The Simson Line

Let ABC be a triangle. The lines AB, BC, AC divide the plane into seven regions; let the point P lie in the unbounded region containing the edge AC in its boundary (see diagram). Let X, Y, Z be the feet of the perpendiculars from P to the lines BC, AC, AB respectively.

Simson's Theorem. The points X, Y, Z are collinear if and only if P lies on the circumcircle of ABC.

Proof. The point P lies on the circumcircle of ABC if and only if

$$\angle APC = 180^{\circ} - \angle B. \tag{1}$$

Because the opposite angles at X and Z in the quadrangle BXPZ are right angles we have

$$180^{\circ} - \angle B = \angle ZPX$$

so condition (1) is equivalent to

$$\angle APC = \angle ZPX$$
 (2)

and on subtracting $\angle APX$ we see that (2) is equivalent to

$$\angle XPC = \angle ZPA.$$
 (3)

A quadrilateral containing a pair of opposite right angles is cyclic, i.e. its vertices lie on a circle; in fact, the other two vertices are the endpoints of a diameter of this circle. Hence each of the quadrilaterals AYPZ, BXPZ, CXPY is cyclic. Since the quadrangle CXPY is cyclic we have

$$\angle XYC = \angle XPC.$$
 (4)

Since the quadrangle AYPZ is cyclic we have

$$\angle ZYA = \angle ZPA.$$
 (5)

From (4) and (5) we conclude that (3) is equivalent to

$$\angle XYC = \angle ZYA.$$
 (6)

But clearly (6) holds if and only if the points X, Y, Z are collinear.

Here is a computer assisted coordinate calculation which proves Simson's Theorem. It shouldn't be to difficult to do by hand, especially if we take $\gamma = -\alpha$ below to simplify the formulas. We begin by loading the Maple package for doing linear algebra.

with(LinearAlgebra);

To calculate the foot Z of the perpendicular from the point P to the line AB we use the formulas

$$Z = A + t(B - A), \qquad PZ \perp AB,$$

solve for t, and plug back in to get Z. Here is a Maple procedure to compute this.

```
foot:=proc(A,B,P) local t;
    t:=((B[1]-A[1])*(P[1]-A[1])+(B[2]-A[2])*(P[2]-A[2]))/
         ((B[1]-A[1])^2+(B[2]-A[2])^2);
    [A[1]+t*(B[1]-A[1]),A[2]+t*(B[2]-A[2])]
end proc;
```

We choose A, B, C, on the unit circle and P arbitrarily.

```
A:=[cos(alpha),sin(alpha)];
B:=[cos(beta),sin(beta)];
C:=[cos(gamma),sin(gamma)];
P:=[x,y];
```

We use the procedure to calculate X, Y, Z:

```
X:= foot(B,C,P); Y:=foot(C,A,P); Z:=foot(A,B,P);
```

We define the matrix whose determinant vanishes when X, Y, Z are collinear.

We compute its determinant.

```
W:=Determinant(M);
```

The determinant W vanishes exactly when X, Y, Z are collinear. The following commands show that $x^2 + y^2 - 1$ divides W and that the quotient m is independent of P = (x, y).

```
m:=simplify(W/(x^2+y^2-1));
simplify(W-m*(x^2+y^2-1));
```

The last command evaluates to 0 and proves that $W = m(x^2 + y^2 - 1)$. Thus X, Y, Z are collinear if and only if $x^2 + y^2 = 1$, i.e. if and only if P lies on the circumcircle of $\triangle ABC$. The commands

```
mm:=expand(sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha))/4;
simplify(m-mm);
```

produce an output of zero which shows that

$$m = \frac{\sin(\alpha - \beta) + \sin(\beta - \gamma) + \sin(\gamma - \alpha)}{4}$$

We have proved the following

Algebraic form of Simson's Theorem. Let

$$A = (\cos \alpha, \sin \alpha), \qquad B = (\cos \beta, \sin \beta), \qquad C = (\cos \gamma, \sin \gamma)$$

be three points on the unit circle $x^2 + y^2 = 1$, let P = (x, y) be an arbitrary point, and

$$X = (x_1, x_2), \qquad Y = (y_1, y_2), \qquad Z = (z_1, z_2)$$

be the feet of the perpendiculars from P to the lines BC, CA, AB respectively. Then

$$\begin{vmatrix} x_1 & x_2 & 1 \\ y_1 & y_2 & 1 \\ z_1 & z_2 & 1 \end{vmatrix} = m(x^2 + y^2 - 1)$$

where

$$m = \frac{\sin(\alpha - \beta) + \sin(\beta - \gamma) + \sin(\gamma - \alpha)}{4}.$$