Math 541

Professor Robbin

September 6, 2000

Lecture 2 9:55 MWF, 113 Van Vleck

My Office and Phone 313 Van Vleck, 263-4698

e-mail robbin@math.wisc.edu

Home Page http://www.math.wisc.edu/~robbin

My Office Hours 3:30 Monday, 9:00 Wednesday, 12:00 Friday.

Text I. N. Herstein: Abstract Algebra Third edition.

1 Important Dates

Labor Day:	Monday	Sep 4	
Evening Exam:	5:30-7:00 PM	Thursday	Oct 26
Last Day to Drop:	Friday	Nov 3	
Thanksgiving Recess:	Thursday-Sunday	Nov 23-26	
Last Class Day:	Friday	Dec 15	
Final Exam:	12:25 PM	Thursday	Dec 21

2 Policy

There will be homework due (almost) every Monday. At least one problem will be graded and returned with an answer written by me on Wednesday. There will be a quiz on the corresponding material on Friday. Homework will count for 20% of your grade, quizzes for 25%, the evening exam for 25%, and the final exam for 30%.

The quality of your writing will constitute an important component of your grade. You should never assume that your reader knows anything about a problem beyond what appears on the work you hand in. In particular, when you write homework you should not assume that the reader has access to the book – if you write only a problem number the reader will not know what the problem asks. The sample worked problem in the handout *Logic*, *Proofs*, and Sets illustrates the style that I want.

3 Sample Evening Exam

1. Prove that the composition of onto functions is onto.

2. Prove that the composition of one-to-one functions is one-to-one.

3. Suppose that the set S has at least 3 elements. Prove that there permutations $f, g \in A(S)$ with $f \circ g \neq g \circ f$.

4. Let a, b, and d be positive integers with d|a and d|b. Assume that $d = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$. Show that d = (a, b).

5. Let a, b, and m be positive integers with a|m and b|m. Assume that (a,b) = 1. Show that (ab)|m.

6. Prove that there are infinitely many primes.

7. Show that the set $\mathbb{R} \setminus \{-1\}$ of all real numbers except -1 is an Abelian group under the operation a * b = a + b + ab.

8. Let $G = \{1, a, b, c\}$ be a group of order 4 with identity element 1. The two possible multiplication tables for G are partially filled in below. In each case explain how the *ab* and *ba* entries are obtained and then fill in the rest of the table in your exam booklet.

			a						a		
-	l	1	$egin{array}{c} a \\ 1 \\ ? \end{array}$	b	c		1	1	a b ?	b	c
(ı	a	1	?			a	a	b	?	
l	5	b	?	1			b	b	?		
(;	c			1		c	c			

4 Sample Final Exam

- **1.** Let $\phi: S \to T$. Define " ϕ is one-to-one" and " ϕ is onto".
- **2.** What is A(S) What are its basic properties?
- **3.** State the axioms for an equivalence relation.
- 4. Define "equivalence class". How do they partition a set?
- 5. State the Unique Factorization Theorem for the integers \mathbb{Z} .
- **6.** In \mathbb{Z} define "congruence mod n". What are its properties?
- **7.** State the axioms for a (multiplicative) group.
- 8. Define "subgroup H of G". State an easy test for a subgroup.
- **9.** Where do the cosets of *H* come from?
- 10. State Lagrange's Theorem.
- 11. Define "group homomorphism" and "kernel".
- **12.** Define "normal subgroup". What are the elements of G/N?
- **13.** State Cauchy's Theorem.
- **14.** In S_n describe the cycle $\alpha = (a_1 \ a_2 \ \cdots \ a_r)$ as a mapping.
- **15.** What is the order of the cycle α ? Is it even or odd?
- 16. Define "even permutation", "odd permutation", and " A_n ".
- **17.** State the axioms for a ring R.
- 18. Define "integral domain" and "field".
- **19.** Define "ideal" and "congruence mod I".
- 20. Define "ring homomorphism" and "kernel".
- 21. State the First Homomorphism Theorem for rings.
- **22.** Suppose R is a commutative ring. When is R/I a field?
- **23.** Define "degree" in F[x]. What are its basic properties?
- **24.** Define "principal ideal domain R".
- **25.** Give two examples of a PID.
- **26.** In R define "greatest common divisor of a and b".

- 27. State the result on the existence and uniqueness of the g.c.d.
- 28. Define "irreducible polynomial".
- 29. State Eisenstein's criteria for irreducibility.
- **30.** Describe the elements in the fraction field of an integral domain.
- **31.** In the symmetric group S_9 let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 6 & 5 & 7 & 3 & 1 & 9 & 4 & 8 \end{pmatrix}, \qquad \beta = (1 \ 5)(4 \ 7).$$

Write α and $\alpha\beta$ as products of cycles and find the order of each.

32. In $\mathbb{Z}_5[x]$ find the g.c.d. of $f(x) = 3x^4 + x^3 + 3x^2 + 3x + 2$ and $g(x) = x^3 + 4x^2 + 2x + 1$.