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1 Monday March 30

The Existence and Uniqueness Theorem for Ordinary Differential Equations
which we studied in the first part of the course has a vector version which is
sill valid. Here is the version (for a single equation) from the first part of the
course, followed by the vector version.

Theorem 1 (Existence and Uniqueness Theorem). Suppose that f(t, y) is a
continuous function of two variables defined in a region R in (t, y) plane and
that the partial ∂f/∂y exists and is continuous everyhere in R. Let (t0, y0)
be a point in R. Then there is a solution y = y(t) to the initial value problem

dy

dt
= f(t, y), y(t0) = y0

defined on some interval I about t0. The solution is unique in the sense that
any two such solutions of the initial value problem are equal where both are
defined.

Theorem 2 (Existence and Uniqueness Theorem for Systems). Assume that
f(t,x) is a (possibly time dependent) vector field on Rn, i.e. a function which
assigns to each time t and each vector x = (x1, . . . , xn) in Rn a vector f(t,x)
in Rn. Assume that f(t,x) is continuous in (t,x) and that the partial deriva-
tives in the variables xi are continuous. Then for each initial time t0 and
each point x0 in Rn the initial value problem

dx

dt
= f(t,x), x(t0) = x0
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defined on some interval I about t0. The solution is unique in the sense that
any two such solutions of the initial value problem are equal where both are
defined.

Proof. See Theorem 1 on page 682 in Appendix A.3 and Theorem 1 on
page 683 in Appendix A.4 of the text.

3. For the rest of this course we will study the special case of linear system
where the vector field f(t,x) has the following form In that case the vector
field f(t,x) has the form

f(t,x) = −A(t)x + b(t)

where A(t) is a continous n × n matrix valued function of t and b(t) is a
continuous vector valued function of t with values in Rn. A system of this
form is called a linear system of differential equations. We shall move
the term −A(t)x to the other side so the system takes the form

dx

dt
+ A(t)x = b(t) (1)

In case the the right hand side b is identically zero we say that the system
is homogeneous otherwise it is called inhomogeneous or non homoge-
neous. If

x =


x1

x2
...

xn

 , A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 , b =


b1

b2
...
bn

 .

Then f = (f1, . . . , fn) where fi = −ai1(t)x1 − ai2(t)x2 − · · · − ain(t)xn + bi(t)
and the system (1) can be written as n equations

dxi

dt
+ ai1(t)x1 + ai2(t)x2 + · · ·+ ain(t)xn = bi(t), i = 1, 2, . . . n (2)

in n unknowns x1, . . . , xn where the aij and bi(t) are given functions of t. For
the most part we shall study the case where the coefficients aij are constant.
Using matrix notation makes the theory of equation (1) look very much like
the theory of linear first order differential equations from the first part of this
course.
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4. In the case of linear systems of form (2) the partial derivatives are au-
tomatically continuous. This is because ∂fi/∂xj = −aij(t) and the matrix
A(t) is assumed to be a continuous function of t. Hence the Existence and
Uniqueness Theorem 2 apples. But something even better happens. In the
general case of a nonlinear system solutions can become infinite in finite time.
For example (with n = 1) the solution to the nonlinear equation dx/dt = x2

is x = x0/(1− x0t) which becomes infinite when t = 1/x0. But the following
theorem says that in the linear case this doesn’t happen.

Theorem 5 (Existence and Uniqueness for Linear Systems). Let t0 be a
real number and x0 be a point in Rn then the differential equation (1) has a
unique solution x defined for all t satisfying the initial condition x(t0) = x0.

Proof. See Theorem 1 on page 399 of the text and Theorem 1 page 681 of
Appendix A.2.

Definition 6. A nth order linear differential equation is of form

dny

dtn
+ p1(t)

dn−1y

dtn−1
+ · · ·+ pn−1(t)

dy

dt
+ pn(t)y = f(t) (3)

where the functions p1(t), . . . , pn(t), and f(t) are given and the function y is
the unknown. If the function f(t) vanishes identically, the equation is called
homogeneous otherwise it is called inhomogeneous. For the most part
we shall study the case where the coefficients p1, . . . , pn are constant.

7. The text treats nth order equations in chapter 5 and systems in chapter 7,
but really the former is a special case of the latter. This is because after
introducing the variables

xi =
di−1y

dti−1

the equation (3) becomes the system

dxi

dt
− xi+1 = 0, i = 1, . . . , n− 1

and
dxn

dt
+ p1(t)xn−1 + · · ·+ pn−2(t)x2 + pn(t)x1 = f(t).

For example the 2nd order equation

d2y

dt2
+ p1(t)

dy

dt
+ p2(t)y = f(t)
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becomes the linear system
dx1

dt
− x2 = 0

dx2

dt
+ p1(t)x2 + p2(t)x1 = f(t)

in the new variables x1 = y, x2 = dy/dt. In matrix notation this linear
system is

d

dt

[
x1

x2

]
+

[
0 −1

p2(t) p1(t)

] [
x1

x2

]
=

[
0

f(t)

]
.

For this reason the terminology and theory in chapter 5 is essentially the
same as that in chapter 7.

Theorem 8 (Existence and Uniqueness for Higher Order ODE’s). If the
functions p1(t), . . . , pn−1(t), pn(t), f(t) are continuous then for any given num-
bers t0, y0, . . . , yn−1 the nth order system (3) has a unique solution defined
for all t satisfying the initial condition

y(t0) = y0, y′(t0) = y1, . . . , y(n−1)(t0) = yn−1

Proof. This is a corollary of Theorem 5. See Theorem 2 page 285, Theorem 2
page 297.

Theorem 9 (Superposition). Suppose A(t) is a continuous n × n matrix
valued function of t. Then the solutions of the homogeneous linear system

dx

dt
+ A(t)x = 0 (4)

of differential equations form a vector space In particular, the solutions of a
higher order homogeneous linear differential equation form a vector space.

Proof. The show that the set of solutions is a vector space we must check
three things:

1. The constant function 0 is a solution.

2. The sum x1 + x2 of two solutions x1 and x2 is a solution.

3. The product cx of a constant c and a solution x is a solution.
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(See Theorem 1 page 283, Theorem 1 page 296, and Theorem 1 page 406 of
the text.)

Theorem 10 (Principle of the Particular Solution). Let xp is a solution is
a particular solution of the non homogeneous linear system

dx

dt
+ A(t)x = b(t).

Then if x is a solution of the corresponding homogeneous linear system

dx

dt
+ A(t)x = 0

then x+xp solves the nonhomogeneous system and conversely every solution
of the nonhomogeneous system has this form.

Proof. The proof is the same as the proof of the superposition principle.
The text (see page 490) says it a bit differently: The general solution of
the nonhomogeneous system is a particilar solution of the nonhomogeneous
system plus the general solution of the corresponding homogeneous system.

Corollary 11. Let yp be a solution is a particular solution of the non homo-
geneous higher order differential equation

dny

dtn
+ p1(t)

dn−1y

dtn−1
+ · · ·+ pn−1(t)

dy

dt
+ pn(t)y = f(t).

Then if y is a solution of the corresponding homogeneous higher order differ-
ential equation

dny

dtn
+ p1(t)

dn−1y

dtn−1
+ · · ·+ pn−1(t)

dy

dt
+ pn(t)y = 0

then y + yp solves the nonhomogeneous differential equation and conversely
every solution of the nonhomogeneous differential equation has this form.

Proof. Theorem 4 page 411.

Theorem 12. The vector space of solutions of (4) has dimension n. In
particular, the vector space of solutions of (3) has dimension n.
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Proof. Let e1, e2, . . . , en be the standard basis of Rn. By Theorem 2 there is
a unique solution xi of (4) satisfying xi(0) = ei. We show that these solutions
form a basis for the vector space of all solutions.

The solutions x1,x2, . . . ,xn span the space of solutions. If x is any solu-
tion, the vector x(0) is a vector in Rn and is therefore a linear combination
x(0) = c1e1 + c2e2 + · · · + cnen of e1, e2, . . . , en. Then c1x1(t) + c2x2(t) +
· · · + cnxn(t) is a solution (by the Superposition Principle) and agrees with
x at t = 0 (by construction) so it must equal x(t) for all t (by the Existence
and Uniqueness Theorem).

The solutions x1,x2, . . . ,xn are independent. If c1x1(t) + c2x2(t) + · · ·+
cnxn(t) = 0 then evaluating at t = 0 gives c1e1 + c2e2 + · · · + cnen = 0 so
c1 = c2 = · · · = cn = 0 as e1, e2, . . . , en are independent.

2 Wednesday April 1, Friday April 3

13. To proceed we need to understand the complex exponential function.
Euler noticed that when you substitute z = iθ into the power series

ez =
∞∑

n=0

zn

n!
(5)

you get

eiθ =
∞∑

n=0

inθn

n!

=
∞∑

k=0

i2kθ2k

(2k)!
+

∞∑
k=0

i2k+1θ2k+1

(2k + 1)!

=
∞∑

k=0

(−1)kθ2k

(2k)!
+ i

∞∑
k=0

(−1)kθ2k+1

(2k + 1)!

= cos θ + i sin θ.

This provides a handy way of remembering the trigonometric addition for-
mulas:

ei(α+β) = cos(α + β) + i sin(α + β)

and

eiαeiβ =
(
cos α + i sin α

)(
cos +β + i sin β

)
= (cos α cos β − sin α sin β) + i(sin α cos β + cos α sin β)
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so equating the real and imaginary parts we get

cos(α + β) = cos α cos β − sin α sin β, sin(α + β) = sin α cos β + cos α sin β.

Because cos(−θ) = cos θ and sin(−θ) = − sin θ we have

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Note the similarity to

cosh t =
et + et

2
, sinh t =

et − e−t

2
.

It is not difficult to prove that the series (5) converges for complex numbers
z and that ez+w = ezew. In particular, if z = x + iy where x and y are real
then

ez = exeiy = ex(cos y + i sin y) = ex cos y + iex sin y

so the real and imaginary parts of ez are given

<ez = ex cos y =
ez + ez̄

2
, =ez = ex sin y =

ez − ez̄

2i
.

14. We will use the complex exponential to find solutions to the nth order
linear homgeneous constant coefficient differential equation

dny

dtn
+ p1

dn−1y

dtn−1
+ · · ·+ pn−1

dy

dt
+ pny = 0 (6)

As a warmup let’s find all the solutions of the linear homogeneous 2nd order
equation

a
dy

dt2
+ b

dy

dt
+ cy = 0

where a, b, c are constants and a 6= 0. (Dividing by a puts the equation in
the form (3) with n = 1 and p1 = b/a and p2 = c/a constant.) As an ansatz
we seek a solution of form y = ert. Substituting gives

(ar2 + br + c)ert = 0

so y = ert is a solution iff

ar2 + br + c = 0, (7)
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i.e. if r = r1 or r = r2 where

r1 =
−b +

√
b2 − 4ac

2a
, r2 =

−b−
√

b2 − 4ac

2a
.

The equation (7) is called the charactistic equation (or sometimes the
auxilliary equation). There are three cases.

1. b2 − 4ac > 0. In this case the solutions r1 and r2 are distinct and real
and for any real numbers c1 and c2 the function y = c1e

r1t + c2e
r2t

satisfies the differential equation.

2. b2 − 4ac < 0. In this case the roots are complex conjugates:

r1 = r =
−b

2a
+ i

√
4ac− b2

2a
, r2 = r̄ =

−b

2a
− i

√
4ac− b2

2a
.

The functions ert and er̄t are still solutions of the equation because cal-
culus and algebra works the same way for real numbers as for complex
numbers. The equation is linear so linear combinations of solutions are
solutions so the real and imaginary parts

y1 =
ert + er̄t

2
, y2 =

ert − er̄t

2i

of solutions are solutions and for any real numbers c1 and c2 the function
y = c1y1 + c2y2 is a real solution.

3. b2 − 4ac = 0. In this case the characteristic equation (7) has a dou-
ble root so aD2 + bD + c = a(D − r)2 where r = b/(2a). (For the
moment interpret D as an indeterminate; we’ll give another interpre-
tation later.) It is easy to check that both ert and tert are solutions so
y = c1e

rt + c2te
rt is a solution for any constants c1 and c2.

Example 15. For any real numbers c1 and c2 the function

y = c1e
2t + c2e

3t

is a solution the differential equation

d2y

dt2
− 5

dy

dt
+ 6y = 0.
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Example 16. For any real numbers c1 and c2 the function

y = c1e
t cos t + c2e

t sin t

is a solution the differential equation

d2y

dt2
− 2

dy

dt
+ 2y = 0.

Example 17. For any real numbers c1 and c2 the function

y = c1e
t + c2te

t

is a solution the differential equation

d2y

dt2
− 2

dy

dt
+ y = 0.

3 Friday April 3 – Wednesday April 8

18. It is handy to introduce operator notation. If

p(r) = rn + p1r
n−1 + · · ·+ pn−1r + pn

and y is a function of t, then

p(D)y :=
dny

dtn
+ p1

dn−1y

dtn−1
+ · · ·+ pn−1

dy

dt
+ pny

denotes the left hand side of equation (6). This gives the differential equation
the handy form p(D)y = 0. The characteristic equation of this differential
equation is the algebraic equation p(r) = 0, i.e.

y = ert =⇒ p(D)y = p(D)ert = p(r)ert = p(r)y

so y = ert is a solution when p(r) = 0. When p(x) = xk we have that
p(D)y = Dky, i.e.

Dky =
dky

dtk
=

(
d

dt

)k

y

is the result of differentiating k times. Here is what makes the whole theory
work:
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Theorem 19. Let pq denote the product of the polynomial p and the poly-
nomial q, i.e.

(pq)(r) = p(r)q(r).

Then for any function y of t we have

(pq)(D)y = p(D)q(D)y

where D = d/dt.

Proof. This is because D(cy) = cDy if c is a constant.

Corollary 20. p(D)q(D)y = q(D)p(D)y.

Proof. pq = qp.

21. If q(D) = 0 then certainly pq(D)y = 0 by the theorem and if p(D)y = 0
then pq(D)y = 0 by the theorem and the corollary. This means that we
can solve a homogeneous linear constant coefficient equation by factoring
the characteristic polynomial.

Theorem 22 (Fundamental Theorem of Algebra). Every polynomial has a
complex root.

Corollary 23. Every real polynomial p(r) factors as a product of (possibly
repeated) linear factors r− c where c is real and quadratic factors ar2 + br+ c
where b2 − 4ac < 0.

24. A basis for the solution space of (D − r)ky = 0 is

ert, tert, . . . , tk−1ert.

A basis for the solution space of (aD2 + bD + c)ky = 0 is

ept cos(qt), ept sin(qt), . . . , tk−1ept cos(qt), tk−1ept sin(qt)

where r = p± qi are the roots of ar2 + br + c, i.e. p = −b
2a

and q =
√

b2−4ac
2a

.

Example 25. A basis for the solutions of the equation

(D2 + 2D + 2)2(D − 1)3y = 0

is
et cos t, et sin t, tet cos t, tet sin t, et, tet, t2et.
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26. This reasoning can also be used to solve inhomogeneous constant coeffi-
cient linear differential equation

p(D)y = f(t)

where the homogeneous term f(t) itself solves solves a homogeneous constant
coefficient linear differential equation

q(D)f = 0.

This is because any solution y of p(D)y = f(t) will then solve the homo-
geneous equation (qp)(D)y = 0 and we can compute which solutions of
(qp)(D)y = 0 also satisfy p(D)y = f(t) by the method of undetermined
coefficients. Here’s an

Example 27. Solve the initial value problem

dy

dt
+ 2y = e3t, y(0) = 7.

Since e3t solves the problem (D − 3)e3t = 0 we can look for the solutions to
(D + 2)y = e3t among the solutions of (D − 3)(D + 2)y = 0. These all have
the form

y = c1e
−2t + c2e

3t

but not every solution homogeneous second order equation solves the original
first order equation. To see which do, we plug in

(D + 2)(c1e
−2t + c2e

3t) = (D + 2)c2e
3t = (3c2 + 2c2)e

3t = e3t

if and only if c2 = 1/5. Thus yp = e3t/5 is a particular solution of the
inhomogeneous equation. By the Principle of the Particular Solution above
the general solution to the inhomogeneous equation is the particular solution
plus the general solution to the homogeneous problem, i.e.

y = c1e
−2t +

e3t

5

To satisfy the initial condition y(0) = 7 we must have 7 = c1+1/5 or c1 = 6.8.
the solution we want is y = 6.8e−2t + 0.2e3t.
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4 Friday April 10, Monday April 13

28. The displacement from equilibrium y of a object suspended from
the ceiling by a spring is governed by a second order differential equation

m
d2y

dt2
+ c

dy

dt
+ ky = F (t) (8)

where m is the mass of the object, c is a constant called the damping
constant, k is a constant of proportionality called the spring constant,
and F (t) is a (generally time dependent) external force. The constants m
and k are positive and c is nonnegative. This is of course Newton’s law

Ftot = ma, a :=
d2y

dt2

where the total force Ftot is the sum Ftot = FS +FR +FE of three terms, viz.
the spring force

FS = −ky, (9)

the resistive force

FR = −c
dy

dt
, (10)

and the external force
FE = F (t).

The spring force FS is the combined force of gravity and the force the spring
exerts to restore the mass to equilibrium. Equation (9) says that the sign of
the spring force FS is opposite to the sign of the displacement y and hence
FS pushes the object towards equilibrium. The resistive FR is the resistive
force proportional to the velocity of the object. Equation (10) says that the
sign of the resistive force FR is opposite to the sign of the velocity dy/dt
and hence FR slows the object.. In the text, the resistive force FR is often
ascribed to a dashpot (e.g. the device which prevents a screen door from
slamming) but in problems it might be ascribed to friction or to the viscosity
of the surrounding media. (For example, if the body is submersed in oil,
the resistive force FR might be significant.) The external force will generally
arise from some oscillation, e.g.

F (t) = F0 cos(ωt) (11)

and might be caused by the oscillation of the ceiling or of a flywheel. (See
figure 5.6.1 in the text.)
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29. Equation 9 is called Hooke’s law. It can be understood as follows. The
force FS depends solely of the position y of the spring. For y near y0 the
Fundamental Idea of Calculus says that the force FS(y) is well approximated
by the linear function whose graph is the tangent line to the graph of FS at
y0, i.e.

FS(y) = FS(y0) + F ′S(y0)(y − y0) + o(y − y0) (12)

where the error term o(y − y0) is small in the sense that

lim
y→y0

o(y − y0)

y − y0

= 0.

The fact that equilibrium occurs at y = y0 means that FS(y0) = 0, i.e.
(assuming FE is zero) i.e. if the object is at rest at position y = y0 then
Newton’s law F = ma holds. The assertion that y is displacement from
equilibrium means that y0 = 0, i.e. we are measuring the position of the
object as its signed distance from its equilibrium position as opposed to say
its height above the floor or distance from the ceiling. From this point of
view Hooke’s law is the approximation that arises when we ignore the error
term o(y− y0) in (12). This is the same reasoning that leads to the equation

d2θ

dtt
+

g

L
θ = 0

as an approximation to the equation of motion

d2θ

dtt
+

g

L
sin θ = 0

for the simple pendulum. (See page 322 of the text.)
On the other hand, some of the assigned problems begin with a sentence

like A weight of 5 pounds stretches a spring 2 feet. In this problem there are
apparently two equilibria, one where the weight is not present and another
where it is. In this situation the student is supposed to assume that the
force FS is a linear (not just approximately linear) function of the position,
so that the spring constant k is 5/2 (i.e. the slope of the line) and that the
equilibrium position occurs where the weight is suspended at rest.

30. The energy is defined as the sum

E :=
mv2

2
+

ky2

2
, v :=

dy

dt
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of the kinetic energy mvv2/2 and the potential energy ky2/2. If the
external force FE is zero, the energy satisfies

dE

dt
= mv

dv

dt
+ ky

dy

dt
= v

(
m

d2y

de2
+ ky

)
= −c

(
dy

dt

)2

When c (and FE) are zero, dE/dt = 0 so E is constant (energy is conserved)
while if c is positive, dE/dt < 0 so E is decreasing (energy is dissipated).
When we solve the equation (with FE = 0) we will see that the motion is
periodic if c = 0 and tends to equilibrium as t becomes infinite if c > 0.

31. It is important to keep track of the units in doing problems of this sort
if for no other reason than that it helps avoid errors in computation. We
never add two terms if they have different units and whenever a quantity
appears in a nonlinear function like the sine or the exponential function,
that quantity must be unitless. In the metric system the various terms have
units as follows:

• y has the units of length: meters (m).

• dy

dt
has the units of velocity: meters/sec.

• d2y

dt2
has the units of acceleration: meters/sec2.

• m has the units of mass: kilograms (kg).

• F has the units of force: newtons = kg·m/sec2.

Using the principle that quantities can be added or equated only if they have
the same units and that the units of a product (or ratio) of two quantities
is the product (or ratio) of the units of the quantities we see that c has the
units of kg·m/sec and that k has the units of kg/sec2. The quantity

ω0 :=

√
k

m

thus has the units of frequency: sec−1 which is good news: When c = 0 and
FE = 0 equation (8) becomes the harmonic oscillator equation

d2y

dt2
+ ω2

0y = 0 (13)
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(we divided by m) and the solutions are

y = A cos(ω0t) + B sin(ω0t). (14)

(The input ω0t to the trigonometric functions is unitless.)

Remark 32. When using English units (lb, ft, etc.) you need to be a bit
careful with equations involving mass. Pounds (lb) is a unit of force, not
mass. Using mg = F and g=32 ft/sec2 we see that an object at the surface
of the earth which weighs 32 lbs (i.e. the force on it is 32 lbs) will have a
mass of 1 slug1 So one slug weighs 32 lbs at the surface of the earth (or lb =
(1/32)·slug·ft/sec2). When using metric units, kilogram is a unit of mass not
force or weight. A 1 kilogram mass will weigh 9.8 newtons on the surface of
the earth. (g= 9.8 m/sec2 and newton = kg·m/sec2 ). Saying that a mass
“weighs” 1 kilogram is technically incorrect usage, but it is often used. What
one really means is that it has 1 kilogram of mass and therefore weighs 9.8
newtons.

33. Consider the case where the external force FE is not present. In this
case equation (8) reduces to the homogeneous problem

m
d2y

dt2
+ c

dy

dt
+ ky = 0 (15)

The roots of the characteristic equation are

r1 =
−c +

√
c2 − 4mk

2m
, r1 =

−c−
√

c2 − 4mk

2m
.

We distinguish four cases.

1. Undamped: c = 0. The general solution is

y = A cos(ω0t) + B sin(ω0t), ω0 :=

√
k

m

2. Under damped: c2 − 4mk < 0. The general solution is

y = e−pt (A cos(ω1t) + B sin(ω0t)) , p :=
c

2m
, ω1 :=

√
ω2

0 − p2

1The unit of mass in the English units is called the slug – really!
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3. Critically damped: c2 − 4mk = 0. The general solution is

y = e−pt (c1 + c2t)

4. Over damped: c2 − 4mk. The general solution is

y = c1e
r1t + c2e

r2t.

In the undamped case (where c = 0) the motion is oscillatory and the limit of
y(t) as t becomes infinite does not exists (except of course when A = B = 0).
In the three remaining cases (where c > 0) we have limt→∞ y = 0. In case 3
this is because

lim
t→∞

te−pt = 0

(in a struggle between an exponential and a polynomial the exponential wins)
while case 4 we have r2 < r1 < 0 because

√
c2 − 4mk < c. In cases 1 and 2

we can define α and C by

C :=
√

A2 + B2, cos α =
A

C
, sin α =

B

C

and the solution takes the form

y = Ce−pt cos(ω1t− α).

In the undamped case p = 0 and the y is a (shifted) sine wave with ampli-
tude C, while in the under damped case the graph bounces back and forth
between the two graphs y = ±e−pt.

34. Now consider the case of forced oscillation where the external force
is given by (11). The right hand side F (t) = F0 cos(ωt) of (8) solves the
ODE (D2 + ω2)F = 0 so we can solve using the method of undetermined
coefficients. We write equation (8) in the form

(mD2 + cD + k)y = F0 cos ωt (16)

and observe that every solution of this inhomogeneous equation satisfies the
homogeneous equation

(D2 + ω2)(mD2 + cD + k)y = 0.

The solutions of this last equation all can be written as y +yp where (mD2 +
cD + k)y = 0 and (D2 + ω2)yp. We know all the solutions of the former
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equation by the previous paragraph and the most general solution of the
latter is

yp = b1 cos ωt + b2 sin ωt.

We consider three cases.

(i) c = 0 and ω 6= ω0. The function yp satisfies (16) iff

(k −mω2)b1 cos ωt + (k −mω2)b2 sin ωt = F0 cos ωt

which (since the functions cos ωt and sin ωt are linearly independent) can
only be true if b2 = 0 and b1 = F0/(k−mω2). Our particular solution is thus

yp =
F0 cos ωt

k −mω2
=

F0 cos ωt

m(ω2
0 − ω2)

(ii) c = 0 and ω = ω0. In this case we can look for a solution ihe form
yp = b1t cos ω0t+ b2t sin ω0t but it is easier to let ω tend to ω0 in the solution
we found in part (i). Then by l’Hôpital’s rule (differentiate top and bottom
with respect to ω) we get

yp = lim
ω→ω0

F0 cos ωt

m(ω2
0 − ω2)

=
F0t sin ω0t

2mω0

The solution yp bounces back and forth between the two lines y = ±F0t/(2m).
The general solution in this case is (by the principle of the particular solution)
the general solution of the homogeneous system plus the solution yp and the
former remains bounded. Thus every solution oscillates wildly as t becomes
infinite. This is the phenomenon of resonance and is the cause of many
engineering disasters. (See the text page 352.)

(iii) c > 0. The high school algebra in this case is the most complicated
but at least we know that there are no repeated roots since the roots of
r2 + ω2 = 0 are pure imaginary and the roots of mr2 + cr + k = 0 are not.
The function yp satisfies (16) iff(

(k −mω2)b1 + cωb2

)
cos ωt +

(
−cωb1 + (k −mω2)b2

)
sin ωt = F0 cos ωt

so

(k −mω2)b1 + cωb2 = F0 and (−cωb1 + (k −mω2)b2 = 0.

17



In matrix form this becomes[
k −mω2 cω
−ω k −mω2

] [
b1

b2

]
=

[
F0

0

]
and the solution is[

b1

b2

]
=

[
k −mω2 cω
−cω k −mω2

]−1 [
F0

0

]
=

1

(k −mω2)2 + (cω)2

[
k −mω2 −cω

cω k −mω2

] [
F0

0

]
=

F0

(k −mω2)2 + (cω)2

[
k −mω2

cω

]
so our particular solution is

yp =
F0

(k −mω2)2 + (cω)2

(
(k −mω2) cos ωt + cω sin ωt

)
.

As above this can writen as

yp =
F0 cos(ωt− α)√

(k −mω2)2 + (cω)2

where

cos α =
k −mω2√

(k −mω2)2 + (cω)2
, sin α =

cω√
(k −mω2)2 + (cω)2

.

The general solution in this case is (by the principle of the particular solution)
the general solution of the homogeneous system plus the solution yp. The
former decays to zero as t becomes infinite, and the latter has the same
frequency as the external force F0 cos ωt but has a smaller amplitude and a
“phase shift” α. (See the text page 355.)

5 Wednesday April 15 - Friday April 17

35. It’s easy to solve the initial value problem

dx1

dt
= 3x1,

dx2

dt
= 5x2, x1(0) = 4, x2(0) = 7.
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The answer is
x1 = 4e3t, x2 = 7e5t.

The reason this is easy is that this really isn’t a system of two equations in
two unknowns, it is two equations each in one unknown. When we write this
system in matrix notation we get

dx

dt
= Dx, x =

[
x1

x2

]
, D =

[
3 0
0 5

]
.

The problem is easy because the matrix D is diagonal.

36. Here is a system which isn’t so easy.

dy1

dt
= y1 + 4y2,

dy2

dt
= −2y1 + 7y2, y1(0) = 15, y2(0) = 11.

To solve it we make the change of variables

y1 = 2x1 + x2, y2 = x1 + x2; x1 = y1 − y2, x2 = −y1 + 2y2.

Then

dx1

dt
=

dy1

dt
− dy2

dt
= (y1 + 4y2)− (−2y1 + 7y2) = 3y1 − 3y2 = 3x1,

dx2

dt
= −dy1

dt
+ 2

dy2

dt
= −(y1 + 4y2) + 2(−2y1 + 7y2) = 5(−y1 + 2y2) = 5x2,

x1(0) = y1(0)− y2(0) = 4, x2(0) = −y1(0) + 2y2(0) = 7.

The not so easy problem 36 has been transformed to the easy problem 35
and the solution is

y1 = 2x1 + x2 = 8e3t + 7e5t, y2 = x1 + x2 = 4e3t + 7e5t.

It’s magic!

37. To see how to find the magic change of variables rewrite problem 36 in
matrix form

dy

dt
= Ay, A =

[
1 4

−2 7

]
, y =

[
y1

y2

]
19



and the change of variables as

y = Px, x = P−1y.

In the new variables we have

dx

dt
= P−1dy

dt
= P−1Ay = P−1APx.

so we want to find a matrix P so that the matrix

D := P−1AP =

[
λ1 0
0 λ2

]
(17)

is diagonal. Once we have done this the not so easy initial value problem

dy

dt
= Ay, y(0) = y0 :=

[
15
11

]
is transformed into the easy intial value problem

dx

dt
= Dx, x(0) = x0 := P−1y0

as follows. Let x be the solution to the easy problem and define y := Px.
Since the matrix P is constant we can differentiate the relation y = Px to
get

dy

dt
= P

dx

dt
= P−1Dx = P−1DPy = Ay.

Also since the equation y := Px holds for all t it holds in particular for t = 0,
i.e.

y(0) = Px(0) = Px0 = PP−1y0 = bfy0.

This shows that y := Px solves the not so easy problem when x solves the
easy problem.

38. So how do we find a matrices P and D satisfying (17)? Multiplying the
equation A = PDP−1 on the right by P gives AP = DP. Let v and w
be the columns of P so that P =

[
v w

]
. Then as matrix multiplication

distributes over concatentation we have

AP =
[

Av Aw
]
.
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But

PD =

[
v1 w1

v2 w2

] [
λ1 0
0 λ2

]
=

[
λ1v1 λ2w1

λ1v2 λ2w2

]
=
[

λ1v λ2w
]
.

Thus the equation AP = DP can be written as[
Av Aw

]
=
[

λ1v λ2w
]
,

i.e. the single matrix equation AP = DP becomes to two vector equations
Av = λ1v and Aw = λ2w.

Definition 39. Let A be an n× n matrix. We say that λ is an eigenvalue
for A iff there is a nonzero vector v such that

Av = λv. (18)

Any nonzero solution v of equation (18) is called an eigenvector of A cor-
responding to the eigenvector λ. The set of all solutions to (18) (including
v = 0) is called the eigenspace corresponding to the eigenvalue λ. Equa-
tion (18) can be rewritten is a homgeneous system

(λI−A)v = 0

which has a nonzero solution v if and only if

det(λI−A) = 0.

The polynomial det(λI−A) is called the characteristic polynomial of A
and so

The eigenvalues of a matrix are the roots of its characteristic
polynomial.

40. We now find the eigenvalues of the matrix A from section 37. The
characteristic equation is

det(λI−A) = det

[
λ− 1 −4

2 λ− 7

]
= (λ− 1)(λ− 7) + 8 = λ2 − 8λ + 15
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so the eigenvalues are λ1 = 3 and λ2 = 5. The eigenvectors v corresponding
to the eigenvalue λ1 = 3 are the solutions of the homogeneous system[

0
0

]
=

[
3− 1 −4

2 3− 7

] [
v1

v2

]
=

[
2 −4
2 −4

] [
v1

v2

]
,

i.e. the multiples of the column vector v = (2, 1). The eigenvectors w
corresponding to the eigenvalue λ2 = 5 are the solutions of the homogeneous
system [

0
0

]
=

[
5− 1 −4

2 5− 7

] [
v1

v2

]
=

[
4 −4
4 −4

] [
v1

v2

]
,

i.e. the multiples of the column vector v = (1, 1). A solution to (17) is given
by

P =

[
2 1
1 1

]
, D =

[
3 0
0 5

]
and the change of variables y = Px used in problem 36 is[

y1

y2

]
=

[
2 1
1 1

] [
x1

x2

]
=

[
2x1 + x2

x1 + x2

]
.

Remark 41. The solution of the diagonalization problem (17) is never
unique because we can always find another solutions be replacing each eigen-
vector (i.e. column of P) by a nonzero multiple of itself. For example if
c1 6= 0 and c2 6= 0, Av = λ1v, Aw = λ2w, then also A(c1v) = λ1(c1v),
A(c2w) = λ2(c2w) so the matrix

[
c1v c2w

]
should work as well as the

matrix P =
[

v w
]

used above. Indeed

[
c1v c2w

]
= PC = where C =

[
c1 0
0 c2

]
and CD = DC (since both are diagonal) so

(PC)D(PC)−1 = PCDC−1P−1 = PDCC−1P−1 = PDP−1

which shows that if A = PDP−1 then also A = (PC)D(PC)−1.
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6 Monday April 20 - Wednesday April 22

Definition 42. The matrix A is similar to the matrix B iff there is an
invertible matrix P such that A = PBP−1. A square matrix D is said to be
diagonal if its off diagonal entries are zero, i.e. iff it has the form

D =


λ1 0 · · · 0
0 λ2 · · · 0

. . .

0 0 · · · λn

 .

A square matrix is said to be diagonzlizable iff it is similar to a diagonal
matrix.

Remark 43. (i) Every matrix is similar to itself and hence a diagonal matrix
is diagonalizable. (ii) If A is similar to B, then B is similar to A (because
A = PBP−1 =⇒ B = P−1AP). (iii) If A is similar to B and B is similar
to C, then A is similar to C (because A = PBP−1 and B = QCQ−1 =⇒
A = (PQ)C(PQ)−1 ).

Theorem 44. Similar matrices have the same characteristic polynomial.

Proof. If A = PBP−1 then

λI−A = λI−PBP−1 = λPIP−1 −PBP−1 = P(λI−B)P−1

so

det(λI−A) = det
(
P(λI−B)P−1

)
= det(P) det(λI−B) det(P)−1 = det(λI−B)

as the determinant of the product is the producr of the determinants and the
determinant of the inverse is the inverse of the determinant.

Remark 45. It follows that similar matrices have the same eigenvalues as
the eigenvalues are the roots of the characteristic polynomial. Of course they
don’t necessarily have the same eigenvectors, but if A = PBP−1 and w is
an eigenvector for B then Pw is an eigenvector for A:

A(Pw) = (PBP−1)(Pw) = P(BW) = P(λw) = λ(PW).

Theorem 46. An n × n matrix A is diagonalizable iff there is a linearly
independent sequence (v1,v2, . . . ,vn) of eigenvectors of A
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Proof. The matrix P =
[

v1,v2, . . . ,vn

]
is invertible if and only if its

columns v1,v2, . . . ,vn are linearly independent and the matrix equation
AP = PD holds with D is diagonal if and only if the columns of P are
eigenvectors of A. (See Theorem 2 on page 376 of the text.)

Theorem 47. Assume that v1,v2, . . . ,vk are nonzero eigenvectors of A cor-
responding to distinct eigenvalues λ1, λ2, . . . , λk, i.e. Avi = λi, vi 6= 0, and
λi 6= λj for i 6= j. Then the vector v1,v2, . . . ,vk are linearly independent.

Proof. By induction on k. The one element sequence v1 is independent
because we are are assuming v1 is non zero. Assume as the hypothesis of
induction that v2, . . . ,vk are independent. We must show that v1,v2, . . . ,vk

are independent. For this assume that

c1v1 + c2v2 + · · ·+ ckvk = 0.

(We must show that c1 = c2 = · · · = ck = 0.) Multiply by λ1I−A:

c1(λ1I−A)v1 + c2)λ1I−A)v2 + · · ·+ ck(λ1I−A)vk = 0.

Since Avi = λivi this becomes

c1(λ1 − λ1)v1 + c2(λ1 − λ2)v2 + · · ·+ ck(λ1 − λk)vk = 0.

Since λ1 − λ1 = 0 this becomes

c2(λ1 − λ2)v2 + · · ·+ ck(λ1 − λk)vk = 0.

As v1, . . . ,vk are independent (by the induction hypothesis) we get

c2(λ−λ2) = · · · = ck(λ1 − λk) = 0

as the eigenvalues are distinct we have λ1 − λi 6= 0 for i > 1 so c2 = · · · =
ck = 0. But now c1v1 = 0 so c1 = 0 as well (since v1 6= 0) so the ci are all
zero as required. (See Theorem 2 on page 376 of the text.)

Corollary 48. If an n× n matrix A has n distinct real eigenvalues, then it
is diagonalizable.

Proof. A square matrix is invertible if and only if its columns are indepen-
dent. (See Theorem 3 on page 377 of the text.)
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Remark 49. The analog of the corollary remains true if we allow complex
eigenvalues and assume that all matrices are complex.

Example 50. The characteristic polynomial of the matrix

A =

[
3 4

−4 3

]
is

det(λI−A) = det

([
λ− 3 −4

4 λ− 3

])
= (λ− 3)2 + 16 = λ2 − 6x + 25

and the roots are 3±4i. The eigenvalues aren’t real so the eigenvectors can’t
be real either. However, the matrix A can be diagonalized if we use complex
numbers: For λ = 3 + 4i the solutions of

(λI−A)v =

[
4i 4
−4 4i

] [
v1

v2

]
= 4

[
iv1 − v2

−v1 + iv2

]
= 0

arei (v1, v2) = c(1,−i) while for λ = 3− 4i the solutions of

(λI−A)v =

[
−4i 4
−4 −4i

] [
v1

v2

]
= 4

[
−iv1 − v2

−v1 − iv2

]
= 0

are (v1, v2) = c(1, i). Hence we have A = PDP−1 where

D =

[
3 + 4i 0

0 3− 4i

]
, P =

[
1 1

−i i

]
, P−1 =

1

2i

[
i −1
i 1

]
.

Example 51. Not every matrix is diagonalizable even if we use complex
numbers. For example, the matrix

N =

[
0 1
0 0

]
is not diagonalizable. This is because N2 = 0 but N 6= 0. If N = PDP−1

then
0 = N2 = (PDP−1)(PDP−1) = PD2P−1

so D2 = 0. But if D is diagonal, then

D2 =

[
λ1 0
0 λ2

]2

=

[
λ2

1 0
0 λ2

2

]
is also diagonal so λ2

1 = λ2
2 = 0 so λ1 = λ2 = 0 so D = 0 so N = 0

contradicting N 6= 0.
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7 Friday April 24

52. The Wronskian of an n functions x1(t),x2(t), . . . ,xn(t) taking values
in Rn is the determinant

W (t) = det(x1,x2, . . . ,xn)

of the n × n matrix whose ith column is xi. Of course for each value of t
it is the case that W (t) 6= 0 if and only if the vectors x1(t),x2(t), . . . ,xn(t)
are linearly independent and certainly it can happen that W (t) is zero for
some values of t and non-zero for other values of t. But if the functions xi

are solution of a matrix differential equation, this is not so:

Theorem 53. If x1(t),x2(t), . . . ,xn(t) are solutions of the homogeneous lin-

ear system
dx

dt
= A(t)x then either W (t) 6= 0 for all t or W (t) = 0 for all

t.

Proof. This is an immediate consequence of the Existence and Uniqueness
Theorem: If W (t0) = 0 then there are constants c1, c2, . . . , cn such that
c1x1(t0)+c2x2(t0)+ ·+cn,xn(t0). Now x(t) := c1x1(t)+c2x2(t)+ ·+cn,xn(t)
satisfies the equation and x(t0) = 0 so (by uniqueness) x(t) = 0 for all t.

Remark 54. As explained in paragraph 7 this specializes to higher order
differential equations. The Wronskian of n functions x1(t), x2(t), . . . , xn(t)
is Wronskian of of the coresponding sequence

xi =
(
xi, x

′
i, x

′′
i , . . . , x

(n−1)
i

)
of vectors. For example in n = 2 the Wronskian of x1(t), x2(t) is

W (x1, x2) = det

[
x1 x1

x′1 x′2

]
= x1x

′
2 − x2x

′
1

where x′ := dx/dt.

Definition 55. The trace Tr(A) of a square matrix A is the sum of its
diagonal entries.

Theorem 56. Let x1(t),x2(t), . . . ,xn(t) be solutions of the homogeneous lin-

ear system
dx

dt
= A(t)x. Then the Wronskian W (t) satisfies the differential

equation
dW

dt
= Tr

(
A(t)

)
W (t).

26



Proof. We do the 2× 2 case

A =

[
a11 a12

a21 a22

]
, x1 =

[
x11

x21

]
, x2 =

[
x12

x22

]
.

Let x′ = dx/dt. Writing out the equations x′1 = Ax1 and x′2 = Ax2 gives

x′11 = a11x11 + a12x21, x′12 = a11x12 + a12x22,

x′21 = a21x11 + a22x21, x′22 = a21x12 + a22x22.

Since W = x11x22 − x12x21 we get

W ′ = x′11x22 + x11x
′
22 − x′12x21 − x12x

′
21

= (a11x11 + a12x21)x22 + x11(a21x12 + a22x22)

−(a11x12 + a12x22)x21 − x12(a21x11 + a22x21)

= (a11 + a22)(x11x22 − x12x21)

= Tr
(
A
)
W.

as claimed.

8 Monday April 29

57. Consider a system of tanks containing brine (salt and water) connected
by pipes through which brine flows from one tank to another.

9 Wednesday April 29

58. Consider a collection of masses on a track each connected to the next by
a spring with the first and last connected to opposite walls.

k1 m1
k2 m2

k3 m3
k4
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There are n masses lying on the x axis. The left wall is at x = a, the right
wall at x = b, and the ith mass is at Xi so a < X1 < X2 < · · ·Xn < b. The
spring constant of the ith spring is ki and the ith mass is mi. The first spring
connects the first mass to the left wall, the last ((n + 1)st) spring connects
the last mass to the right wall, and the (i + 1)st spring (i = 1, 2, . . . , n− 1)
connects the ith mass to the (i + 1)st mass. We assume that there is an
equilibrium configuration a < X0,1 < X0,2 < · · ·X0,n < b where the masses
are at rest and define the displacement from equilibrium x1, x2, . . . , xn

by
xi := Xi −X0,i.

note that the distance Xi+1 −Xi between two adjacent masses is related to
the difference xi+1 − xi of the displacements by the formula

Xi+1 −Xi = (X0,i+1 −X0,i) + (xi+1 − xi). (19)

With n = 3 (as in the diagram above) the equations of motion for this system
are

m1
d2x1

dt2
= −(k1 + k2)x1 + k2x2

m2
d2x2

dt2
= k2x1 − (k2 + k3)x2 + k3x3

m3
d2x3

dt2
= k3x2 − (k3 + k4)x3

or in matrix notation

M
d2x

dt2
= Kx (20)

with

M =

 m1 0 0
0 m2 0
0 0 m3

 , x =

 x1

x2

x3



K =

 −(k1 + k2) k2 0
k2 −(k2 + k3) k3

0 k3 −(k3 + k4)

 .

In the general case (arbitrary n) the matrix M is diagonal with diagonal
entries m1, m2, . . . ,mn and the matrix K is symmetric “tridiagonal” with
entries −(k1 + k2) . . . ,−(kn + kn+1) on the diagonal and entries k2, . . . , kn on
the sub and super diagonal.
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59. To derive the system of equations from first principles2 let Ti (i =
1, 2, . . . , n + 1) denote the tension in ith spring. This means that the force
exerted by the ith spring on the mass attached to its left end if Ti and the
force exerted by the ith spring on the mass attached to its right end is −Ti.
The tension depends on the length Xi − Xi−1 of the ith spring so by linear
approximation and (19)

Ti = Ti,0 + ki(xi+1 − xi) + o(xi+1 − xi)

where Ti,0 denotes the tension in the ith spring when the system is in equi-
librium and ki is the derivative of the tension at equilibrium. (The tension is
assumed positive meaning that each spring is trying to contract, so the mass
on its left is pulled to the right, and the mass on the right is pulled to the
left.) We ignore the small error term o(xi+1 − xi). The net force on the ith
mass is

Ti+1 − Ti = T0,i+1 + ki+1(xi+1 − xi)− T0,i − ki(xi − xi−1).

At equilibrium the net force on each mass is zero: Ti+1,0−Ti,0 = 0 so Ti+1−Ti

simplifies to

Ti+1 − Ti = ki−1xi−1 − (ki+1 + ki)xi + ki+1xi+1.

Remark 60. If the masses are hung in a line from the ceiling with the lowest
mass attached only to the mass directly above, the system of equations is
essentially the same: one takes kn+1 = 0.

61. Assume for the moment that all the masses are equal to one. Then the
system takes the form

d2x

dt2
= Kx. (21)

The eigenvalues of K are negative so we may write them as the negatives of
squares of real numbers. If

Kv = −ω2v

then for any constants A and B the function

x = (A cos ωt + B sin ωt)v

is a solution of (21). The following theorem says that K is diagonalizable so
this gives 2n independent solutions of (21).

2This is not in the text: I worked it out to fulfill an inner need of my own.
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Theorem 62. Assume A is a symmetric real matrix, i.e. AT = A. Then
A is diagonalizable. If in addition, 〈Av,v〉 > 0 for all v 6= 0 then the
eigenvalues are positive.

Remark 63. This theorem is sometimes called the Spectral Theorem. It
is often proved in Math 340 but I haven’t found it in our text. It is also true
that for a symmetric matrix, eigenvectors belonging to distinct eigenvalues
are orthogonal. In fact there is an orthonormal basis of eigenvectors i.e. a
basis v1, . . . ,vn so that |vi| = 1 and 〈vi,vj〉 = 0 for i 6= j. (We can always
make a non zero eigenvector into a unit vector by dividing it by its length.)

Remark 64. We can always make a change of variables to convert (20)
to (21) as follows. Let M1/2 denote the diagonal matrix whose entries are√

mi. Then multiplying (20) by the inverse M−1/2 of M1/2 gives

M1/2d2x

dt2
= M−1/2Kx.

Now make the change of variables y = M1/2x to get

d2y

dt2
= M1/2d2x

dt2
= M−1/2Kx =

(
M−1/2KM−1/2

)
y.

It is easy to see that M−1/2KM−1/2 (the “new” K) is again symmetric.

10 Friday May 1

65. You can plug square matrix into a polynomial (or more generally a
power series) just as if it is a number. For example, if f(x) = 3x2 + 5 then
f(A) = 3A2 + 5I. Since you add or multiply diagonal matrices by adding or
multiplying corresponding diagonal entries we have

f

([
λ 0
0 µ

])
=

[
f(λ) 0

0 f(µ)

]
. (22)

Finally, since P(A + B)P−1 = PAP−1 + PBP−1 and (PAP−1)k = PAkP−1

we have
f(PAP−1) = Pf(A)P−1. (23)
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66. This even works for power series. For numbers the exponential function
has the power series expansion

ex =
∞∑

k=0

xk

k!

so for square matrices we make the definition

exp(A) :=
∞∑

k=0

1

k!
Ak.

Replacing A by tA gives

exp(tA) =
∞∑

k=0

tk

k!
Ak.

(Some people write etA.) Differentiating term by term gives

d

dt
exp(tA) =

∞∑
k=0

k
tk−1

k!
Ak

=
∞∑

k=1

tk−1

(k − 1)!
Ak

=
∞∑

j=0

tj

j!
Aj+1

= A

(
∞∑

j=0

tj

j!
Aj

)
= A exp(tA)

Since exp(tA) = I when t = 0 this means that the solution to the initial
value problem

dx

dt
= Ax, x(0) = x0

is
x = exp(tA)x0.
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67. The moral of the story is that matrix algebra is just like ordinary algebra
and matrix calculus is just like ordinary calculus except that the commutative
law doesn’t always hold. However the commutative law does hold for powers
of a single matrix:

ApAq = Ap+q = Aq+p = AqAp.

68. You can compute the exponential of a matrix using equations (22)
and (23). If

A = PDP−1, D =

[
λ 0
0 µ

]
,

then

exp(tA) = P exp(tD)P−1, exp(tD) =

[
eλt 0
0 eµt

]
.

Example 69. In paragraph 40 we saw how to diagonalize the matrix

A =

[
1 4

−2 7

]
.

We found that A = PDP−1 where

P =

[
2 1
1 1

]
, P−1 =

[
1 −1

−1 2

]
, D =

[
3 0
0 5

]
.

Now

exp(tD) =

[
e3t 0
0 e5t

]
so exp(tA) = P exp(tD)P−1 is computed by matrix mutiplication

exp(tA) =

[
2 1
1 1

] [
e3t 0
0 e5t

] [
1 −1

−1 2

]
=

[
2 1
1 1

] [
e3t −e3t

−e5t 2e5t

]
=

[
2e3t − e5t −2e3t + 2e5t

e3t − e5t −e3t + 2e5t

]
.

Example 70. If N2 = 0 then

exp(tN) =
∞∑

k=0

tk

k!
Nk =

1∑
k=0

tk

k!
Nk = I + tN.
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In particular,

exp

([
0 t
0 0

])
=

[
1 t
0 1

]
.

Theorem 71. If AB = BA then exp(A + B) = exp(A) exp(B).

Proof. The formula ea+b = aaeb holds for numbers. Here is a proof using
power series. By the Binomial Theorem

(a + b)k =
∑

p+q=k

k!

p!q!
apbq

so
∞∑

k=0

(a + b)k

k!
=

∞∑
k=0

∑
p+q=k

apbq

p!q!
=

(
∞∑

p=0

ap

p!

)(
∞∑

q=0

bq

q!

)
.

If AB = BA the same proof works to prove the theorem.

Example 72. (Problem 4 page 487 of the text) We compute exp(tA) where

A =

[
3 −1
1 1

]
.

The characteristic polynomial is

det(λI−A) = det

[
λ− 3 1
−1 λ− 1

]
= (λ− 3)(λ− 1) + 1 = (λ− 2)2

and has a double root. But the null space of (2I−A) is one dimensional so
we can’t diagonalize the matrix. However

(A− 2I)2 =

[
3− 2 −1

1 1− 2

]2

=

[
1 −1
1 −1

]2

= 0

so exp
(
t(A − 2I)

)
= I + t(A − 2I) as in Example 70. But the matrices 2tI

and t(A − 2I) commute (the identity matrix commutes with every matrix)
and tA = 2tI + t(A− 2I) so

exp(tA) = exp(tI) exp
(
t(A− 2I)

)
= e2t

(
I + t(A− 2I)

)
i.e.

exp(tA) = e2t

[
1 + t −t

t 1− t

]
.
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11 Monday May 4

73. A solution of a two dimensional system

dx

dt
= F(x)

is a parametric curve in the plane R2. The collection of all solutions is called
the phase portrait of the system. When we draw the phase portrait we
only draw a few representative solutions. We put arrows on the solutions
to indicate the direction of the parameterization just like we did when we
drew the phase line in the frst part of this course. We shall only draw phase
portraits for linear systems

F(x) = Ax

where A is a (constant) 2× 2 matrix.

12 Wednesday May 6

74. Consider the inhomogeneous system

dx

dt
= A(t)x + f(y) (24)

where A(t) is a continuous n×n matrix valued function, f(t) is a continuous
function with values in Rn and the unknown x also takes values in Rn. We
shall call the system

dv

dt
= A(t)v (25)

the homogeneous system corresponding to the inhomogenoous sys-
tem (24).

75. Let v1,v2, . . . ,vn be n linearly independent solutions to the homogeneous
system (25) and form the matrix

Φ(t) :=
[

v1(t) v2(t) · · · vn(t)
]
.

The matrix Φ is called a fundamental matrix for the system (25); this
means that the columns are solutions of (25) and they form a basis for Rn

for some (and hence3 every) value of t.

3by Theorem 53
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Theorem 76. A fundamental matrix satisfies the matrix differential equation

dΦ

dt
= AΦ

Proof.
d

dt

[
v1 v2 · · · vn

]
=

[
dv1

dt

dv2

dt
· · · dvn

dt

]
=
[

Av1 Av2 · · · Avn

]
= A

[
v1 v2 · · · vn

]
.

Theorem 77. If Φ is a fundamental matrix for the system (25) then the
function

v(t) = Φ(t)Φ(t0)
−1v0

is the solution of the initial value problem

dv

dt
= A(t)v, v(t0) = v0.

Proof. The columns of Φ(t)Φ(t0)
−1 are linear combinations of the columns of

Φ(t) (see the Remark 79 below) and hence are solutions of the homogeneous
system. The initial condition holds because Φ(t0)Φ(t0)

−1 = I

Theorem 78. If the matrix A is constant the matrix

Φ(t) = exp(tA)

is a fundamental matrix for the system
dv

dt
= Av.

Proof. det(Φ(0)) = det(0A) = det(I) = 1 6= 0.

Remark 79. The proof of Theorem 77 asserted that The columns of PC
are linear combnations of the columns of P. Because

P
[

c1 c2 . . . ck

]
=
[

Pc1 Pc2 . . .Pck

]
it is enough to see that this is true when C is a single column, i.e. when C
is n× 1. In this case it is the definition of matrix multiplication.
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80. Now we show how to solve the inhomogeneous system (24) once we have
a fundamental matrix for the corresponding homogeneous system (25). By
the Superposition Principle (more precisely the Principle of the Particular
Solution) it is enough to find a particular solution xp of (24) for then the
general solution of (24) is the particular solution plus the general solution
of (25). The method we use is called variation of parameters. We already
saw a one dimensional example of this in the first part of the course. We use
the Ansatz

xp(t) = Φ(t)u(t)

Then
dxp

dt
=

dΦ

dt
u + Φ

du

dt
= AΦu + Φ

du

dt
= Axp + Φ

du

dt

which solves (24) if

Φ
du

dt
= f

so we can solve by integration

u(t) = u(0) +

∫ t

0

u′(τ) dτ = u(0) +

∫ t

0

Φ(τ)−1f(τ) dτ.

(Since we only want one solution not all the solutions we can take u(0) to be
anything.) The solution of the initial value problem

Φ
du

dt
= f , x(0) = x0

is

x = Φ(t)u(t) + Φ(t)

(
Φ(0)−1x0 − u(0)

)
. (26)

Example 81. We solve the inhomogeneous system

dx

dt
= Ax + f

where

A =

[
1 4

−2 7

]
, f =

[
1
0

]
.

In Example 69 we found the fundamental matrix

Φ(t) = exp(tA) =

[
2e3t − e5t −2e3t + 2e5t

e3t − e5t −e3t + 2e5t

]
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for the corresponding homogeneous system. We take

du

dt
= Φ(t)−1f = exp(tA)−1f = exp(−tA)f =

[
2e−3t − e−5t

e−3t − e−5t

]
Integrating gives

u =

 −2e−3t

3
+

e−5t

5

−e−3t

3
+

e−5t

5

 =
1

15

 −10e−3t + 3e−5t

−5e−3t + 3e−5t


so a particular solution is

xp = exp(tA)u =

[
2e3t − e5t −2e3t + 2e5t

e3t − e5t −e3t + 2e5t

]
1

15

[
−10e−3t + 3e−5t

−5e−3t + 3e−5t

]
=

1

15

[
(2e3t − e5t)(−10e−3t + 3e−5t) + (−2e3t + 2e5t)(−5e−3t + 3e−5t)
(e3t − e5t)(−10e−3t + 3e−5t) + (−e3t + 2e5t)(−5e−3t + 3e−5t)

]
=

1

15

[
(−23 + 10e2t + 6e3t) + (16− 10e2t − 6e−2t)
(−13 + 10e2t + 6e−2t) + (11− 10e2t − 3e−2t)

]
=

1

15

[
−7
−2

]
.

Whew! This means that if we haven’t made a mistake, the functions

x1 =
−7

15
, x2 =

−2

15

should satisfy

dx1

dt
= x1 + 4x2 + 1,

dx2

dt
= −2x1 + 7x2.

Let’s check:

dx1

dt
= 0 =

(
−7

15

)
+ 4

(
−2

15

)
+ 1 = x1 + 4x2 + 1

dx2

dt
= 0 = −2

(
−7

15

)
+ 7

(
−2

15

)
= −2x1 + 7x2
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Using equation (26) we see that the solution of the initial value problem

dx1

dt
= x1 + 4x2 + 1,

dx2

dt
= −2x1 + 7x2, x1(0) = 17, x2(0) = 29

is x = exp(tA)u(t) + exp(tA)

(
x0 − u(0)

)
i.e.

x1 = −7
15

+ (2e3t − e5t)(17 + 7
15

) + (−2e3t + 2e4t)(29 + 2
15

),

x2 = −2
15

+ (e3t − e5t)(17 + 7
15

) + (−e3t + 2e5t)(29 + 2
15

)

Remark 82. This particular problem can be more easily solved by differen-
tiating the equation x′ = Ax+ f . Since f is constant we get x′′ = Ax′ which
is a homogeneoous equation.

Final Exam 07:45 A.M. THU. MAY 14
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