosets and each is a two element set. The right coset $H(13)$ is different from all three left cosets. In fact the only set which is both a left coset and a right coset is H itself.

5 Homework V

§26 Problem 2.5.16 Suppose that G is a group and the $M \triangleleft G$ and $N \triangleleft G$ are normal subgroups. Let

$$
MN = \{mn : m \in M, n \in N\}.
$$

Then $MN \triangleleft G$, i.e. MN is a normal subgroup of G.

Proof: There are four steps.

Step 1. $e \in MN$. Proof: Take $m = n = e$. Then $m \in M$ and $n \in N$ so $e = mn \in MN$.

Step 2. $x, y \in MN \implies xy \in MN$. Proof: Choose $x, y \in MN$. Then $x = m_1 n_1$ and $y = m_2 n_2$ for some $m_1, m_2 \in M$ and $n_1, n_2 \in N$. Then

$$
xy = m_1 n_1 m_2 n_2 = m_1 (n_1 m_2 n_1^{-1})(n_1 n_2) = m'n'
$$

where $m' = m_1(n_1m_2n_1^{-1}) \in M$ and $n' = n_1n_2 \in N$. Therefore $xy \in MN$.

Step 3. $x \in MN \implies x^{-1} \in MN$. Proof: Choose $x \in MN$. Then $x = mn$ for some $m \in M$ and $n \in N$. Hence

$$
x^{-1} = n^{-1}m^{-1} = (n^{-1}m^{-1}n)n^{-1} = m'n'
$$

where $m' = (n^{-1}m^{-1}n) \in M$ and $n' = n^{-1} \in N$. Therefore $x^{-1} \in MN$.

Step 4. $x \in MN$, $q \in G \implies qxq^{-1} \in MN$. Choose $x \in MN$ and $q \in G$. Then $x = mn$ for some $m \in M$ and $n \in N$. Hence

$$
g x g^{-1} = g m n g^{-1} = (g m g^{-1})(g n g^{-1}) = m' n'
$$

where $m' = (gmg^{-1}) \in M$ and $n' = (gng^{-1}) \in N$. Therefore $gxg^{-1} \in MN$.

§27 Problem 2.5.21 Let S be a set having at least three elements and $A(S)$ be the group of all one-one onto maps from S to itself. For $s \in S$ define

$$
H(s) = \{ f \in H(S) : f(s) = s \}.
$$

It is easy to see that $H(s)$ is a subgroup of $A(S)$. First, the identity map id_S is an element of $H(s)$ as $id_S(x) = x$ for all $x \in S$ so in particular $id_S(s) = s$, so id_S \in H(s). Second, if $f, g \in H(S)$ then $f(s) = s$ and $g(s) = s$ so $f \circ g(s) = f(g(s)) = f(s) = s$ so $f \circ g \in H(s)$. Third, if $f \in H(s)$, then $f(s) = s$ so $s = id_S(s) = (f^{-1} \circ f) = f^{-1}(f(s)) = f^{-1}(s)$ so $f^{-1} \in H(s)$. Hence $H(s)$ is a subgroup of $A(S)$.

Now assume that the elements $s, s', s'' \in S$ are distinct. Choose $f \in A(S)$ so that $f(s') = s$ and $f(s'') = s''$. Choose $h \in A(S)$ so $h(s) = s$ and $h(s') = s''$. Then $h \in H(s)$ but $f \circ h \circ f^{-1}(s) = f(h(s')) = f(s'') = s'' \neq s$ so $f \circ h \circ f^{-1} \notin H(s)$. Hence $H(s)$ is not a normal subgroup of $A(S)$.

Remark. For $f \in A(S)$ and $s \in S$ we have

$$
fH(s)f^{-1} = H(f(s)).
$$

Suppose that $g \in fH(s)f^{-1}$. Then $g = f \circ h \circ f^{-1}$ where $h \in H(s)$, i.e. $h(s) = s$. Then

$$
g(f(s)) = (f \circ h \circ f^{-1}) \circ f(s) = f(h(s)) = f(s)
$$

so $g \in H(f(s))$. Conversely suppose that $g \in H(f(s))$, i.e. $g(f(s)) = f(s)$. Let $h = f^{-1} \circ g \circ f$. Then $h(s) = f^{-1} \circ g \circ f(s) = f^{-1}(g(f(s))) = f^{-1}(f(s)) = s$ so $h \in H(s)$. But $g = f \circ h \circ h^{-1}$ so $g \in fH(s)f^{-1}$.

6 Homework VI

§28 Problem 2.6.3-5 Suppose that N is a normal subgroup of a groups G and that \overline{M} is a subgroup of G/N . Let

$$
M = \{ a \in G : aN \in \bar{M} \}.
$$

Then

(2.6.3) M is a subgroup of G and $N \subset M$.

 $(2.6.4)$ If $\overline{M} \triangleleft G/N$, then $M \triangleleft N$.

(2.6.5) If $\overline{M} \triangleleft G/N$, then $M/N = \overline{M}$.

Proof: Let $\bar{G} = G/N$, and $\phi : G \to \bar{G}$ be the homomorphism defined by

$$
\phi(a) = aN.
$$

Then ϕ is an onto homomorphism and

$$
M = \phi^{-1}(\bar{M}).
$$

We prove M is a subgroup. (1) The identity e of G lies in M as $\phi(e)$ is the identity of \bar{G} and henve lies in \bar{M} , so $e \in \phi^{-1}(\bar{M}) = M$. (2) Choose $a, b \in M$. Then $\phi(a), \phi(b) \in \overline{M}$. Hence $\phi(ab) = \phi(a)\phi(b) \in \overline{M}$. Hence $ab \in \phi^{-1}(\overline{M})$ M. (3) Choose $a \in M$. Then $\phi(a) \in \overline{M}$. Hence $\phi(a^{-1}) = \phi(a)^{-1} \in \overline{M}$. Hence $a^{-1} \in \phi^{-1}(\bar{M}) = M$.

Assume that \overline{M} is normal. Choose $a \in G$ and $m \in M$. Then $\phi(a) \in \overline{G}$ and $\phi(m) \in \overline{M}$. Hence $\phi(ama^{-1}) = \phi(a)\phi(m)\phi(a)^{-1} \in \overline{M}$. Hence $ama^{-1} \in$ $\phi^{-1}(\overline{M}) = M$. This proves that M is normal.

The statement that $M/N = \overline{M}$ can be written as $\phi(M) = \overline{M}$, i.e. $\phi(\phi^{-1}(\bar{M})) = \bar{M}$. This latter formula is true for any onto map $\phi : G \to \bar{G}$ and any subset $M \subset G$.

7 Homework VII

§29 4.4-9. Let $p > 2$ be a prime and let $U_p = \mathbb{Z}_p - \{0\}$ be the multiplicative group of the field \mathbb{Z}_p . Then the set

$$
S = \{x^2 : x \in U_p\}
$$

of squares in U_p is a subgroup of index two.

Proof: $1 = 1^2$ so $1 \in S$. Suppose that $a, b \in S$. Then there exist $x, y \in U_p$ with $a = x^2$ and $b = y^2$. Then $ab = (xy)^2$ so $ab \in S$. Suppose $a \in S$. Then $a = x^2$ for some $x \in U_p$. Let $y \in U_p$ be the inverse of x. Then $xy = 1$. Hence $ay^2 = x^2y^2 = (xy)^2 = 1$. Hence $a^{-1} = y^2$ so $a^{-1} \in U_p$. The map

$$
U_p \to S: x \mapsto x^2
$$

is two-to-one onto (as $p > 2$) so $|U_p| = 2|S|$.

§30 (4.4-10) Suppose m is a positive integer which is not a perfect square. Then the set

$$
\mathbb{Z}\left[\sqrt{m}\right] := \{a + b\sqrt{m} : a, b \in \mathbb{Z}\}
$$

is a subring of R.

Proof: $(1) \mathbb{Z}$ [\sqrt{m} contains $0 = 0+0\sqrt{m}$. (2) $\mathbb{Z}\left[\right]$ √ \overline{m} is closed under addition and subtraction as

$$
(a_1 + b_1\sqrt{m}) \pm (a_2 + b_2\sqrt{m}) = (a_1 \pm a_2) + (b_1 \pm b_2)\sqrt{m}.
$$

(3) $\mathbb{Z}[\sqrt{m}]$ is closed under multiplication as

$$
(a_1 + b_1\sqrt{m})(a_2 + b_2\sqrt{m}) = (a_1a_2 + mb_1b_2) + (a_1b_2 + b_1a_2)\sqrt{m}.
$$

 $\S31$ (4.4-11) Suppose m is as in 4.4-10 and that p is an odd prime. Let

$$
I_p = \{a + b\sqrt{m} \in \mathbb{Z}[\sqrt{m}] : 5|a \text{ and } 5|b\}.
$$

Then I_p is an an ideal in $\mathbb{Z}[\sqrt{m}]$.

Proof: (1) I_p contains $0 = 0 + 0\sqrt{m}$ as $p\vert 0$. (2) $\mathbb{Z}\vert$ √ \boxed{m} is closed under addition and subtraction. Choose $x_1, x_2 \in I_p$. Then $x_1 = a_1 + b_1 \sqrt{m}$ and $x_2 = a_2 1 + b_2 \sqrt{m}$ where $p|a_1, p|b_1, p|a_2, p|a_2$. Hence $p|(a_1 + a_2)$ and $p|(b_1 + b_2)$ so $x_1 \pm x_2 \in I_p$. (3) I_p is closed under multiplication by an element of $\mathbb{Z}[\sqrt{m}]$. Choose $x \in I_p$ and $z \in \mathbb{Z}[\sqrt{m}]$. Then $x = a + b\sqrt{m}$ where $p|a$ and $p|b$ and $z = c + d\sqrt{m}$ where $c, d \in \mathbb{Z}$. Then $p|(ac + mbd)$ and $p|(ad + bc)$ so

$$
xz = (ac + mbd) + (ad + bc)\sqrt{m} \in I_p.
$$

 $\S 32$ (4.4-12,13) Let p and m be as in 4.4-10 and suppose that m is not a square in U_p . Then $Z[\sqrt{m}]/I_p$ is a field of order p^2 .

Proof: The ring $\mathbb{Z}[\sqrt{m}]/I_p$ has order p^2 because every element $a + b$ coof: The ring $\mathbb{Z}[\sqrt{m}]/I_p$ has order p^2 because every element $a + b\sqrt{m} \in$ $\mathbb{Z}[\sqrt{m}]$ be be written uniquely in the form

$$
a + b\sqrt{m} = (cp + r) + (dp + s)\sqrt{m}
$$

where $c, d, r, s \in \mathbb{Z}$ and $\underline{0 \le r < p}$ and $\underline{0 \le s < p}$. (For uniqueness use where $c, d, r, s \in \mathbb{Z}$ and $0 \le r < p$ and $0 \le s < p$. (For uniqueness use
the fact that If $a_1 + b_1\sqrt{m} = a_2 + b_2\sqrt{m}$ then $a_1 = a_2$ and $b_1 = b_2$ as \sqrt{m}

is irrational.) To show that Z \sqrt{m} / I_p is a field we must show that every nonzero element has a multiplicative inverse. Choose $a+b\sqrt{m} \in Z[\sqrt{m}] \setminus I_p$; we must find integers u, v with

$$
(a+b\sqrt{m})(u+v\sqrt{m}) \in 1+I_p.
$$

We try $u = wa$, $v = -wb$ so

$$
(a+b\sqrt{m})(u+v\sqrt{m})=w(a^2-mb^2).
$$

Since \mathbb{Z}_p is a field, we can find an integer w with $w(a^2 - mb^2) \equiv 1 \pmod{p}$ so long as $a^2 - mb^2 \not\equiv 0 \pmod{p}$. But if $a^2 - mb^2 \equiv 0 \pmod{p}$ then $a^2 \equiv 0$ $mb^2 \mod p$ so $(ac)^2 \equiv m \pmod{p}$ where $bc \equiv 1 \pmod{p}$. (Such a c exists as \mathbb{Z}_p is a field.) The equation $(ac)^2 \equiv m(mod p)$ contradicts the hypothesis that m is not a square in U_p .

§33 (4.4-7) Take $m = 2$ and $p = 5$. The set of squares in U_5 is

$$
S = \{1^2, 2^2, 3^2, 4^2\} = \{1, 4, 4, 1\} = \{1, 4\}.
$$

Hence $2 \notin S$ so 4.4-12,13 applies and Z[$\overline{2}/I_5$ is a field of order $5^2 = 25$.