
Math 541

Worked Homework

Last Change: September 29, 2000

1 Home Work I

§1 Definition. A field is a set F equipped with two binary operations

F × F → F : (a, b) 7→ a+ b (addition)
F × F → F : (a, b) 7→ a · b (multiplication)

and two distinguished elements 0 (zero) and 1 (one) which satisfies the
following laws:

Addition is associative:

∀a∀b∀c (a+ b) + c = a+ (b+ c)

Addition is commutative:

∀a∀b a+ b = b+ a

0 is an additive identity:
∀a a+ 0 = a

Every number has an additive inverse:

∀a∃b a+ b = 0.

Multiplication is associative:

∀a∀b∀c (a · b) · c = a · (b · c)
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Multiplication is commutative:

∀a∀b a · b = b · a

1 is an multiplicative identity:

∀a a · 1 = 1 · a = a

Every nonzero number has an multiplicative inverse:

∀a 6= 0∃b a · b = b · a = 1.

Multiplication is distributive over addition:

∀a∀b∀c a · (b+ c) = (a · b) + (a · c),

∀a∀b∀c (b+ c) · a = (b · a) + (c · a).

(This is the first law which involves both operations.)

§2 Lemma. a+ b1 = 0 and a+ b2 = 0 =⇒ b1 = b2

Proof: Assume a+ b1 = 0 and a+ b2 = 0. Then

b1 = b1 + 0 (ident.)
= b1 + (a+ b2) (hyp.)
= (b1 + a) + b2 (ass.)
= (a+ b1) + b2 (comm.)
= 0 + b2 (hyp.)
= b2 + 0 (comm.)
= b2 (ident.)

§3 Definition. Since a number a has exactly one additive inverse we can
denote it by [−a]. Thus

b = [−a] ⇐⇒ a+ b = 0.

The operation of subtraction is defined by

a− b = a+ [−b].

We use the brackets to emphasize the difference between the unary operation

F → F : a 7→ [−a]
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and the binary operation

F × F → F : (a, b) 7→ a− b.

§4 Theorem. [−[−c]] = c for all c ∈ F .

Proof: Let a = [−c], b1 = c, b2 = [−[−c]] and use lemma 2. �

§5 Exercise. Prove the following for all a, b, c, d ∈ F :

(i) [−(a+ b)] = [−a] + [−b].

(ii) (a− b) + (c− d) = (a+ c)− (b+ d).

(iii) a− b = (a+ c)− (b+ c).

(iv) (a− b)− (c− d) = (a− b) + (d− c).

Proof of (i): By the associative and commutative laws

(a+ b) + ([−a] + [−b]) = (a+ [−a]) + (b+ [−b]).

Hence
(a+ b) + ([−a] + [−b]) = 0 + 0 = 0

by the definition of the additive inverse. Hence [−(a+ b)] = ([−a] + [−b]) by
Lemma 2.

Proof of (ii):

(a− b) + (c− d) = (a+ [−b]) + (c+ [−d]) definition of x− y
= (a+ c) + ([−b] + [−d]) ass. and comm.
= (a+ c) + [−(b+ d)] by (i)
= (a+ c)− (b+ d) definition of x− y

.

Proof of (iii): By (ii) with c = d we have

(a− b) + (c− c) = (a+ c)− (b+ c).

But c− c = c+ [−c] = 0 so (a− b) + (c− c) = (a− b).
Proof of (iv): Read c for a, d for b, d for c, and c for d in (ii). The result
is

(c− d) + (d− c) = (d+ c)− (c+ d) = 0 + 0 = 0.
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Hence [−(c− d)] = (d− c). Now add a− b to both sides.

§6 Lemma. The multiplicative inverse is unique:

a · b1 = 1 and a · b2 = 1 =⇒ b1 = b2

Proof: Like Lemma 2.

§7 Definition. We denote the multiplicative inverse by a−1. Hence for
a, b ∈ F

b = a−1 ⇐⇒ a · b = 1.

The operation of division is defined (for a ∈ F , b ∈ F \ {0}) by

a/b = a · b−1.

§8 Theorem. (a−1)
−1

= a for a ∈ F \ {0}.
Proof: Like theorem 4.

§9 Exercise. Prove the following for all a, b, c, d ∈ F \ {0}:
(i) (a · b)−1 = a−1 · b−1

(ii)
a

b
· c
d

=
a · c
b · d

(iii)
a

b
=
a · c
b · c

(iv)
a

b

/ c
d

=
a

b
· d
c

Proof: The proof is exactly the same as for Exercise 5. Simply replace x+y
by x · y, [−x] by x−1, x− y by x/y throughout.

§10 Theorem. a · 0 = 0 for a ∈ F .

Proof: Choose a ∈ F . Then

0 = a− a (def, inv.)
= a · 1− a (ident.)
= a · (0 + 1)− a (ident, comm.)
= (a · 0) + (a · 1))− a (dist.)
= ((a · 0) + a)− a (ident.)
= (a · 0) + (a− a) (ass.)
= (a · 0) + 0 (def, inv.)
= a · 0 (ident.)�

§11 Exercise. Prove the following
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(i)
a

b
+
c

d
=

(a · d) + (c · b)
b · d

(ii) [−a] = [−1] · a

(iii) [−a] · [−b] = a · b

Proof of (i): By Lemma 9 part (iii)

a

b
=
a · d
b · d

,
c

d
=
c · b
d · b

.

Hence by the definition of x/y

a

b
= (a · d) · (b · d)−1,

c

d
= (c · b)(d · b).

Hence by b · d = d · b and the distributive law

a

b
+
c

d
=
(
a · d+ c · b

)
· (b · d)−1

so the result follows by the definition of x/y.

Proof of (ii): a + [−1] · a = 1 · a + [−1] · a = (1 + [−1]) · a = 0 · a = 0 by
the distributive law and Theorem 10. Hence [−1] · a = [−a] by Lemma 2.

Proof of (iii): By part (ii) it is enough to prove this for a = b = 1, i.e. to
prove that [−1] · [−1] = 1. By Theorem 10 (and other laws) we have

0 =
(
[−1] + 1

)
· [−1] = [−1] · [−1] + [−1].

Now add 1 to both sides and use the identity law 0 + 1 = 1, the associative
law

([−1] · [−1] + [−1]) + 1 = [−1] · [−1] + ([−1] + 1),

and the inverse law [−1] + 1 = 0, etc.

2 Home Work II

§12 Composition. Given mappings f : X → Y and g : Y → Z the
composition of f and g is denoted g ◦ f (read “ g after f”) and defined by
g ◦ f : X → Z with

(g ◦ f)(x) = g(f(x))

5



for x ∈ X. The operation of composition is associative:

(h ◦ g) ◦ f = h ◦ (g ◦ f).

For any set X the identity map IX of X is the map IX : X → X defined
by IX(x) = x for x ∈ X. Note that for f : X → Y we have

f ◦ IX = IY ◦ f = f.

§13 Maps act on sets. Suppose that f : X → Y X0 ⊂ X and Y0 ⊂ Y .
Define

f(X0) = {f(x) : x ∈ X0}
and

f−1(Y0) = {x ∈ X : f(x) ∈ Y0}.
Theorem. (i) IX(X0) = X0 and g ◦ f(X0) = g(f(X0)). Hence (ii) If
f : X → Y is one-one onto, then f−1(f(X0)) = X0 and f(f−1(Y0)) = Y0.
(Warning: These last two formulas are not always true for maps which are
not one-one onto.)

§14 Restriction and Extension. Suppose we are given a mapping f :
X → Y and a subset X0 ⊂ X. The restriction of f to X0, denoted f |X0,
is the mapping (f |X0) : X0 → Y defined by

(f |X0)(x) = f(x) for all x ∈ X0.

For example, if f : R → R is a mapping whose graph is the straight line
given by f(x) = 2x, and if [0, 1] denotes the unit interval, then f |[0, 1], the
restriction of f to [0, 1], is a mapping whose graph is the closed line segment
from the (0, 0) to (1, 2).

The opposite of restricting a mapping to a smaller source is extending a
mapping to a larger source. Suppose g : X → Y is a mapping and X ⊂ Z.
Then any mapping h : Z → Y is called an extension of g to Z if h|X = g,
i.e., if

h(x) = g(x) for all x ∈ X.
Thus, for example, if g is the mapping defined earlier by g : X → R : x 7→ 1

1−x

with source X = {x ∈ R : x 6= 1}, then g has an extension g̃ defined by

g̃(x) =

{
1

1−x
if x 6= 1

0 if x = 1.
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The reader may recall from a calculus course that the mapping g described
above is continuous on its source X, but has no continuous extension to R.
In particular, g̃ : R→ R is not continuous.

§15 Recall that for any set S the group of all permutations of S is denoted
by A(S); i.e.

f ∈ A(S) ⇐⇒ f : S → S, and f is one-one and onto.

§16 (Problem 1.4.14) Suppose X0 ⊂ X, e.g.

X0 = {1, 2, . . . ,m}, X = {1, 2, . . . , n}

where m ≤ n. Define E : A(X0)→ A(X) by

E(f)(x) =

{
f(x) for x ∈ X0,

x for x ∈ X \X0,

for f ∈ A(X0). For f, g ∈ A(X0 and x ∈ X0 we have

E(f ◦ g)(x) = f(g(x)) = E(f)
(
g(x)

)
=
(
E(f) ◦ E(g)

)
(x)

(since g(x) ∈ X0) while for x ∈ X \X0 we have

E(f ◦ g)(x) = x = E(f)(x)
(
E(g)

)
(x) = E(f)

(
= E(f) ◦ E(g)

)
(x).

In either case E(f ◦ g)(x) =
(
E(f) ◦ E(g)

)
(x) so E(f ◦ g) =

(
E(f) ◦ E(g)

)
.

§17 (Problem 1.4.18) Suppose X0 ⊂ X and define

U(X,X0) = {f ∈ A(X) : f(X0) = X0}.

Then U(X,X0) is a subgroup of A(X), i.e.

(i) IX ∈ U(X,X0);

(ii) If g ∈ U(X0, X) and f ∈ U(X,X0) then g ◦ f ∈ U(X,X0);

(iii) If f ∈ U(X,X0) then f−1 ∈ U(X,X0),
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Proof: (i) Since IX(X0) = X0 we have IX ∈ U(X,X0). (ii) If g ∈ U(X,X0)
and f ∈ U(X,X0), then

g ◦ f(X0) = g(f(X0)) = g(X0) = X0

so g◦f ∈ U(X,X0). (iii) If f ∈ U(X,X0) then f(X0) = X0 so X0 = f−1(X0)
so f−1 ∈ U(X,X0).

§18 (Problem 1.4.19) For f ∈ U(X,X0) define R(f) : X0 → X0 by

R(f)(x) = f(x) for x ∈ X0.

(Note that f(x) ∈ X0 by the definition of U(X,X0).) Then

R : U(X,X0)→ A(X0)

and
R(g ◦ f) = R(g) ◦R(f).

The proof is obvious. Since R(E(g)) = g for g ∈ A(X0) it follows that R is
onto.

§19 (Problem 1.4.20) Since any element of A(X) is one-one onto we have

U(X,X0) = U(X,X \X0).

Thus the set R−1(g) is in one-one correspondence with A(X \ X0). In par-
ticular, R is one-one when X \X0 consists of a single point.

3 Home Work III

§20 Problem 2.1.1 (b) Consider the set Z of integers with the operation

a ∗ b = a+ b+ ab

is not a group. The one-one onto map f : Z → Z defined by f(z) = z + 1
satisfies

a ∗ b = (a+ 1) · (b+ 1)− 1 = f−1(f(a) · f(b))

for a, b ∈ Z (where u·v is the usual multiplication operation.) Thus (Z, ∗) sat-
isfies the same laws as (Z, ·). In particular the associative and commutative
laws hold and 0 is an identity:

0 ∗ a = a ∗ 0 = a
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for all a ∈ Z. However there is no inverse operation since

a ∗ (−1) = −1

for all a ∈ Z.

§21 2.2.3 Let i ∈ Z. We say that a group G has property P (i) iff the identity

(ab)i = aibi P (i)

holds for all a, b ∈ G.

Assume that there is an integer i for which the group G satisfies P (i − 1),
P (i), and P (i+ 1). We show that the group G is abelian.

Step 1. If a group satisfies P (i+ 1) and P (i) then it satisfies

aibi = biai Q(i)

for all a, b ∈ G. Proof: By P (i+ 1)

a(ba)ib = (ab)i+1 = ai+1bi+1 = a(aibi)b.

Cancelling the a on the left and the b on the right gives

(ba)i = aibi.

Now use P (i) to obtain biai = (ba)i = aibi.

Step 2. If a group satisfies P (i) and P (i− 1) then it satisfies

ai−1bi−1 = bi−1ai−1 Q(i− 1)

for all a, b ∈ G. Proof: Replace i by i− 1 in Step 1.

Step 3. Now

(ab)i+1 = (ab)(ab)i = (ab)aibi = (ab)biai = (ab)(ba)i

and

(ba)i = (ba)(ba)i−1 = (ba)bi−1ai−1 = (ba)ai−1bi−1 = (ba)(ab)i−1.

Hence
(ab)i+1 = (ab)(ba)(ab)i−1.
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Now multiply by (ab)−1 on the left and (ab)1−i on the right.

§22 Remark. The problem in the book asks you to prove that If G is a
group for which (ab)i = aibi for three consecutive integers i, then G is abelian.
To me the wording is ambiguous. Which is asserted?

[∀i ∈ Z P (i− 1) and P (i) and P (i+ 1)] =⇒ G is abelian (1)

i.e.
∃i ∈ Z [P (i− 1) and P (i) and P (i+ 1) =⇒ G is abelian] (1′)

or
∀i ∈ Z [P (i− 1) and P (i) and P (i+ 1) =⇒ G is abelian] (2)

i.e.
[∃i ∈ Z P (i− 1) and P (i) and P (i+ 1)] =⇒ G is abelian (2′)

However had the author intended (1) he would have said

[∀i ∈ Z P (i)] =⇒ G is abelian

which is equivalent but shorter. The author must intend (2).

4 Homework IV

§23 Problem 2.4(2-3). Let S be a set and R a relation on S, i.e. R ⊂ S×S.
For a, b ∈ S we write a ≡ b instead of (a, b) ∈ R. We say that the relation R
is

– reflexive iff ∀a ∈ S a ≡ a;

– weakly reflexive iff ∀a ∈ S∃b ∈ S a ≡ b;

– symmetric iff ∀a, b ∈ S a ≡ b =⇒ b ≡ a;

– transitive iff ∀a, b, c ∈ S a ≡ b, b ≡ c =⇒ a ≡ c.

A reflexive relation is obviously weakly reflexive: take b = a. The relation
defined in 2.4(2) is the empty relation R = ∅ on a nonempty set S. It is
symmetric since for all a, b ∈ S the implication (a, b) ∈ ∅ =⇒ (b, a) ∈ ∅
is true: it has the form [false =⇒ false]. Similarly the empty relation is
transitive. The empty relation is not reflexive (or even weakly reflexive) on
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a nonempty set S: since S 6= ∅ there exists an a ∈ S; but for this a, we have
a 6≡ b, i.e. (a, b) /∈ ∅ for all b ∈ S. The argument in 2.4(3) proves that a
relation which is weakly reflexive, symmetric, and transitive is also reflexive.

§24 Problem 2.4(20) Recall that the transformation Ta,b may be repre-
sented by the matrix

Ta,b =

(
a b
0 1

)
so

Ta,b ◦ Ta,b =

(
a b
0 1

)(
c d
0 1

)
=

(
ac ad+ b
0 1

)
and

T−1
a,b =

(
a−1 −a−1b
0 1

)
.

The conjugacy class [Tc,d] of the element Tc,d is the set

[Tc,d] :=
{
Ta,b ◦ Tc,d ◦ T−1

a,b } : a, b ∈ R, a 6= 0
}
.

By matrix multiplication

Ta,b ◦ Tc,d ◦ T−1
a,b = Tc,g, g = ad+ b(1− c).

If c 6= 1 then every g ∈ R has the form g = ad + b(1 − c) with a 6= 0; we
take a = 1 and b = (g − d)/(c− 1). If c = 1 and d 6= 0, then g has the form
g = ad+ b(1− c) if and only if g 6= 0. Hence

[Tc,d] =
{
Tc,g : g ∈ R

}
if c 6= 1;

[T1,d] =
{
T1,g : g ∈ R, g 6= 0

}
if d 6= 0;

[T1,0] =
{
T1,0

}
.

§25 Problem 2.4.(6-7) In cycle notation (see Chapter 3)

H = {(), (12)} ⊂ G = S3

The left cosets are

H = {(), (12)}, (13)H = {(13), (123)}, (23)H = {(23), (132)}.
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There are three left cosets and each is a two element set. The right cosets
are

H = {(), (12)}, H(13) = {(13), (132)}, H(23) = {(23), (123)}.

There are three right cosets and each is a two element set. The right coset
H(13) is different from all three left cosets. In fact the only set which is both
a left coset and a right coset is H itself.

5 Homework V

§26 Problem 2.5.16 Suppose that G is a group and the M �G and N �G
are normal subgroups. Let

MN = {mn : m ∈M, n ∈ N}.

Then MN �G, i.e. MN is a normal subgroup of G.

Proof: There are four steps.

Step 1. e ∈ MN . Proof: Take m = n = e. Then m ∈ M and n ∈ N so
e = mn ∈MN .

Step 2. x, y ∈ MN =⇒ xy ∈ MN . Proof: Choose x, y ∈ MN . Then
x = m1n1 and y = m2n2 for some m1,m2 ∈M and n1, n2 ∈ N . Then

xy = m1n1m2n2 = m1(n1m2n
−1
1 )(n1n2) = m′n′

where m′ = m1(n1m2n
−1
1 ) ∈M and n′ = n1n2 ∈ N . Therefore xy ∈MN .

Step 3. x ∈ MN =⇒ x−1 ∈ MN . Proof: Choose x ∈ MN . Then
x = mn for some m ∈M and n ∈ N . Hence

x−1 = n−1m−1 = (n−1m−1n)n−1 = m′n′

where m′ = (n−1m−1n) ∈M and n′ = n−1 ∈ N . Therefore x−1 ∈MN .

Step 4. x ∈MN, g ∈ G =⇒ gxg−1 ∈MN . Choose x ∈MN and g ∈ G.
Then x = mn for some m ∈M and n ∈ N . Hence

gxg−1 = gmng−1 = (gmg−1)(gng−1) = m′n′
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where m′ = (gmg−1) ∈M and n′ = (gng−1) ∈ N . Therefore gxg−1 ∈MN .

§27 Problem 2.5.21 Let S be a set having at least three elements and A(S)
be the group of all one-one onto maps from S to itself. For s ∈ S define

H(s) = {f ∈ H(S) : f(s) = s}.

It is easy to see that H(s) is a subgroup of A(S). First, the identity map idS

is an element of H(s) as idS(x) = x for all x ∈ S so in particular idS(s) = s,
so idS ∈ H(s). Second, if f, g ∈ H(S) then f(s) = s and g(s) = s so
f ◦ g(s) = f(g(s)) = f(s) = s so f ◦ g ∈ H(s). Third, if f ∈ H(s), then
f(s) = s so s = idS(s) = (f−1 ◦ f) = f−1(f(s)) = f−1(s) so f−1 ∈ H(s).
Hence H(s) is a subgroup of A(S).

Now assume that the elements s, s′, s′′ ∈ S are distinct. Choose f ∈ A(S)
so that f(s′) = s and f(s′′) = s′′. Choose h ∈ A(S) so h(s) = s and
h(s′) = s′′. Then h ∈ H(s) but f ◦ h ◦ f−1(s) = f(h(s′)) = f(s′′) = s′′ 6= s so
f ◦ h ◦ f−1 /∈ H(s). Hence H(s) is not a normal subgroup of A(S).

Remark. For f ∈ A(S) and s ∈ S we have

fH(s)f−1 = H(f(s)).

Suppose that g ∈ fH(s)f−1. Then g = f ◦ h ◦ f−1 where h ∈ H(s), i.e.
h(s) = s. Then

g(f(s)) = (f ◦ h ◦ f−1) ◦ f(s) = f(h(s)) = f(s)

so g ∈ H(f(s)). Conversely suppose that g ∈ H(f(s)), i.e. g(f(s)) = f(s).
Let h = f−1◦g◦f . Then h(s) = f−1◦g◦f(s) = f−1(g(f(s))) = f−1(f(s)) = s
so h ∈ H(s). But g = f ◦ h ◦ h−1 so g ∈ fH(s)f−1.

6 Homework VI

§28 Problem 2.6.3-5 Suppose that N is a normal subgroup of a groups G
and that M̄ is a subgroup of G/N . Let

M = {a ∈ G : aN ∈ M̄}.

Then

(2.6.3) M is a subgroup of G and N ⊂M .
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(2.6.4) If M̄ �G/N , then M �N .

(2.6.5) If M̄ �G/N , then M/N = M̄ .

Proof: Let Ḡ = G/N , and φ : G→ Ḡ be the homomorphism defined by

φ(a) = aN.

Then φ is an onto homomorphism and

M = φ−1(M̄).

We prove M is a subgroup. (1) The identity e of G lies in M as φ(e) is the
identity of Ḡ and henve lies in M̄ , so e ∈ φ−1(M̄) = M . (2) Choose a, b ∈M .
Then φ(a), φ(b) ∈ M̄ . Hence φ(ab) = φ(a)φ(b) ∈ M̄ . Hence ab ∈ φ−1(M̄) =
M . (3) Choose a ∈ M . Then φ(a) ∈ M̄ . Hence φ(a−1) = φ(a)−1 ∈ M̄ .
Hence a−1 ∈ φ−1(M̄) = M .

Assume that M̄ is normal. Choose a ∈ G and m ∈ M . Then φ(a) ∈ Ḡ
and φ(m) ∈ M̄ . Hence φ(ama−1) = φ(a)φ(m)φ(a)−1 ∈ M̄ . Hence ama−1 ∈
φ−1(M̄) = M . This proves that M is normal.

The statement that M/N = M̄ can be written as φ(M) = M̄ , i.e.
φ(φ−1(M̄)) = M̄ . This latter formula is true for any onto map φ : G → Ḡ
and any subset M̄ ⊂ Ḡ.

7 Homework VII

§29 4.4-9. Let p > 2 be a prime and let Up = Zp − {0} be the multiplicative
group of the field Zp. Then the set

S = {x2 : x ∈ Up}

of squares in Up is a subgroup of index two.

Proof: 1 = 12 so 1 ∈ S. Suppose that a, b ∈ S. Then there exist x, y ∈ Up

with a = x2 and b = y2. Then ab = (xy)2 so ab ∈ S. Suppose a ∈ S. Then
a = x2 for some x ∈ Up. Let y ∈ Up be the inverse of x. Then xy = 1. Hence
ay2 = x2y2 = (xy)2 = 1. Hence a−1 = y2 so a−1 ∈ Up. The map

Up → S : x 7→ x2
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is two-to-one onto (as p > 2) so |Up| = 2|S|.
§30 (4.4-10) Suppose m is a positive integer which is not a perfect square.
Then the set

Z[
√
m] := {a+ b

√
m : a, b ∈ Z}

is a subring of R.

Proof: (1) Z[
√
m] contains 0 = 0+0

√
m. (2) Z[

√
m] is closed under addition

and subtraction as

(a1 + b1
√
m)± (a2 + b2

√
m) = (a1 ± a2) + (b1 ± b2)

√
m.

(3) Z[
√
m] is closed under multiplication as

(a1 + b1
√
m)(a2 + b2

√
m) = (a1a2 +mb1b2) + (a1b2 + b1a2)

√
m.

§31 (4.4-11)Suppose m is as in 4.4-10 and that p is an odd prime. Let

Ip = {a+ b
√
m ∈ Z[

√
m] : 5|a and 5|b}.

Then Ip is an an ideal in Z[
√
m].

Proof: (1) Ip contains 0 = 0 + 0
√
m as p|0. (2) Z[

√
m] is closed under

addition and subtraction. Choose x1, x2 ∈ Ip. Then x1 = a1 + b1
√
m and

x2 = a21+b2
√
m where p|a1, p|b1, p|a2, p|a2. Hence p|(a1 +a2) and p|(b1 +b2)

so x1±x2 ∈ Ip. (3) Ip is closed under multiplication by an element of Z[
√
m].

Choose x ∈ Ip and z ∈ Z[
√
m]. Then x = a + b

√
m where p|a and p|b and

z = c+ d
√
m where c, d ∈ Z. Then p|(ac+mbd) and p|(ad+ bc) so

xz = (ac+mbd) + (ad+ bc)
√
m ∈ Ip.

§32 (4.4-12,13) Let p and m be as in 4.4-10 and suppose that m is not a
square in Up. Then Z[

√
m]/Ip is a field of order p2.

Proof: The ring Z[
√
m]/Ip has order p2 because every element a + b

√
m ∈

Z[
√
m] be be written uniquely in the form

a+ b
√
m = (cp+ r) + (dp+ s)

√
m

where c, d, r, s ∈ Z and 0 ≤ r < p and 0 ≤ s < p. (For uniqueness use
the fact that If a1 + b1

√
m = a2 + b2

√
m then a1 = a2 and b1 = b2 as

√
m
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is irrational.) To show that Z[
√
m]/Ip is a field we must show that every

nonzero element has a multiplicative inverse. Choose a+ b
√
m ∈ Z[

√
m]\ Ip;

we must find integers u, v with

(a+ b
√
m)(u+ v

√
m) ∈ 1 + Ip.

We try u = wa, v = −wb so

(a+ b
√
m)(u+ v

√
m) = w(a2 −mb2).

Since Zp is a field, we can find an integer w with w(a2 −mb2) ≡ 1(mod p)
so long as a2 − mb2 6≡ 0(mod p). But if a2 − mb2 ≡ 0 mod p then a2 ≡
mb2 mod p so (ac)2 ≡ m(mod p) where bc ≡ 1(mod p). (Such a c exists as
Zp is a field.) The equation (ac)2 ≡ m(mod p) contradicts the hypothesis
that m is not a square in Up.

§33 (4.4-7) Take m = 2 and p = 5. The set of squares in U5 is

S = {12, 22, 32, 42} = {1, 4, 4, 1} = {1, 4}.

Hence 2 /∈ S so 4.4-12,13 applies and Z[
√

2/I5 is a field of order 52 = 25.
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