Math 541

Worked Homework

Last Change: September 29, 2000

1 Home Work I

§1 Definition. A field is a set F equipped with two binary operations

 $\begin{array}{ll} F \times F \to F : (a,b) \mapsto a+b & ({\rm addition}) \\ F \times F \to F : (a,b) \mapsto a \cdot b & ({\rm multiplication}) \end{array}$

and two distinguished elements 0 (**zero**) and 1 (**one**) which satisfies the following laws:

Addition is associative:

$$\forall a \forall b \forall c \quad (a+b) + c = a + (b+c)$$

Addition is commutative:

$$\forall a \forall b \quad a+b=b+a$$

0 is an additive identity:

 $\forall a \quad a + 0 = a$

Every number has an additive inverse:

$$\forall a \exists b \quad a+b=0.$$

Multiplication is associative:

$$\forall a \forall b \forall c \quad (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Multiplication is commutative:

$$\forall a \forall b \quad a \cdot b = b \cdot a$$

1 is an multiplicative identity:

$$\forall a \quad a \cdot 1 = 1 \cdot a = a$$

Every nonzero number has an multiplicative inverse:

 $\forall a \neq 0 \exists b \quad a \cdot b = b \cdot a = 1.$

Multiplication is distributive over addition:

$$\forall a \forall b \forall c \quad a \cdot (b + c) = (a \cdot b) + (a \cdot c),$$

$$\forall a \forall b \forall c \quad (b + c) \cdot a = (b \cdot a) + (c \cdot a).$$

(This is the first law which involves both operations.)

§2 Lemma. $a + b_1 = 0$ and $a + b_2 = 0 \implies b_1 = b_2$ Proof: Assume $a + b_1 = 0$ and $a + b_2 = 0$. Then

$$b_1 = b_1 + 0 \quad (ident.) \\ = b_1 + (a + b_2) \quad (hyp.) \\ = (b_1 + a) + b_2 \quad (ass.) \\ = (a + b_1) + b_2 \quad (comm.) \\ = 0 + b_2 \quad (hyp.) \\ = b_2 + 0 \quad (comm.) \\ = b_2 \quad (ident.)$$

§3 Definition. Since a number a has exactly one additive inverse we can denote it by [-a]. Thus

$$b = [-a] \iff a + b = 0.$$

The operation of **subtraction** is defined by

$$a - b = a + [-b].$$

We use the brackets to emphasize the difference between the unary operation

$$F \to F : a \mapsto [-a]$$

and the binary operation

$$F \times F \to F : (a, b) \mapsto a - b.$$

§4 Theorem. [-[-c]] = c for all $c \in F$. **Proof:** Let a = [-c], $b_1 = c$, $b_2 = [-[-c]]$ and use lemma 2. \Box §5 Exercise. Prove the following for all $a, b, c, d \in F$:

(i) [-(a + b)] = [-a] + [-b].
(ii) (a - b) + (c - d) = (a + c) - (b + d).
(iii) a - b = (a + c) - (b + c).
(iv) (a - b) - (c - d) = (a - b) + (d - c).

Proof of (i): By the associative and commutative laws

$$(a+b) + ([-a] + [-b]) = (a + [-a]) + (b + [-b]).$$

Hence

$$(a+b) + ([-a] + [-b]) = 0 + 0 = 0$$

by the definition of the additive inverse. Hence [-(a+b)] = ([-a] + [-b]) by Lemma 2.

Proof of (ii):

$$(a-b) + (c-d) = (a + [-b]) + (c + [-d])$$
definition of $x - y$
= $(a + c) + ([-b] + [-d])$ ass. and comm.
= $(a + c) + [-(b + d)]$ by (i)
= $(a + c) - (b + d)$ definition of $x - y$

Proof of (iii): By (ii) with c = d we have

$$(a-b) + (c-c) = (a+c) - (b+c).$$

But c - c = c + [-c] = 0 so (a - b) + (c - c) = (a - b). **Proof of (iv):** Read c for a, d for b, d for c, and c for d in (ii). The result is

$$(c-d) + (d-c) = (d+c) - (c+d) = 0 + 0 = 0.$$

Hence [-(c-d)] = (d-c). Now add a-b to both sides. §6 Lemma. The multiplicative inverse is unique:

 $a \cdot b_1 = 1$ and $a \cdot b_2 = 1 \implies b_1 = b_2$

Proof: Like Lemma 2.

§7 Definition. We denote the multiplicative inverse by a^{-1} . Hence for $a, b \in F$

$$b = a^{-1} \iff a \cdot b = 1$$

The operation of **division** is defined (for $a \in F$, $b \in F \setminus \{0\}$) by

$$a/b = a \cdot b^{-1}.$$

§8 Theorem. $(a^{-1})^{-1} = a$ for $a \in F \setminus \{0\}$.

Proof: Like theorem 4.

§9 Exercise. Prove the following for all $a, b, c, d \in F \setminus \{0\}$:

- (i) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$
- (ii) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$ (iii) $\frac{a}{b} = \frac{a \cdot c}{b \cdot c}$ (iv) $\frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$

Proof: The proof is exactly the same as for Exercise 5. Simply replace x + y by $x \cdot y$, [-x] by x^{-1} , x - y by x/y throughout.

§10 Theorem. $a \cdot 0 = 0$ for $a \in F$.

Proof: Choose $a \in F$. Then

0	=	a-a	(def, inv.)
	=	$a \cdot 1 - a$	(ident.)
	=	$a \cdot (0+1) - a$	(ident, comm.)
	=	$(a \cdot 0) + (a \cdot 1)) - a$	(dist.)
	=	$((a \cdot 0) + a) - a$	(ident.)
	=	$(a \cdot 0) + (a - a)$	(ass.)
	=	$(a \cdot 0) + 0$	(def, inv.)
	=	$a \cdot 0$	$(\text{ident.})\square$

§11 Exercise. Prove the following

(i)
$$\frac{a}{b} + \frac{c}{d} = \frac{(a \cdot d) + (c \cdot b)}{b \cdot d}$$

(ii)
$$[-a] = [-1] \cdot a$$

(iii)
$$[-a] \cdot [-b] = a \cdot b$$

Proof of (i): By Lemma 9 part (iii)

$$\frac{a}{b} = \frac{a \cdot d}{b \cdot d}, \qquad \frac{c}{d} = \frac{c \cdot b}{d \cdot b}.$$

Hence by the definition of x/y

$$\frac{a}{b} = (a \cdot d) \cdot (b \cdot d)^{-1}, \qquad \frac{c}{d} = (c \cdot b)(d \cdot b).$$

Hence by $b \cdot d = d \cdot b$ and the distributive law

$$\frac{a}{b} + \frac{c}{d} = \left(a \cdot d + c \cdot b\right) \cdot (b \cdot d)^{-1}$$

so the result follows by the definition of x/y.

Proof of (ii): $a + [-1] \cdot a = 1 \cdot a + [-1] \cdot a = (1 + [-1]) \cdot a = 0 \cdot a = 0$ by the distributive law and Theorem 10. Hence $[-1] \cdot a = [-a]$ by Lemma 2. **Proof of (iii):** By part (ii) it is enough to prove this for a = b = 1, i.e. to prove that $[-1] \cdot [-1] = 1$. By Theorem 10 (and other laws) we have

$$0 = ([-1] + 1) \cdot [-1] = [-1] \cdot [-1] + [-1].$$

Now add 1 to both sides and use the identity law 0 + 1 = 1, the associative law

$$([-1] \cdot [-1] + [-1]) + 1 = [-1] \cdot [-1] + ([-1] + 1),$$

and the inverse law [-1] + 1 = 0, etc.

2 Home Work II

§12 Composition. Given mappings $f : X \to Y$ and $g : Y \to Z$ the **composition** of f and g is denoted $g \circ f$ (read "g after f") and defined by $g \circ f : X \to Z$ with

$$(g \circ f)(x) = g(f(x))$$

for $x \in X$. The operation of composition is associative:

$$(h \circ g) \circ f = h \circ (g \circ f).$$

For any set X the **identity map** I_X of X is the map $I_X : X \to X$ defined by $I_X(x) = x$ for $x \in X$. Note that for $f : X \to Y$ we have

$$f \circ I_X = I_Y \circ f = f.$$

§13 Maps act on sets. Suppose that $f : X \to Y X_0 \subset X$ and $Y_0 \subset Y$. Define

$$f(X_0) = \{f(x) : x \in X_0\}$$

and

$$f^{-1}(Y_0) = \{x \in X : f(x) \in Y_0\}.$$

Theorem. (i) $I_X(X_0) = X_0$ and $g \circ f(X_0) = g(f(X_0))$. Hence (ii) If $f: X \to Y$ is one-one onto, then $f^{-1}(f(X_0)) = X_0$ and $f(f^{-1}(Y_0)) = Y_0$. (Warning: These last two formulas are not always true for maps which are not one-one onto.)

§14 Restriction and Extension. Suppose we are given a mapping $f : X \to Y$ and a subset $X_0 \subset X$. The restriction of f to X_0 , denoted $f|X_0$, is the mapping $(f|X_0) : X_0 \to Y$ defined by

$$(f|X_0)(x) = f(x)$$
 for all $x \in X_0$.

For example, if $f : \mathbb{R} \to \mathbb{R}$ is a mapping whose graph is the straight line given by f(x) = 2x, and if [0, 1] denotes the unit interval, then f|[0, 1], the restriction of f to [0, 1], is a mapping whose graph is the closed line segment from the (0, 0) to (1, 2).

The opposite of *restricting* a mapping to a smaller source is *extending* a mapping to a larger source. Suppose $g: X \to Y$ is a mapping and $X \subset Z$. Then any mapping $h: Z \to Y$ is called an **extension of** g to Z if h|X = g, i.e., if

$$h(x) = g(x)$$
 for all $x \in X$.

Thus, for example, if g is the mapping defined earlier by $g: X \to \mathbb{R} : x \mapsto \frac{1}{1-x}$ with source $X = \{x \in \mathbb{R} : x \neq 1\}$, then g has an extension \tilde{g} defined by

$$\tilde{g}(x) = \begin{cases} \frac{1}{1-x} & \text{if } x \neq 1\\ 0 & \text{if } x = 1. \end{cases}$$

The reader may recall from a calculus course that the mapping g described above is *continuous* on its source X, but has no continuous extension to \mathbb{R} . In particular, $\tilde{g} : \mathbb{R} \to \mathbb{R}$ is not continuous.

§15 Recall that for any set S the group of all permutations of S is denoted by A(S); i.e.

 $f \in A(S) \iff f: S \to S$, and f is one-one and onto.

§16 (Problem 1.4.14) Suppose $X_0 \subset X$, e.g.

$$X_0 = \{1, 2, \dots, m\}, \qquad X = \{1, 2, \dots, n\}$$

where $m \leq n$. Define $E: A(X_0) \to A(X)$ by

$$E(f)(x) = \begin{cases} f(x) & \text{for } x \in X_0, \\ x & \text{for } x \in X \setminus X_0 \end{cases}$$

for $f \in A(X_0)$. For $f, g \in A(X_0 \text{ and } x \in X_0 \text{ we have}$

$$E(f \circ g)(x) = f(g(x)) = E(f)(g(x)) = (E(f) \circ E(g))(x)$$

(since $g(x) \in X_0$) while for $x \in X \setminus X_0$ we have

$$E(f \circ g)(x) = x = E(f)(x) (E(g))(x) = E(f) (= E(f) \circ E(g))(x).$$

In either case $E(f \circ g)(x) = (E(f) \circ E(g))(x)$ so $E(f \circ g) = (E(f) \circ E(g))$. §17 (Problem 1.4.18) Suppose $X_0 \subset X$ and define

$$U(X, X_0) = \{ f \in A(X) : f(X_0) = X_0 \}.$$

Then $U(X, X_0)$ is a subgroup of A(X), i.e.

- (i) $I_X \in U(X, X_0);$
- (ii) If $g \in U(X_0, X)$ and $f \in U(X, X_0)$ then $g \circ f \in U(X, X_0)$;
- (iii) If $f \in U(X, X_0)$ then $f^{-1} \in U(X, X_0)$,

Proof: (i) Since $I_X(X_0) = X_0$ we have $I_X \in U(X, X_0)$. (ii) If $g \in U(X, X_0)$ and $f \in U(X, X_0)$, then

$$g \circ f(X_0) = g(f(X_0)) = g(X_0) = X_0$$

so $g \circ f \in U(X, X_0)$. (iii) If $f \in U(X, X_0)$ then $f(X_0) = X_0$ so $X_0 = f^{-1}(X_0)$ so $f^{-1} \in U(X, X_0)$.

§18 (Problem 1.4.19) For $f \in U(X, X_0)$ define $R(f) : X_0 \to X_0$ by

$$R(f)(x) = f(x)$$
 for $x \in X_0$.

(Note that $f(x) \in X_0$ by the definition of $U(X, X_0)$.) Then

$$R: U(X, X_0) \to A(X_0)$$

and

$$R(g \circ f) = R(g) \circ R(f).$$

The proof is obvious. Since R(E(g)) = g for $g \in A(X_0)$ it follows that R is onto.

§19 (Problem 1.4.20) Since any element of A(X) is one-one onto we have

 $U(X, X_0) = U(X, X \setminus X_0).$

Thus the set $R^{-1}(g)$ is in one-one correspondence with $A(X \setminus X_0)$. In particular, R is one-one when $X \setminus X_0$ consists of a single point.

3 Home Work III

§20 Problem 2.1.1 (b) Consider the set \mathbb{Z} of integers with the operation

$$a * b = a + b + ab$$

is not a group. The one-one onto map $f:\mathbb{Z}\to\mathbb{Z}$ defined by f(z)=z+1 satisfies

$$a * b = (a + 1) \cdot (b + 1) - 1 = f^{-1}(f(a) \cdot f(b))$$

for $a, b \in \mathbb{Z}$ (where $u \cdot v$ is the usual multiplication operation.) Thus $(\mathbb{Z}, *)$ satisfies the same laws as (\mathbb{Z}, \cdot) . In particular the associative and commutative laws hold and 0 is an identity:

$$0 \ast a = a \ast 0 = a$$

for all $a \in \mathbb{Z}$. However there is no inverse operation since

$$a * (-1) = -1$$

for all $a \in \mathbb{Z}$.

§21 2.2.3 Let $i \in \mathbb{Z}$. We say that a group G has property P(i) iff the identity

$$(ab)^i = a^i b^i P(i)$$

holds for all $a, b \in G$.

Assume that there is an integer i for which the group G satisfies P(i-1), P(i), and P(i+1). We show that the group G is abelian.

Step 1. If a group satisfies P(i+1) and P(i) then it satisfies

$$a^i b^i = b^i a^i \qquad \qquad Q(i)$$

for all $a, b \in G$. Proof: By P(i+1)

$$a(ba)^{i}b = (ab)^{i+1} = a^{i+1}b^{i+1} = a(a^{i}b^{i})b.$$

Cancelling the a on the left and the b on the right gives

$$(ba)^i = a^i b^i.$$

Now use P(i) to obtain $b^i a^i = (ba)^i = a^i b^i$.

Step 2. If a group satisfies P(i) and P(i-1) then it satisfies

$$a^{i-1}b^{i-1} = b^{i-1}a^{i-1} \qquad \qquad Q(i-1)$$

for all $a, b \in G$. Proof: Replace i by i - 1 in Step 1.

Step 3. Now

$$(ab)^{i+1} = (ab)(ab)^i = (ab)a^ib^i = (ab)b^ia^i = (ab)(ba)^i$$

and

$$(ba)^{i} = (ba)(ba)^{i-1} = (ba)b^{i-1}a^{i-1} = (ba)a^{i-1}b^{i-1} = (ba)(ab)^{i-1}.$$

Hence

$$(ab)^{i+1} = (ab)(ba)(ab)^{i-1}.$$

Now multiply by $(ab)^{-1}$ on the left and $(ab)^{1-i}$ on the right.

§22 Remark. The problem in the book asks you to prove that If G is a group for which $(ab)^i = a^i b^i$ for three consecutive integers i, then G is abelian. To me the wording is ambiguous. Which is asserted?

$$[\forall i \in \mathbb{Z} \ P(i-1) \text{ and } P(i) \text{ and } P(i+1)] \implies G \text{ is abelian}$$
(1)

i.e.

$$\exists i \in \mathbb{Z} \ [P(i-1) \text{ and } P(i) \text{ and } P(i+1) \implies G \text{ is abelian}]$$
(1')

or

$$\forall i \in \mathbb{Z} \ [P(i-1) \text{ and } P(i) \text{ and } P(i+1) \implies G \text{ is abelian}]$$
 (2)

i.e.

$$[\exists i \in \mathbb{Z} \ P(i-1) \text{ and } P(i) \text{ and } P(i+1)] \implies G \text{ is abelian}$$
 (2')

However had the author intended (1) he would have said

 $[\forall i \in \mathbb{Z} \ P(i)] \implies G$ is abelian

which is equivalent but shorter. The author must intend (2).

4 Homework IV

§23 Problem 2.4(2-3). Let S be a set and R a relation on S, i.e. $R \subset S \times S$. For $a, b \in S$ we write $a \equiv b$ instead of $(a, b) \in R$. We say that the relation R is

- reflexive iff $\forall a \in S \ a \equiv a;$
- weakly reflexive iff $\forall a \in S \exists b \in S \ a \equiv b;$
- symmetric iff $\forall a, b \in S \ a \equiv b \implies b \equiv a;$
- transitive iff $\forall a, b, c \in S \ a \equiv b, b \equiv c \implies a \equiv c$.

A reflexive relation is obviously weakly reflexive: take b = a. The relation defined in 2.4(2) is the empty relation $R = \emptyset$ on a nonempty set S. It is symmetric since for all $a, b \in S$ the implication $(a, b) \in \emptyset \implies (b, a) \in \emptyset$ is true: it has the form [false \Longrightarrow false]. Similarly the empty relation is transitive. The empty relation is not reflexive (or even weakly reflexive) on a nonempty set S: since $S \neq \emptyset$ there exists an $a \in S$; but for this a, we have $a \not\equiv b$, i.e. $(a,b) \notin \emptyset$ for all $b \in S$. The argument in 2.4(3) proves that a relation which is weakly reflexive, symmetric, and transitive is also reflexive.

§24 Problem 2.4(20) Recall that the transformation $T_{a,b}$ may be represented by the matrix

$$T_{a,b} = \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)$$

 \mathbf{SO}

$$T_{a,b} \circ T_{a,b} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ac & ad+b \\ 0 & 1 \end{pmatrix}$$

and

$$T_{a,b}^{-1} = \left(\begin{array}{cc} a^{-1} & -a^{-1}b\\ 0 & 1 \end{array}\right).$$

The conjugacy class $[T_{c,d}]$ of the element $T_{c,d}$ is the set

$$[T_{c,d}] := \left\{ T_{a,b} \circ T_{c,d} \circ T_{a,b}^{-1} \right\} : a, b \in \mathbb{R}, \ a \neq 0 \right\}.$$

By matrix multiplication

$$T_{a,b} \circ T_{c,d} \circ T_{a,b}^{-1} = T_{c,g}, \qquad g = ad + b(1-c).$$

If $c \neq 1$ then every $g \in \mathbb{R}$ has the form g = ad + b(1 - c) with $a \neq 0$; we take a = 1 and b = (g - d)/(c - 1). If c = 1 and $d \neq 0$, then g has the form g = ad + b(1 - c) if and only if $g \neq 0$. Hence

$$[T_{c,d}] = \{T_{c,g} : g \in \mathbb{R}\} \quad \text{if } c \neq 1;$$

$$[T_{1,d}] = \{T_{1,g} : g \in \mathbb{R}, g \neq 0\} \quad \text{if } d \neq 0;$$

$$[T_{1,0}] = \{T_{1,0}\}.$$

§25 Problem 2.4.(6-7) In cycle notation (see Chapter 3)

$$H = \{(), (12)\} \subset G = S_3$$

The left cosets are

$$H = \{(), (12)\}, \qquad (13)H = \{(13), (123)\}, \qquad (23)H = \{(23), (132)\}$$

There are three left cosets and each is a two element set. The right cosets are

 $H = \{(), (12)\}, \qquad H(13) = \{(13), (132)\}, \qquad H(23) = \{(23), (123)\}.$

There are three right cosets and each is a two element set. The right coset H(13) is different from all three left cosets. In fact the only set which is both a left coset and a right coset is H itself.

5 Homework V

§26 Problem 2.5.16 Suppose that G is a group and the $M \triangleleft G$ and $N \triangleleft G$ are normal subgroups. Let

$$MN = \{mn : m \in M, n \in N\}.$$

Then $MN \triangleleft G$, i.e. MN is a normal subgroup of G.

Proof: There are four steps.

Step 1. $e \in MN$. Proof: Take m = n = e. Then $m \in M$ and $n \in N$ so $e = mn \in MN$.

Step 2. $x, y \in MN \implies xy \in MN$. Proof: Choose $x, y \in MN$. Then $x = m_1n_1$ and $y = m_2n_2$ for some $m_1, m_2 \in M$ and $n_1, n_2 \in N$. Then

$$xy = m_1 n_1 m_2 n_2 = m_1 (n_1 m_2 n_1^{-1})(n_1 n_2) = m'n'$$

where $m' = m_1(n_1m_2n_1^{-1}) \in M$ and $n' = n_1n_2 \in N$. Therefore $xy \in MN$.

Step 3. $x \in MN \implies x^{-1} \in MN$. Proof: Choose $x \in MN$. Then x = mn for some $m \in M$ and $n \in N$. Hence

$$x^{-1} = n^{-1}m^{-1} = (n^{-1}m^{-1}n)n^{-1} = m'n'$$

where $m' = (n^{-1}m^{-1}n) \in M$ and $n' = n^{-1} \in N$. Therefore $x^{-1} \in MN$.

Step 4. $x \in MN$, $g \in G \implies gxg^{-1} \in MN$. Choose $x \in MN$ and $g \in G$. Then x = mn for some $m \in M$ and $n \in N$. Hence

$$gxg^{-1} = gmng^{-1} = (gmg^{-1})(gng^{-1}) = m'n'$$

where $m' = (gmg^{-1}) \in M$ and $n' = (gng^{-1}) \in N$. Therefore $gxg^{-1} \in MN$.

§27 Problem 2.5.21 Let S be a set having at least three elements and A(S) be the group of all one-one onto maps from S to itself. For $s \in S$ define

$$H(s) = \{ f \in H(S) : f(s) = s \}.$$

It is easy to see that H(s) is a subgroup of A(S). First, the identity map id_S is an element of H(s) as $\operatorname{id}_S(x) = x$ for all $x \in S$ so in particular $\operatorname{id}_S(s) = s$, so $\operatorname{id}_S \in H(s)$. Second, if $f, g \in H(S)$ then f(s) = s and g(s) = s so $f \circ g(s) = f(g(s)) = f(s) = s$ so $f \circ g \in H(s)$. Third, if $f \in H(s)$, then f(s) = s so $s = \operatorname{id}_S(s) = (f^{-1} \circ f) = f^{-1}(f(s)) = f^{-1}(s)$ so $f^{-1} \in H(s)$. Hence H(s) is a subgroup of A(S).

Now assume that the elements $s, s', s'' \in S$ are distinct. Choose $f \in A(S)$ so that f(s') = s and f(s'') = s''. Choose $h \in A(S)$ so h(s) = s and h(s') = s''. Then $h \in H(s)$ but $f \circ h \circ f^{-1}(s) = f(h(s')) = f(s'') = s'' \neq s$ so $f \circ h \circ f^{-1} \notin H(s)$. Hence H(s) is not a normal subgroup of A(S).

Remark. For $f \in A(S)$ and $s \in S$ we have

$$fH(s)f^{-1} = H(f(s))$$

Suppose that $g \in fH(s)f^{-1}$. Then $g = f \circ h \circ f^{-1}$ where $h \in H(s)$, i.e. h(s) = s. Then

$$g(f(s)) = (f \circ h \circ f^{-1}) \circ f(s) = f(h(s)) = f(s)$$

so $g \in H(f(s))$. Conversely suppose that $g \in H(f(s))$, i.e. g(f(s)) = f(s). Let $h = f^{-1} \circ g \circ f$. Then $h(s) = f^{-1} \circ g \circ f(s) = f^{-1}(g(f(s))) = f^{-1}(f(s)) = s$ so $h \in H(s)$. But $g = f \circ h \circ h^{-1}$ so $g \in fH(s)f^{-1}$.

6 Homework VI

§28 Problem 2.6.3-5 Suppose that N is a normal subgroup of a groups G and that \overline{M} is a subgroup of G/N. Let

$$M = \{ a \in G : aN \in \overline{M} \}.$$

Then

(2.6.3) M is a subgroup of G and $N \subset M$.

(2.6.4) If $\overline{M} \triangleleft G/N$, then $M \triangleleft N$.

(2.6.5) If $\bar{M} \triangleleft G/N$, then $M/N = \bar{M}$.

Proof: Let $\overline{G} = G/N$, and $\phi: G \to \overline{G}$ be the homomorphism defined by

$$\phi(a) = aN.$$

Then ϕ is an onto homomorphism and

$$M = \phi^{-1}(\bar{M}).$$

We prove M is a subgroup. (1) The identity e of G lies in M as $\phi(e)$ is the identity of \overline{G} and hence lies in \overline{M} , so $e \in \phi^{-1}(\overline{M}) = M$. (2) Choose $a, b \in M$. Then $\phi(a), \phi(b) \in \overline{M}$. Hence $\phi(ab) = \phi(a)\phi(b) \in \overline{M}$. Hence $ab \in \phi^{-1}(\overline{M}) = M$. (3) Choose $a \in M$. Then $\phi(a) \in \overline{M}$. Hence $\phi(a^{-1}) = \phi(a)^{-1} \in \overline{M}$. Hence $a^{-1} \in \phi^{-1}(\overline{M}) = M$.

Assume that \overline{M} is normal. Choose $a \in G$ and $m \in M$. Then $\phi(a) \in \overline{G}$ and $\phi(m) \in \overline{M}$. Hence $\phi(ama^{-1}) = \phi(a)\phi(m)\phi(a)^{-1} \in \overline{M}$. Hence $ama^{-1} \in \phi^{-1}(\overline{M}) = M$. This proves that M is normal.

The statement that $M/N = \overline{M}$ can be written as $\phi(M) = \overline{M}$, i.e. $\phi(\phi^{-1}(\overline{M})) = \overline{M}$. This latter formula is true for any onto map $\phi : G \to \overline{G}$ and any subset $\overline{M} \subset \overline{G}$.

7 Homework VII

§29 4.4-9. Let p > 2 be a prime and let $U_p = \mathbb{Z}_p - \{0\}$ be the multiplicative group of the field \mathbb{Z}_p . Then the set

$$S = \{x^2 : x \in U_p\}$$

of squares in U_p is a subgroup of index two.

Proof: $1 = 1^2$ so $1 \in S$. Suppose that $a, b \in S$. Then there exist $x, y \in U_p$ with $a = x^2$ and $b = y^2$. Then $ab = (xy)^2$ so $ab \in S$. Suppose $a \in S$. Then $a = x^2$ for some $x \in U_p$. Let $y \in U_p$ be the inverse of x. Then xy = 1. Hence $ay^2 = x^2y^2 = (xy)^2 = 1$. Hence $a^{-1} = y^2$ so $a^{-1} \in U_p$. The map

$$U_p \to S : x \mapsto x^2$$

is two-to-one onto (as p > 2) so $|U_p| = 2|S|$.

§30 (4.4-10) Suppose m is a positive integer which is not a perfect square. Then the set

$$\mathbb{Z}\left[\sqrt{m}\right] := \left\{a + b\sqrt{m} : a, b \in \mathbb{Z}\right\}$$

is a subring of \mathbb{R} .

Proof: (1) $\mathbb{Z}[\sqrt{m}]$ contains $0 = 0 + 0\sqrt{m}$. (2) $\mathbb{Z}[\sqrt{m}]$ is closed under addition and subtraction as

$$(a_1 + b_1\sqrt{m}) \pm (a_2 + b_2\sqrt{m}) = (a_1 \pm a_2) + (b_1 \pm b_2)\sqrt{m}.$$

(3) $\mathbb{Z}[\sqrt{m}]$ is closed under multiplication as

$$(a_1 + b_1\sqrt{m})(a_2 + b_2\sqrt{m}) = (a_1a_2 + mb_1b_2) + (a_1b_2 + b_1a_2)\sqrt{m}.$$

§31 (4.4-11)*Suppose m is as in* 4.4-10 *and that p is an odd prime. Let*

$$I_p = \{a + b\sqrt{m} \in \mathbb{Z}[\sqrt{m}] : 5|a \text{ and } 5|b\}.$$

Then I_p is an an ideal in $\mathbb{Z}[\sqrt{m}]$.

Proof: (1) I_p contains $0 = 0 + 0\sqrt{m}$ as p|0. (2) $\mathbb{Z}[\sqrt{m}]$ is closed under addition and subtraction. Choose $x_1, x_2 \in I_p$. Then $x_1 = a_1 + b_1\sqrt{m}$ and $x_2 = a_21 + b_2\sqrt{m}$ where $p|a_1, p|b_1, p|a_2, p|a_2$. Hence $p|(a_1+a_2)$ and $p|(b_1+b_2)$ so $x_1 \pm x_2 \in I_p$. (3) I_p is closed under multiplication by an element of $\mathbb{Z}[\sqrt{m}]$. Choose $x \in I_p$ and $z \in \mathbb{Z}[\sqrt{m}]$. Then $x = a + b\sqrt{m}$ where p|a and p|b and $z = c + d\sqrt{m}$ where $c, d \in \mathbb{Z}$. Then p|(ac + mbd) and p|(ad + bc) so

$$xz = (ac + mbd) + (ad + bc)\sqrt{m} \in I_p.$$

§32 (4.4-12,13) Let p and m be as in 4.4-10 and suppose that m is not a square in U_p . Then $Z[\sqrt{m}]/I_p$ is a field of order p^2 .

Proof: The ring $\mathbb{Z}[\sqrt{m}]/I_p$ has order p^2 because every element $a + b\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$ be be written uniquely in the form

$$a + b\sqrt{m} = (cp + r) + (dp + s)\sqrt{m}$$

where $c, d, r, s \in \mathbb{Z}$ and $0 \leq r < p$ and $0 \leq s < p$. (For uniqueness use the fact that If $a_1 + b_1\sqrt{m} = a_2 + b_2\sqrt{m}$ then $a_1 = a_2$ and $b_1 = b_2$ as \sqrt{m} is irrational.) To show that $Z[\sqrt{m}]/I_p$ is a field we must show that every nonzero element has a multiplicative inverse. Choose $a + b\sqrt{m} \in Z[\sqrt{m}] \setminus I_p$; we must find integers u, v with

$$(a+b\sqrt{m})(u+v\sqrt{m}) \in 1+I_p.$$

We try u = wa, v = -wb so

$$(a+b\sqrt{m})(u+v\sqrt{m}) = w(a^2-mb^2).$$

Since \mathbb{Z}_p is a field, we can find an integer w with $w(a^2 - mb^2) \equiv 1 \pmod{p}$ so long as $a^2 - mb^2 \not\equiv 0 \pmod{p}$. But if $a^2 - mb^2 \equiv 0 \mod p$ then $a^2 \equiv mb^2 \mod p$ so $(ac)^2 \equiv m \pmod{p}$ where $bc \equiv 1 \pmod{p}$. (Such a c exists as \mathbb{Z}_p is a field.) The equation $(ac)^2 \equiv m \pmod{p}$ contradicts the hypothesis that m is not a square in U_p .

§33 (4.4-7) Take m = 2 and p = 5. The set of squares in U_5 is

$$S = \{1^2, 2^2, 3^2, 4^2\} = \{1, 4, 4, 1\} = \{1, 4\}$$

Hence $2 \notin S$ so 4.4-12,13 applies and $Z[\sqrt{2}/I_5]$ is a field of order $5^2 = 25$.