Gauss's Lemma

JWR

November 20, 2000

Theorem (Gauss's Lemma). Suppose that $f(x) \in \mathbb{Z}[x]$ has relatively prime coefficients, *i.e.*

$$f(x) = c_n x^n + \dots + c_1 x + c_0$$

where $(c_0, c_1, \in c_n) = 1$, i.e. c_0, c_1, \ldots, c_n have no common factor. Assume that f(x) is reducible in $\mathbb{Q}[x]$, i.e.

$$f(x) = A(x)B(x)$$

where $A(x), B(x) \in \mathbb{Q}(x)$ have positive degree. Then f(x) reducible in $\mathbb{Z}[x]$; in fact,

$$f(x) = a(x)b(x)$$

where $a(x) = \mu A(x)$, $b(x) = \mu^{-1}B(x)$, $\mu \in \mathbb{Q}$, and $a(x), b(x) \in \mathbb{Z}[x]$.

Proof: Let *m* be a common multiple *m* of the denominators of the coefficients of A(x) so $m_1A(x) \in \mathbb{Z}[x]$. Let ℓ be the greatest common divisor of the coefficients of $m_1A(x)$ so that $m_1A(x) = \ell_1a(x)$ where the coefficients of a(x) are relatively prime. Similarly find nonzero integers integers m_1, ℓ_2 so $m_2B(x) = \ell_2b(x)$ where where the coefficients of b(x) are relatively prime. Let $\mu = m_1/\ell_1$ and $\nu = m_2/\ell_2$. Then

$$f(x) = \mu \nu a(x)b(x)$$

where $a(x), b(x) \in \mathbb{Z}[x]$ are given by

$$a(x) = a_r x^r + \dots + a_1 x + a_0, \qquad b(x) = b_s x^s + \dots + b_1 x + b_0,$$

with $(a_0, a_1, \ldots, a_r) = (b_0, b_1, \ldots, b_s) = 1$ and n = r + s. By replacing b(x) and ν by -b(x) and $-\nu$ if necessary we may assume w.l.o.g. that $\mu\nu > 0$; We must show that $\mu\nu = 1$.

Write $\mu\nu = \ell/m$ where $m, \ell \in \mathbb{Z}, m, \ell > 0$, and $(m, \ell) = 1$. Then

$$mf(x) = \ell a(x)b(x).$$

Now $\ell | mc_k$ for k = 0, 1, ..., n and $(m, \ell) = 1$ so $\ell | c_k$ for k = 0, 1, ..., n. But $(c_0, c_1, \in c_n) = 1$ so $\ell = 1$. Assume that m > 1; we will derive a contradiction. Choose a prime p which divides m. Since $(a_0, a_1, ..., a_r) = 1$, p cannot divide all the coefficients in a(x). Hence there must exist an integer i with $0 \le i < r$

such that p divides each of $a_0, a_1, \ldots, a_{i-1}$ and p does not divide a_i . Similarly there must exist an integer j with and $0 \le j < s$ such that p divides each of $b_0, b_1, \ldots, b_{j-1}$ and p does not divide b_j . But

$$mc_{i+j} = \dots + a_{i-1}b_{j+1} + a_ib_j + a_{i+1}b_{j-1} + \dots$$

Now p divides the terms to the left of $a_i b_j$ (as $p|a_0, p|a_1, \ldots, p|a_{i-1}$), p divides the terms to the right of $a_i b_j$ (as $p|b_0, p|b_1, \ldots, p|b_{j-1}$), and p divides mc_{i+j} (as p|m). Thus $p|a_i b_j$ contradicting the fact that $p \not|a_i$ and $p \not|b_j$.

Eisenstein Criterion. Suppose that $f(x) \in \mathbb{Z}[x]$ is given by

$$f(x) = c_n x^n + \dots + c_1 x + c_0$$

and p is a prime which satisfies

- (1) p does not divide c_n ;
- (2) p divides $c_{n-1}, \ldots, p_1, p_0;$
- (3) p^2 does not divide c_0 .
- Then f(x) is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose not, we will derive a contradiction. Because irreducibility in $\mathbb{Q}[x]$ is unaffected by dividing a nonzero element of \mathbb{Z} , we may assume w.l.o.g. that the coefficients c_0, c_1, \ldots, c_n have no common prime factor. Then by Gauss's Lemma we have a factorization

$$f(x) = a(x)b(x)$$

where $a(x), b(x) \in \mathbb{Z}[x]$ and both factors have positive degree. Write

$$a(x) = a_r x^r + \dots + a_1 x + a_0, \qquad b(x) = b_s x^s + \dots + b_1 x + b_0.$$

By (2) $p|c_0$ so, as $c_0 = a_0b_0$, either $p|a_0$ or $p|b_0$. W.l.o.g. assume the former. Then by (3) $p \not|b_0$. Now

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0$$

so (by (2) and induction on k) $p|a_k$ for k = 0, 1, ..., r. (In this step we used r < n.) But now p divides all the coefficients of a(x) so p divides all the coefficients of f(x) and this contradicts (1).