Math 541

Worked Homework
Last Change: September 29, 2000

1 Home Work I

81 Definition. A field is a set F' equipped with two binary operations

FxF—F:(a,b)—a+b (addition)
FxF—F:(a,b)—a-b (multiplication)

and two distinguished elements 0 (zero) and 1 (one) which satisfies the
following laws:

Addition is associative:
VavVbVe (a+b)+c=a+ (b+c)
Addition is commutative:
Vavb a+b=b+a

0 is an additive identity:
Va a+0=a

Every number has an additive inverse:

VYadb a-+b=0.

Multiplication is associative:

VavVbve (a-b)-c=a-(b-c)



Multiplication is commutative:
Yavb a-b=b-a
1 is an multiplicative identity:
Va a-1=1-a=a
Every nonzero number has an multiplicative inverse:
Va#03db a-b=b-a=1.

Multiplication is distributive over addition:

VavVbVe a-(b+c¢)=(a-b)+ (a-c),

VavVtVe (b+c¢)-a= (b-a)+ (c-a).

(This is the first law which involves both operations.)

§2 Lemma. a+b; =0 and a+by =0 = by = by
Proof: Assume a+b; =0 and a+ by = 0. Then

by = b +0 (ident.)
b + (a + bs) (hyp.)
(by 4+ a) + b, (ass.)
(a+0b1) + by (comm.)
)
)
)

= 04 by (hyp.
= by+0 (comm.
= b2 (ldent

83 Definition. Since a number a has exactly one additive inverse we can
denote it by [—a]. Thus

b=[-a] <= a+b=0.
The operation of subtraction is defined by
a—b=a+[-b].
We use the brackets to emphasize the difference between the unary operation

F— F:aw— [—a
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and the binary operation
FxF—F:(ab)—a—0.
§4 Theorem. [—[—c|]] =cfor all c € F.
Proof: Let a =[—c]|, by = ¢, by = [—[—¢]] and use lemma 2. O
85 Exercise. Prove the following for all a,b,c,d € F:
() [=(a+b)] = [-a] +[-0].
(i) (a—=b)+ (c—d)=(a+c)— (b+d).
(iii) a—b=(a+c)— (b+0¢).
(iv) (a=b)—(c—=d)=(a—0b)+ (d—¢).
Proof of (i): By the associative and commutative laws
(a+b) + ([—a] + [-0]) = (a+ [=a]) + (b+ [-D]).

Hence
(a+b)+([—a] +[-b])=04+0=0

by the definition of the additive inverse. Hence [—(a + )] = ([—a] + [-b]) by
Lemma 2.

Proof of (ii):

(a—=b)+(c—d) = (a+][=b])+ (c+[—d]) definition of z —y
= (a+c)+([-b]+[—d]) ass. and comm.
— (@t +[-b+d] by ()
= (a+c)—(b+d) definition of © —y

Proof of (iii): By (ii) with ¢ = d we have
(@=b)+(c—c)=(atc)=(b+c)

But c—c=c+[—c]=0s0 (a—b)+ (c—¢c)=(a—b).
Proof of (iv): Read c for a, d for b, d for ¢, and ¢ for d in (ii). The result
1s

(c—d)+(d—c)=(d+c)—(c+d)=0+0=0.
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Hence [—(c — d)] = (d — ¢). Now add a — b to both sides.

86 Lemma. The multiplicative inverse is unique:
a-by=1and a-by=1 = by = by
Proof: Like Lemma 2.

87 Definition. We denote the multiplicative inverse by a~
a,beF

1. Hence for
b=a"'! <= a-b=1
The operation of division is defined (for a € F, b€ F\ {0}) b
a/b=a-b"'.

§8 Theorem. (a™') ' =aforac F\ {0}.
Proof: Like theorem 4.
§9 Exercise. Prove the following for all a,b,¢,d € F'\ {0}:

(i) (a-b)'=at-b7!

c

..a /c a d
™) 3 /5=3%

Proof: The proof is exactly the same as for Exercise 5. Simply replace x+vy
by z -y, [-x] by 27}, x — y by z/y throughout.

810 Theorem. a -0 =0 for a € F.

Proof: Choose a € F. Then

0 = a—a (def, inv.)
= a-1—a (ident.)
= a-(0+1)—a (ident, comm.)
= (a-0)+(a-1))—a (dist.)
= ((a-0)+a)—a (ident.)
= (a-0)+(a—a) (ass.)
= (a-0)40 (def, inv.)
= a-0 (ident.)d

811 Exercise. Prove the following



(ii) [~a = [~1] -a
(iii) [~a]- [0 =a-b

Proof of (i): By Lemma 9 part (iii)

IS
S8
o
=

b b-d
Hence by the definition of z/y

Ul O
ISH
<>

a
b
Hence by b-d = d - b and the distributive law

—(a-d)-(b-d)", gzapmuwy

+§:(wd+cwya»@4

SRS

so the result follows by the definition of z/y.

Proof of (ii): a+[-1]-a=1-a+[-1]-a=(1+[-1])-a=0-a=0by
the distributive law and Theorem 10. Hence [—1] - @ = [—a] by Lemma 2.
Proof of (iii): By part (ii) it is enough to prove this for a = b =1, i.e. to
prove that [—1] - [-1] = 1. By Theorem 10 (and other laws) we have

0= ([=1)+1) - [-1] = [-1] - [-1] + [-1],

Now add 1 to both sides and use the identity law 0 + 1 = 1, the associative
law

(- [+ =)+ L= =1 1]+ (=0 + 1),

and the inverse law [—1] + 1 = 0, etc.

2 Home Work 11

8§12 Composition. Given mappings f : X — Y and g : Y — Z the
composition of [ and g is denoted go f (read “ g after f7) and defined by
go f: X — Z with

(g0 f)(x) =g(f(z))



for x € X. The operation of composition is associative:
(hog)of=ho(gof)

For any set X the identity map Ix of X is the map Iy : X — X defined
by Ix(z) =« for x € X. Note that for f: X — Y we have

folx=Iyof=Ff

8§13 Maps act on sets. Suppose that f: X — Y Xy C X and Yy C Y.
Define

f(Xo) ={f(z) 2 € Xo}

and
[HYo) ={z € X : f(z) € Yo}.

Theorem. (i) Ix(Xo) = Xo and g o f(Xo) = g(f(Xo)). Hence (ii) If
f: X — Y is one-one onto, then f~1(f(Xy)) = Xo and f(f~1(Yy)) = Yo.
(Warning: These last two formulas are not always true for maps which are
not one-one onto.)

8§14 Restriction and Extension. Suppose we are given a mapping [ :
X — Y and a subset Xy C X. The restriction of f to Xy, denoted f|Xj,
is the mapping (f|Xo) : Xo — Y defined by

(f1Xo)(x) = f(x) for all x € X,.

For example, if f : R — R is a mapping whose graph is the straight line
given by f(x) = 2z, and if [0, 1] denotes the unit interval, then f|[0, 1], the
restriction of f to [0, 1], is a mapping whose graph is the closed line segment
from the (0,0) to (1,2).

The opposite of restricting a mapping to a smaller source is extending a
mapping to a larger source. Suppose g : X — Y is a mapping and X C Z.
Then any mapping h : Z — Y is called an extension of g to 7 if h|X = g,
ie., if

h(z) = g(x) forall z € X.

Thus, for example, if g is the mapping defined earlier by g : X — R : z +— ——

-z

with source X = {z € R : & # 1}, then g has an extension ¢ defined by



The reader may recall from a calculus course that the mapping ¢ described
above is continuous on its source X, but has no continuous extension to R.
In particular, g : R — R is not continuous.

815 Recall that for any set S the group of all permutations of S is denoted
by A(S); i.e.

feAS) < f:5— S, and f is one-one and onto.

§16 (Problem 1.4.14) Suppose X, C X, e.g.
Xo={1,2,... ,m}, X ={1,2,...,n}
where m < n. Define E': A(Xy) — A(X) by

f(x) for z € Xy,

Bf)@) = {x for x € X \ Xo

for f € A(Xy). For f,g € A(X, and x € X, we have

E(fog)(x) = f(g(x)) = E(f)(9(x)) = (E(f) o E(9))(x)

E(fog)(z) =z = E(f)(x)(E(9))(z) = E(f)(= E(f) ° E(9)) ().

In either case E(f o g)(z) = (E(f) o E(g))(z) so E(f o g) = (E(f) o E(g)).
§17 (Problem 1.4.18) Suppose Xo C X and define

U(X, Xo) = {f € AX) : f(Xo) = Xo}-
Then U(X, Xo) is a subgroup of A(X), i.e.
(i) Ix € U(X, Xo);
(ii) If g € U(Xo, X) and f € U(X, Xo) then go f € U(X, Xo);
(iii) If f € U(X, X,) then f~' € U(X, X,),



Proof: (i) Since Ix(Xy) = X, we have Iy € U(X, Xy). (ii) If g € U(X, X))
and f € U(X, Xy), then
go [(Xo) = g(f(Xo)) = 9(Xo) = Xo

SO gof c U(X, X()) (111) Iff S U(X, X()) then f(X()) = XO SO XO = fﬁl(X(]>
so [t e U(X, Xp).

§18 (Problem 1.4.19) For f € U(X, X,) define R(f) : Xo — Xo by
R(f)(z) = f(x)  forz € X,
(Note that f(z) € X, by the definition of U(X,X,).) Then
R:U(X, Xo) — A(Xo)

and

R(go f) = R(g) o R(f).
The proof is obvious. Since R(E(g)) = g for g € A(X)) it follows that R is
onto.

§19 (Problem 1.4.20) Since any element of A(X) is one-one onto we have
U(X, Xo) = U(X, X\ Xo).

Thus the set R7(g) is in one-one correspondence with A(X \ Xj). In par-
ticular, R is one-one when X \ X consists of a single point.

3 Home Work III

§20 Problem 2.1.1 (b) Consider the set Z of integers with the operation
axb=a-+0b+ab

is not a group. The one-one onto map f : Z — Z defined by f(z) =z + 1
satisfies

axb=(a+1)-(b+1)—1=f"(f(a) f(b))
for a,b € Z (where u-v is the usual multiplication operation.) Thus (Z, %) sat-

isfies the same laws as (Z,-). In particular the associative and commutative
laws hold and 0 is an identity:

Oxa=a*x0=a



for all a € Z. However there is no inverse operation since
ax*x(—1)=-1

forall a € Z.
§21 2.2.3 Let ¢ € Z. We say that a group G has property P(i) iff the identity

(ab)’ = a'b’ P(7)
holds for all a,b € G.

Assume that there is an integer i for which the group G satisfies P(i — 1),
P(i), and P(i+1). We show that the group G is abelian.

Step 1. If a group satisfies P(¢ + 1) and P(i) then it satisfies

a't’ = b'a’ Q(7)
for all a,b € G. Proof: By P(i + 1)

a(ba)’b = (ab)™ = o' = a(a'b?)b.

Cancelling the a on the left and the b on the right gives

(ba)' = a'b'.
Now use P(i) to obtain b'a’ = (ba)’ = a'l'.
Step 2. If a group satisfies P(i) and P(i — 1) then it satisfies

Lyl — pi-14i-1 Qi —1)

for all a,b € G. Proof: Replace ¢ by ¢ — 1 in Step 1.
Step 3. Now

(ab)™ = (ab)(ab)" = (ab)a'b’ = (ab)b'a’ = (ab)(ba)"
and
(ba)" = (ba)(ba)' " = (ba)b" 'a'' = (ba)a" 'b""" = (ba)(ab)"".

Hence

(ab)™ = (ab)(ba)(ab)".
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Now multiply by (ab)~' on the left and (ab)'~* on the right.

8§22 Remark. The problem in the book asks you to prove that If G is a
group for which (ab)' = a'b® for three consecutive integers i, then G is abelian.
To me the wording is ambiguous. Which is asserted?

Viez P(i—1) and P(i) and P(i + 1)] = G is abelian (1)

Le.

i €7 [P(i—1) and P(i) and P(i+ 1) = G is abelian] (1)
or

Viez [P(i—1)and P(i) and P(i + 1) = G is abelian] (2)
l.e.

[Ji €z P(i—1) and P(i) and P(i +1)] = G is abelian (2"
However had the author intended (1) he would have said
Vi € Z P(i)] = @ is abelian

which is equivalent but shorter. The author must intend (2).

4 Homework IV

§23 Problem 2.4(2-3). Let S be aset and R arelationon S,i.e. R C SxS.
For a,b € S we write a = b instead of (a,b) € R. We say that the relation R
is

— reflexive iff Va € S a = q;

— weakly reflexive iff Va € S3dbe S a = b;

— symmetric iff Va,b € S a=b = b=aq;

— tramnsitive iff Va,b,c € S a=b, b=c = a=c

A reflexive relation is obviously weakly reflexive: take b = a. The relation
defined in 2.4(2) is the empty relation R = ) on a nonempty set S. It is
symmetric since for all a,b € S the implication (a,b) € 0 = (b,a) € 0
is true: it has the form [false = false|. Similarly the empty relation is
transitive. The empty relation is not reflexive (or even weakly reflexive) on
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a nonempty set S: since S # () there exists an a € S; but for this a, we have
a £ b, ie. (a,b) ¢ () for all b € S. The argument in 2.4(3) proves that a
relation which is weakly reflexive, symmetric, and transitive is also reflexive.

§24 Problem 2.4(20) Recall that the transformation 7,; may be repre-

sented by the matrix
a b
Tap = ( 01 >

[ a b c d\ ([ ac ad+b
Tav”OTa’b_(o 1)(0 1)‘(0 1 >
_ al —a '

Ta,bl:( O 1 )

The conjugacy class [T 4] of the element T 4 is the set

SO

and

(Tq] = {Ta,b oT.q0 Ta_’bl} ca,bER, a# 0} )
By matrix multiplication
Ta,boTC,doTCZbI :Tc7gg g:ad+b(1_c>

If ¢ # 1 then every g € R has the form g = ad + b(1 — ¢) with a # 0; we
takea=1and b= (g —d)/(c—1). If c=1 and d # 0, then ¢ has the form
g =ad+b(1 —c) if and only if g # 0. Hence

Teq) = {Tc,g ig € R} if ¢ #1;
[T14] = {Tiy:9€R, g#0} ifd#0;
Tio] = {Tl,o}-

§25 Problem 2.4.(6-7) In cycle notation (see Chapter 3)
H={(),(12)} C G =5
The left cosets are

H={0.12)},  (3)H={(13),(123)},  (23)H = {(23), (132)}.
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There are three left cosets and each is a two element set. The right cosets
are

H={0,(12)}, HO3)={(13,(132)},  H(3) = {(23),(123)}.

There are three right cosets and each is a two element set. The right coset
H(13) is different from all three left cosets. In fact the only set which is both
a left coset and a right coset is H itself.

5 Homework V

§26 Problem 2.5.16 Suppose that G is a group and the M < G and N <« G
are normal subgroups. Let

MN ={mn:me M, ne N}.

Then MN < G, i.e. M N is a normal subgroup of G.
Proof: There are four steps.

Step 1. e € MN. Proof: Take m =n =e. Then m € M and n € N so
e=mné& MN.

Step 2. z,y € MN = xy € MN. Proof: Choose z,y € MN. Then
xr = mini and y = many for some mq, mo € M and nq,no € N. Then

Ty = mynimang = my(nymany ) (ning) = m'n’

where m’ = my(nymon;') € M and n’ = nyny € N. Therefore zy € MN.

Step 3. 2 € MN = z ! € MN. Proof: Choose z € MN. Then
x = mn for some m € M and n € N. Hence

rl=n"tm= (n_lm_ln)n_1 =m'n’

where m’ = (n"'m™!n) € M and n’ = n~! € N. Therefore 27! € M N.

Step4. € MN, ge G = gxg~' € MN. Choose z € MN and g € G.
Then x = mn for some m € M and n € N. Hence

1 1!

grg~' = gmng~' = (gmg~")(gng™") = m'n
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where m’ = (gmg™') € M and n' = (gng~') € N. Therefore grg~* € MN.

§27 Problem 2.5.21 Let S be a set having at least three elements and A(S)
be the group of all one-one onto maps from S to itself. For s € S define

H(s) = {f € H(S) : f(s) = s}.

It is easy to see that H(s) is a subgroup of A(S). First, the identity map idg
is an element of H(s) as idg(z) = x for all x € S so in particular idg(s) = s,
so idg € H(s). Second, if f,g € H(S) then f(s) = s and g(s) = s so
fog(s) = f(g(s)) = f(s) =sso fog € H(s). Third, if f € H(s), then
f(s) =ssos=1idg(s) = (ftof)=fHf(s) = f'(s) so f7! € H(s).
Hence H(s) is a subgroup of A(S).

Now assume that the elements s, s’, s” € S are distinct. Choose f € A(S)
so that f(s') = s and f(s”") = s”. Choose h € A(S) so h(s) = s and
h(s') = s". Then h € H(s) but foho f~1(s) = f(h(s')) = f(s") = 5" # s s0
foho f~'¢ H(s). Hence H(s) is not a normal subgroup of A(S).

Remark. For f € A(S) and s € S we have

FH(s)f~H = H(f(s)).

Suppose that g € fH(s)f™'. Then g = foho f~' where h € H(s), i.e
h(s) = s. Then

g(f(s)) = (foho f)o f(s) = f(h(s)) = [f(s)
)

so g € H(f(s)). Conversely suppose that g € H(f(s)), i.e. g(f(s)) = f(s).
Let h = f~logof. Then h(s) = f~logof(s) = f~ 1(g(f(s) )=f"
sohe H(s). Butg= fohoh™soge fH(s)f*

6 Homework VI

§28 Problem 2.6.3-5 Suppose that N is a normal subgroup of a groups G
and that M is a subgroup of G/N. Let

M ={a€G:aN € M}.
Then
(2.6.3) M is a subgroup of G and N C M.

13



(2.6.4) If M <« G/N, then M < N.
(2.6.5) If M « G/N, then M/N = M.

Proof: Let G =G/N, and ¢ : G — G be the homomorphism defined by
¢(a) = aN.
Then ¢ is an onto homomorphism and
M = ¢ Y (M).

We prove M is a subgroup. (1) The identity e of G lies in M as ¢(e) is the
identity of G and henve lies in M, so e € ¢~ (M) = M. (2) Choose a,b € M.
Then ¢(a), p(b) € M. Hence ¢(ab) = ¢(a)p(b) € M. Hence ab € ¢~ (M) =
M. (3) Choose a € M. Then ¢(a) € M. Hence ¢(a!) = ¢(a)~! € M.
Hence a=! € ¢~ 1(M) = M.

Assume that M is normal. Choose a € G and m € M. Then ¢(a) € G
and ¢(m) € M. Hence ¢p(ama=t) = ¢(a)p(m)p(a)~t € M. Hence ama™" €
¢~Y(M) = M. This proves that M is normal.

The statement that M/N = M can be written as ¢(M) = M, i.e.
¢(¢p~Y(M)) = M. This latter formula is true for any onto map ¢ : G — G

and any subset M C G.

7 Homework VII

§29 4.4-9. Let p > 2 be a prime and let U, = Z, — {0} be the multiplicative
group of the field Z.,. Then the set

S={z*:2€U,}

of squares in U, is a subgroup of index two.

Proof: 1 =12 s0 1 € S. Suppose that a,b € S. Then there exist z,y € U,
with @ = 2% and b = y?. Then ab = (zy)? so ab € S. Suppose a € S. Then
a = 2? for some = € U,. Let y € U, be the inverse of x. Then zy = 1. Hence
ay® = 2?y* = (zy)? = 1. Hence ! = y* so a™* € U,. The map

Up—>S:x»—>x2
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is two-to-one onto (as p > 2) so |U,| = 2|S|.

§30 (4.4-10) Suppose m is a positive integer which is not a perfect square.
Then the set
zlvm] :={a+bym:a,ber}

1s a subring of R.

Proof: (1) Z[y/m] contains 0 = 0+0+/m. (2) Z[y/m] is closed under addition

and subtraction as

(a1 + blm) + (CLQ + bg\/ﬁ) = ((ll + ag) + (bl + bg)\/ﬁ
(3) Z[/m] is closed under multiplication as

(a1 + 51\/m>(a2 + bz\/m) = (ajag + mbiby) + (a1bs + bl@)ﬁ-

§31 (4.4-11) Suppose m is as in 4.4-10 and that p is an odd prime. Let
I, ={a+bym € Z[\/m] : 5la and 5|b}.

Then I, is an an ideal in Z[\/m].

Proof: (1) I, contains 0 = 0+ 0y/m as p|0. (2) z[y/m] is closed under
addition and subtraction. Choose 1,22 € I,. Then x; = a; + b1y/m and
Tg = agl+byy/m where play, plby, plas, plas. Hence p|(a; +az) and p|(by +b)
so x1£x9 € I,. (3) I, is closed under multiplication by an element of Z[/m].
Choose = € I, and z € Z[y/m]. Then z = a + by/m where p|a and p|b and
z = ¢+ dy/m where ¢,d € Z. Then p|(ac + mbd) and p|(ad + bc) so

xz = (ac+ mbd) + (ad + be)y/m € I,.

§32 (4.4-12,13) Let p and m be as in 4.4-10 and suppose that m is not a
square in U,. Then Z[v/m|/I, is a field of order p*.

Proof: The ring Z[/m]/I, has order p* because every element a + by/m €
Z[v/m] be be written uniquely in the form

a+bym=(cp+r)+ (dp+s)vm

where ¢,d,r,s € Z and 0 < r < pand 0 < s < p. (For uniqueness use
the fact that If a; 4+ biv/m = as + bay/m then a; = ay and by = by as /m
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is irrational.) To show that Z[/m]/I, is a field we must show that every
nonzero element has a multiplicative inverse. Choose a+by/m € Z[\/m|\ I,;
we must find integers u, v with

(a+0vm)(u+vym) € 1+ 1,
We try u = wa, v = —wb so
(a + byvm)(u + vy/m) = w(a® — mb?).

Since 7, is a field, we can find an integer w with w(a? — mb*) = 1(mod p)
so long as a? — mb* # O(modp). But if a®> — mb* = 0 mod p then a® =
mb? mod p so (ac)? = m(mod p) where bc = 1(mod p). (Such a c exists as
Z, is a field.) The equation (ac)*> = m(modp) contradicts the hypothesis
that m is not a square in U,.

§33 (4.4-7) Take m = 2 and p = 5. The set of squares in Us is
S = {1722 3% 4*} = {1,4,4,1} = {1,4}.

Hence 2 ¢ S so 4.4-12,13 applies and Z[v/2/I5 is a field of order 52 = 25.
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