
Math 320 Spring 2009
Part I – Differential Equations

JWR

March 9, 2009

The text is Differential Equations & Linear Algebra (Second Edition) by
Edwards & Penney.

1 Wednesday Jan 21

1. In first year calculus you learned to solve a linear differential equation like

dy

dt
= 2y + 3, y(0) = 5 (1)

This semester you will learn to solve a system of linear differential equations
like:

dx

dt
= 3x + y + 7,

dy

dt
= x + 5y − 2, (x(0), y(0)) = (4, 8). (2)

Note that if you can solve systems of equations like (2) you can also solve
higher order equations like

d2y

dt2
= 3

dy

dt
+ y + 7, y(0) = 4,

dy

dt

∣∣∣∣
t=0

= 8. (3)

You can change (3) into a system:

dy

dt
= v,

dv

dt
= 3v + y + 7, y(0) = 4, v(0) = 8 (4)
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2. An ODE (ordinary differential equation) of order n looks like

F
(
t, y, y′, y′′, . . . , y(n)

)
= 0 (5)

The unknown is a function y = y(t) of the independent variable t and

y′ :=
dy

dt
, y′′ :=

d2y

dt2
, . . . , y(n) :=

dny

dtn
.

When the equation looks like

y(n) = G
(
t, y, y′, y′′, . . . , y(n−1)

)
(6)

we say it is in normal form. It may be impossible to rewrite equation (5) as
equation (6). A system of differential equations is the same thing with
the single unknown y replaced by the vector y := (y1, y2, . . . , ym).

Remark 3. As our first examples will show, the independent variable often
has the interpretation of time which is why the letter t is used. Un this
case the ODE represents the time evolution of a dynamical system. For
example the 2nd order system

mr̈ = −GMm

r3

describes the motion of a planet of mass m moving about a sun of mass M .
The sun is at the origin, r is the posiition vector of the planet, and r = |r| is
the length of r, i.e. the distance from the planet to the sun. Sometimes the
ODE has a geometric interpretation in which case the letter x is often used
for the independent variable.

Example 4. Swimmer crossing a river (Text page 15.) Let the banks of a
river be the vertical lines x = ±a in the (x, y) plane and suppose that the
river flows up so that the velocity vR of the river at the point (x, y) is

vR = v0

(
1− x2

a2

)
.

The formula says that vR = 0 on the banks where x = ±a and vR = v0 in
the center of the river where x = 0 (the y-axis). The swimmer swims with
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constant velocity vS towards the closest point on the opposite shore. The
system

dx

dt
= vS,

dy

dt
= vR = v0

(
1− x2

a2

)

is a dynamical system describing the position of the swimmer. Dividing the

two equations and using
dy

dx
=

dy/dt

dy/dx
gives the geometric equation

dy

dx
=

v0

vS

(
1− x2

a2

)

which describes the trajectory of the swimmer.

Example 5. Newton’s law of cooling. This says that rate of change of the
temperature T of a body (e.g. a cup of coffee) is proportional to difference
A − T bewteen the ambient temperature (i.e. room temperature) and the
temperature of the body. The ODE is

dT

dt
= k(A− T ).

In a tiny time from t to t + h of duration ∆t = (t + h)− t = h the change in
the temperature is ∆T = T (t + h) = T (t) so the rate of change id ∆T/∆t.
By Newton’s law of cooling we have (approximately)

∆T

∆t
≈ k(A− T ).

It doesn’t matter much if we use T = T (t) or T = T (t + h) on the right
hand side because T is continuous and h is small. By the definition of the
derivative

dT

dt
= lim

∆t→0

∆T

∆t
= lim

h→0

T (t + h) = T (t)

h

so we get the exact form of Newton’s law of cooling as the limit as h → 0 in
the approximate form.

2 Friday Jan 23

Theorem 6 (Existence and Uniqueness Theorem). Suppose that f(t, y) is a
continuous function of two variables defined in a region R in (t, y) plane and
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that the partial ∂f/∂y exists and is continuous everyhere in R. Let (t0, y0)
be a point in R. Then there is a solution y = y(t) to the initial value problem

dy

dt
= f(t, y), y(t0) = y0

defined on some interval I about t0. The solution is unique in the sense that
any two such solutions of the initial value problem are equal where both are
defined.

Remark 7. The theorem is stated on page 23 of the text and proved in
an appendix. The same theorem holds for systems and hence higher order
equations. We usually solve an ODE by doing an integration. Then an
arbitrary constant C arises and we choose it to satisfy the initial condition
y(t0) = y0. The Existence and Uniqueness Theorem tells us that this is the
only answer.

8. The first order ODE
dx

dt
= f(t, x)

has an important special case, where the function f(t, x) factors as a product

f(t, x) = g(x)h(t)

of a functiong(x) of x and a function h(t) of t. Then we can write the ODE
dx/dt = g(x)h(t) as dx/g(x) = h(t) dt, integrate to get

∫
dx

g(x)
=

∫
h(t) dt,

and solve for x in terms of t. When g(x) is identically one, the equation is
dx/dt = h(t) so the answer is x =

∫
h(t) dt. When h(t) is is identically one,

the system is autonomous, i.e. dx/dt = g(x). In this case can find out a lot
about the solutions from the phase diagram. 1

Example 9. Braking a car. A car going at speed v0 skids to a stop at a
constant deceleration k in time T leaving skid marks of length L. We find
each of the four quantities in terms of the other three. Let the brakes be
applied at time t = 0, so the car stops at time t = T , and let v = v(t) denote

1We’ll study this later in Section 2.2 of the text. See Figure 2.2.7 on page 93.
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the velocity at time t, and x = x(t) denote the distance travelled over the
time interval [0, t]. Then the statement of the problem translates into the
equations

dv

dt
= −k, v =

dx

dt
, v(0) = v0, v(T ) = 0, x(0) = 0, x(T ) = L.

Integrating the first differential equation gives

∫
dv

dt
dt =

∫
−k dt = −kt + C,

so C = v(0) = v0 and v(t) = v0 − kt so 0 = v(T ) = v0 − kT so v0 = kT ,
k = v0/T , and T = v0/k. Integrating the second differential equation gives

L = x(T )− x(0) =

∫ T

0

dx

dt
dt =

∫ T

0

v(t) dt

∫ T

0

(v0 − kt) dt = v0T − 1
2
kT 2.

From T = v0/k we get L = v2
0/k − 1

2
v2

0/k = 1
2
v2

0/k. (See problems 30-32
page 17 of the text.)

Remark 10. Mathematically this is the same problem as the problem of
a falling body on earth: If y is the height of the body, v = dy/dt is its
speed, a = dv/dt = d2y/dt2 is the acceleration, then Newton’s 3rd law is
F = ma = −mg where g = 32ft/sec2 =9.8m/sec2 is the acceleration due to
gravity so

v =
dy

dt
= −gt + v0, y = −gt2

2
+ v0t + y0.

Example 11. Population equation (exponential growth and decay). The
differential equation

dP

dt
= kP

says that the rate of growth (or decay if k < 0) of a quantity P is proportional
to its size. We solve by separation of variables: dP/P = dt so

ln P =

∫
dP

P
=

∫
k dt = kt + C = kt + ln P0

so P = P0e
kt.
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12. A single linear homogeneous equation. The more general equation

dy

dt
= R(t)y

is solved the same way: dy/y = R(t) dt so

ln y =

∫
dy

y
=

∫
R(t) dt

and exponentiating this equation gives

y = e
R

R(t) dt.

Note that the additive constant in
∫

R(t) dt becomes a multiplicative constant
after exponentiating. For example, integrating the equation

dy

dt
= ty

gives

ln y =

∫
dy

y
=

∫
t dt = 1

2
t2 + C

so exponentiating gives

y = exp
(

1
2
t2 + C

)
= exp

(
1
2
t2

)
exp(C) = y0 exp

(
1
2
t2

)

where y0 = eC . (For typographical reasons the exponential function is often
denoted as exp(x) := ex.)

Example 13. Consider the function f(y) = |y|p. On the region where y 6= 0
the the derivative f ′(y) is continuous so the Existence and Uniqueness The-
orem applies to solutions which stay in this region. We solve by separation
of variables where y > 0

y1−p

1− p)
=

∫
dy

yp
= t− c.

so (as long as t− c > 0)

y = [(1− p)(t− c)]1/(1−p).
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When y < 0 we have |y| = −y and

y = −[(1− p)(|t− c|]1/(1−p).

Funny things happen when y = 0. If p > 1 the derivative f ′(y) is continuous
so by the Existence an Uniqueness Theorem the only solution with y(t0) = 0
is y ≡ 0. (This is reflected in the fact that the above formula for y becomes
infinite when t = c.) If 0 < p < 1 however a solution can remain at zero
for a finite amount of time and follow one of the above solutions to the left
and right. For example for p = 1

2
and any choice of c1 < 0 and c2 > 0 the

function

y(t) =





1
4
(c1 − t)2 for t < c1

0 for c1 ≤ t ≤ c2

1
4
(t− c2)

2 for c2 < t

solves the ODE and the initial condition y(0) = 0, so the solution is not
unique. This is essentially the example of Remark 2 on page 23 of the text.

3 Monday Jan 26

14. Slope fields and phase diagrams. To draw the slope field of an ODE
dy/dx = f(x, y) raw a little line segment of slope f(x, y) and many points
(x, y) in the (x, y)-plane. The curves tangent to these little line segments
are the graphs of the solution curves. This is a lot of work unless you have
a computer and it is often not very helpful. In the case of an autonomous
ODE dy/dt = f(y) the phase diagram (see e.g. Figures 2.2.8n and 2.2.9 on
page 94 of the text.) is more helpful. This is a line representing the y-axis
with the zeros of f indicated and the intervals in between the zeros marked
with an arrow indicating the sign of f(y) for y in that interval.

Example 15. Swimmer crossing river. Recall from last Wednesday the
dynamical system

dx

dt
= vS,

dy

dt
= vR = v0

(
1− x2

a2

)

describing the position of the swimmer. Dividing the two equations and using
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dy

dx
=

dy/dt

dy/dx
gives the geometric equation

dy

dx
= k

(
1− x2

a2

)
, k :=

v0

vS

which describes the trajectory of the swimmer. Take k = 1, a = 1. The
solution curves are

y = x− x3

3
+ C.

They are vertical translates of one another. The solution with C = 0 starts
at the point (x, y) =

(−1,−2
3

)
and ends at (x, y) =

(
1, 2

3

)
.

Example 16. The slope field for dy/dx = x − y The slope is horizontal on
the line y = x, negative to the left and positive to the right. The picture
in the text (page 20) suggests that the solutions are asymptotic as x → ∞.
We’ll check this in the next lecture.

17. The phase diagram for dy/dt = (y − a)(y − b). Assume that a < b so
dy/dt > 0 for y < a and for b < y while dy/dt < 0 for a < y < b. The phase
diagram is

s sa b
¾- -

From the diagram we can see that

lim
t→∞

y(t) = a if y(0) < a

y(t) = a if y(0) = a

lim
t→−∞

y(t) = a if a < y(0) < b

y(t) = b if y(0) = b

lim
t→−∞

y(t) = a if y(0) < b

lim
t→T1−

y(t) = ∞ if b < y(0)

lim
t→T2+

y(t) = −∞ if y(0) < a
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The diagram does not tell us whether T1 and T2 are finite. For this we will
solve the equation by separation of variables and partial fractions.

1

(y − a)(y − b)
=

1

b− a

(
1

y − b
− 1

y − a

)

∫
dy

(y − a)(y − b)
=

∫
dt

ln
|y − b|
|y − a| = (b− a)t + c.

|y − b|
|y − a| = Ce(b−a)t, C := ec.

What to do about the absolute values? Well certainly

y − b

y − a
= ±Ce(b−a)t,

y = y0 when t = 0, and the exponential is positive so we must have

±C =
y0 − b

y0 − a
, y0 := y(0).

Now we can solve for y. We introduce the abbreviation u := ±Ce(b−a)t to
save writing:

y − b

y − a
= u =⇒ y = (y − a)u + b =⇒ y

(
1− u

)
= b− au =⇒ y =

b− au

1− u
.

Now plug back in the values of u and ±C and multiply top and bottom of
the resulting fraction by y0 − a to simplify:

y =
(y0 − a)b− a(y0 − b)e(b−a)t

(y0 − a)− (y0 − b)e(b−a)t
.

As a check we plug in t = 0. We get

y =
(y0 − a)b− a(y0 − b)

(y0 − a)− (y0 − b)
=

(b− a)y0

b− a
= y0.

as expected. Now

lim
t→∞

y(t) =
−a(y0 − b)

−(y0 − b)
= a, lim

t→−∞
y(t) =

(y0 − a)b

(y0 − a)
= b

but if y0 < a there is a negative value of t (namely t = T2 above) where the
denominator vanishes and similarly if y0 > b there is a positive value of t
(namely t = T1 above) where the denominator vanishes.
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4 Wednesday Jan 28

18. Three ways to solve dy/dt + 2y = 3. A linear first order ODE is one of
form

dy

dt
+ P (t)y = Q(t). (1)

If P and Q are constants we can solve by separation of variables. For example
to solve dy/dt + 2y = 3 we write

ln(2y − 3)

2
=

∫
dy

2y − 3
=

∫
dt = t + c

so 2y − 3 = e2tC (where C = ec) and hence y = (3 + e2tC)/2. This doesn’t
work if either P or Q is not a constant. In the method of integrating
factors we multiply the ODE (1) by a function ρ to get

ρ(t)
dy

dt
+ ρ(t)P (t)y = ρ(t)Q(t)

and then choose ρ so that
dρ

dt
= ρ(t)P (t). (2)

The ODE (1) then takes the form

d

dt

(
ρy

)
= ρQ (3)

which can be solved by integration. In the method of variation of pa-
rameters we look for a solution of the form

y = Φ(t)u(t)

so the ODE (1) takes the form

dΦ

dt
u + Φ

du

dt
+ PΦu = Q.

Then once we solve
dΦ

dt
+ PΦ = 0 (4)

the ODE (1) simplifies to
du

dt
= Φ−1Q. (5)

In either method we first reduce to a homogeneous linear ODE (either (2)
or (4)) and then do an integration problem (either (3) or (5)).
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Remark 19. Because equation (3) is the homogeneous linear ODE corre-
sponding to the inhomogeneous linear ODE (1), the general solution of (3)
is of form Φ(t)C where C is an arbitrary constant. Having solved this prob-
lem by separating variables we solve (1) by trying to find a solution where
the constant C is replaced by a variable u. For this reason the method of
variation of parameters is also called the method of variation of con-
stants. The text uses the method of integrating factors for a single ODE in
section 1.5 page 50 and the method of variation of constants for systems on
section 8.2 page 493.

Example 20. To solve dy/dx = x− y rewrite it as dy/dx + y = x. Multiply
by ρ(x) = ex to get

dy

dx
ex + yex = xex.

Then
d

dx

(
yex

)
=

dy

dx
ex + yex = xex

so. integrating by parts,

yex =

∫
xex dx = xex − ex + C

so
y = x− 1 + Ce−x.

Note that the general solution is asymptotic to the particular (C = 0) solu-
tion y = x− 1.

21. The Superposition Principle. Important! If

dy1

dt
+ P (t)y1 = Q1(t) and

dy2

dt
+ P (t)y2 = Q2(t)

and if y = y1 + y2 and Q = Q1 + Q2, then

dy

dt
+ P (t)y = Q(t).

In particular (take Q2 = 0 and Q = Q1) this shows that the general solution

of an inhomogeneous linear equation
dy

dt
+P (t)y = Q(t) is the general solution

of the corresponding homogeneous equation
du

dt
+P (t)u = 0 plus a particular

solution of the inhomogeneous linear equation.
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Example 22. When we discussed the slope field of dy/dx = x− y (text fig-
ure 1.3.6 page 20) we observed that it looks like all the solutions are asymp-
totic. Indeed if dy1/dx = x− y1 and dy2/dx = x− y2 then

d

dx
(y1 − y2) = −(y1 − y2)

so y1− y2 = Ce−x so limx→∞(y1− y2) = 0. This proves that all the solutions
are asymptotic without solving the equation. The argument works more
generally if x is replaced by Q(x), i.e. for the equation dy/dx = Q(x)− y.

5 Friday January 30

23. Mixture problems. Let x denote the amount of solute in volume of size
V and c denote its concentration. Then

c = x/V.

In a mixture problem, any of these may vary in time. Thus if a fluid with
concentration cin (units = mass/volume) flows into a tank at a rate of rin

(units = volume/time) the amount of solute added in time dt is cin rin dt.
Similarly if a fluid with concentration cout (units = mass/volume) flows out of
the tank at a rate of rout (units = volume/time) the amount of solute removed
in time dt is cin rin dt. (The book uses the subscript i as an abbreviation
for in and the subscript o as an abbreviation for out.) Hence the differential
equation

dx

dt
= cin rin − cout rout.

In such problems one generally assumes that cin, rin, and rout are constant
but x, cin, and possibly also the volume V of the tank vary.

Example 24. A tank contains V liters of pure water. A solution that con-
tains cin kg of sugar per liter enters a tank at the rate rin Liters/min. The
solution is mixed and drains from the tank at the same rate.

(a) How much sugar is in the tank initially?

(b) Find the amount of sugar x in the tank after t minutes.

(c) Find the concentration of sugar in the solution in the tank after 78
minutes.
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In this problem rin = rout so the volume V of the tank is constant. In a time
interval dt, cin rin dt kg of sugar enters the tank and x(t)/V dt kg of sugar
leaves the tank so we have an inhomogeneous linear ODE

dx

dt
= cinrin − x

V
rout

with initial value x(0) = 0. To save writing we abbreviate c := cin, r :=
rin = rout so the ODE is

dx

dt
=

(
c− x

V

)
r.

Solve by separation of variables

−V ln(V c− x) =

∫
V dx

V c− x
=

∫
r dt = rt + K.

Since the tank initially holds pure water we have x = 0 when t = 0, hence
K = −V ln(V c) so −K/V = ln(V c). Solving for x gives

ln(V c− x) = −rt

V
+ ln(V c) =⇒ x = V c

(
1− exp

(
−rt

V

))

Remark 25. When x is small, the term x/V is even smaller so the equation
is roughly dx/dt = cinrout and the answer small values of t is roughly x =
(cinrin)t. For small values of t the amount of sugar x is also small and the
approximation x = (cinrin)t is very accurate – so accurate that it may fool
WeBWorK – but it is obviously wrong for large values of t. The reason
is that limt→∞(cinrin)t = ∞ whereas limt→∞ x = cinV so that the limiting
concentration of the sugar in the tank is the same as the concentration of
solution flowing in.

Remark 26. One student was assigned this problem in WeBWorK with
values of V = 2780, c = 0.06 and r = 3 and complained to me that WeBWorK
rejected the answer. I typed

2780*0.06[1-exp(-3t/2780)]

and WeBWorK accepted the answer. The student had typed the value

(-2780/3)(exp((-3(t+1589))/2780)-.18)

and WeBWorK rejected that answer. The two answers would agree if
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exp(-3*1589/2780)=0.18

but this isn’t exactly true. I typed exp(-3*1589/2780) into the answer box
for the part 1 of the question to see what WeBWorK thinks is the value and
WeBWork said the value is 0.180009041024602. (The answer to part 1 is
0, but when I hit the Preview Button WeBWorK did the computation.) I
replaced 0.18 by this value in the student’s answer and WeBWorK accepted
it.

6 Monday February 2

Here are some tricks for solving special equations. The real trick is to find a
trick for remembering the trick.

27. Linear substitutions. To solve

dy

dx
= (ax + by + c)p

try v = ax + by + c so

dv

dx
= a + b

dy

dx
= a + bvp

28. Homogeneous equations. A linear equation is called homogeneous if a
scalar multiple of a solution is again a solution. A function h(x, y) is called
homogeneous of degree n if

h(λx, λy) = λnh(x, y).

In particular, f is homogeneous of degree 0 iff f(λx, λy) = f(x, y). Then

f(x, y) = F
(y

x

)
, F (u) := f(1, u)

To solve
dy

dx
= F

(y

x

)

Try the substitution v = y/x.
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29. Bernoulli equations. This is an equation of form

dy

dx
+ P (x)y = Q(x)yn.

Try y = vp and solve for a value of p which makes the equation simpler.

30. Exact equations. The equation

M(x, y) dx + N(x, y) dy = 0

is exact if there is a function F (x, y) such that

∂F

∂x
= M,

∂F

∂y
= N (∗∗)

then
∂M

∂y
=

∂N

∂x
(∗)

because
∂2F

∂y∂x
=

∂2F

∂x∂y
.

In Math 234 you learn that converse is true (if M and N are defined for all
(x, y). Exactness implies that the solutions to the ODE

M(x, y) + N(x, y)
dy

dx
= 0

are the curves
F (x, y) = c

for various values of c. To find F (x, y) satisfying (∗∗) choose (x0, y0) and
integrate from (x0, y0) along any path joining (x0, y0) to (x, y). Condition (∗)
guarantees that the integral is independent of the choice of the path.

Example 31. Write the ODE

3x2y5 + 5x3y4 dy

dx
= 0

as
3x2y5 dx + 5x3y4 dy = 0.
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The exactness condition (∗) holds as

∂

∂y
3x2y5 = 15x3y4 =

∂

∂x
5x3y4.

Let (x0, y0) = (0, 0) and compute F (x, y) by integrating first along the y-axis
(where dx = 0) from (0, 0) to (0, y) and the along the horizontal line from
(0, y) to (x, y) (where dy = 0). We get

F (x, y) =

∫ t=y

t=0

N(0, t) dt +

∫ t=x

t=0

M(t, y) dt

=

∫ t=y

t=0

5(03)t4 dt +

∫ t=x

t=0

3t2y5 dt

= 0 + x3y5 = x3y5.

so the solutions of the ODE are the curves x3y5 = C. Because the exactness
condition holds it doesn’t matter which path we use to compute F (x, y) so
long as it goes from (0, 0) to (x, y). For example, integrating first along the
x-axis (where dy = 0) from (0, 0) to (x, 0) and the along the vertical line
from (x, 0) to (x, y) (where dx = 0) gives

F (x, y) =

∫ t=y

t=0

N(x, t) dt +

∫ t=x

t=0

M(t, 0) dt

=

∫ t=y

t=0

5(x3)t4 dt +

∫ t=x

t=0

3t2(05) dt

= x3y5 + 0 = x3y5.

Along the diagonal line from (0, 0) to (x, y) we have dx = x dt and dy = y dt
with t running from 0 to 1 so

F (x, y) =

∫ t=1

t=0

N(tx, ty)y dt +

∫ t=1

t=0

M(tx, ty)x dt

=

∫ t=1

t=0

5t7x3y4y dt +

∫ t=1

t=0

3t7x2(y5)x dt

= 5
8
x3y5 + 3

8
x3y5 = x3y5.

7 Wednesday February 4

32. Reducible second order equations. A second order ODE where either the
unknown x or or its derivative dx/dt is missing can be reduced the equation
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to a first order equation. If x is missing the equation is already first order
in dx/dt. The case where both t and dx/dt are missing is like a conservative
force field in physics, i.e. a force field which is the negative gradient of a
potential energy function U so Newton’s third law takes the form

m
d2x

dt2
= −∇U

In this case the energy

E :=
m|v|2

2
+ U, v :=

dx

dt

is conserved (constant along solutions). When the number of dimensions is
one (but not in higher dimensions) every force field is a gradient and we can
use this fact to reduce the order. To solve

d2x

dt2
= f(x)

take U = − ∫
f(x) dx and v = dx/dt so the equation becomes

1
2

(
dx

dt

)2

+ U(x) = E

which can be solve by separation of variables.

Example 33. Consider the equation

m
d2x

dt2
= −kx.

Define the velocity v, and the total energy E by

v :=
dx

dt
, E :=

mv2

2
+

kx2

2
.

(The total energy is the sum of the kinetic energy mv2/2 and the potential
energy U(x) := kx2/2.) Now

dE

dt
= mv

dv

dt
+ kx

dx

dt
=

(
m

dv

dt
+ kx

)
v = 0,

17



so the total energy E is constant along solutions. Then

dx

dt
= v = ±

√
2E − kx2

m
.

We solve the initial value problem v(0) = 0 and x(0) = x0. Then 2E = kx2
0

so
dx

dt
= µ

√
x2

0 − x2, µ := ±
√

k

m
,

so
dx√

x2
0 − x2

= µ dt

so

− cos−1

(
x

x0

)
=

∫
dx√

x2
0 − x2

=

∫
µ dt = µt + C.

When t = 0, we have x = x0 so x.x0 = 1 so (since cos(0) = 1) C=0 and
hence so x = x0 cos(µt).

Remark 34. On page 70 of the text, the problem is treated a little differently.
The unknown x is viewed as the independent variable and the substitution

v =
dx

dt
,

d2x

dt2
=

dv

dt
=

dv

dx
· dx

dt
=

dv

dx
· v

is used to transform the equation

m
d2x

dt2
+ kx = 0

into the equation

m
dv

dx
v + kx = 0.

Solving this by separation of variables gives

m

∫
v dv + k

∫
x dx = 0

which is the conservation law 1
2
mv2 + 1

2
kx2 = E from before. The book uses

the letters x, y, p where I have used t, x, v. (I deviated from the book’s
notation to emphasize the connection with physics.)

18



8 Monday February 9

35. Peak Oil. In 1957 a geologist named M. K. Hubbert plotted the annual
percentage rate of increase in US oil production against total cumulative US
oil production and discovered that the data points fell (more or less) on a
straight line. Specifically

dQ/dt

aQ
+

Q

b
= 1

where Q = Q(t) us the total amount of oil (in billions of barrels) produced
by year t, a = 0.055, b = 220 with the initial condition Q(1958) = 60.2 The
ODE for Q can be written as

dQ

dt
= aQ− kQ2, k =

a

b
.

This equation is called the Logistic Equation. (We solved a similar equa-
tion dy/dt = (y−a)(y−b) above.) By solving this equation Hubbert predicted
that annual US oil production would peak (i.e. dQ/dt would become neg-
ative) in the year 1975. The peak actually occurred in 1970 but this went
unnoticed because by this time the US had begun to import much of its oil.
A similar calculation for world oil production produced a prediction of a peak
in the year 2005.

36. First order autonomous quadratic equations. Consider the equation

dx

dt
= Ax2 + Bx + C.

The right hand side will have either two zeros, one (double) zero, or no (real)
zeros depending on whether B2− 4AC is positive, zero, or negative. If there
are two zeros, say

p :=
−B +

√
B2 − 4AC

2A
, q :=

−B −√B2 − 4AC

2A
,

then the equations may be written as

dx

dt
= A(x− p)(x− q)

2I got these figures from page 155 (see also page 201) of the very entertaining book:
Kenneth S. Deffeyes, Hubbert’s Peak, Princeton University Press, 2001. I estimated the
initial condition from the graph, so it may not be exactly right.

19



and the limiting behavior can be determined from the phase diagram as we
did last week. If there are no zeros, all solutions reach ±∞ is finite time.
After completing the square and rescaling x and t the equation has one of
the folloeing three forms:

Example 37. Example with no zeros. We solve the ODE

dx

dt
= 1 + x2, x(0) = x0.

We separate variables and integrate:

tan−1(x) =

∫
dx

1 + x2
=

∫
dt = t + c, c := tan−1(x0),

so for −π/2 < t < π/2 we have

x = tan(t + c) =
tan t + tan c

1− tan t tan c
=

tan t + x0

1− x0 tan t
.

The solution becomes infinite when t = tan−1(1/x0).

Example 38. Example with two zeros. We solve the ODE

dx

dt
= 1− x2, x(0) = x0.

We separate variables and integrate:

tanh−1(x) =

∫
dx

1− x2
=

∫
dt = t + c, c := tanh−1(x0),

so for −π/2 < t < π/2 we have

x = tanh(t + c) =
tanh t + tanh c

1 + tanh t tanh c
=

tanh t + x0

1 + x0 tanh t
.

For −1 < x0 < 1 we have limt→∞ x = 1 and limt→−∞ x = −1.

Example 39. Example with a double zero. The solution of the ODE

dx

dt
= x2, x(0) = x0

is x = x0/(x0 − t). If x0 6= 0 it becomes infinite when t = x0.
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40. After a change of variables, every quadratic ODE

dy

ds
= Ay2 + By + C

takes one of these three forms. Divide by A and complete the square

1

A

dy

ds
=

(
y +

B

2A

)2

− B2 − 4AC

4A2

Let u = y + (B/2A) and k2 = |(B2 − 4AC)/(4A2)|:
1

A

du

ds
= u2 ± k2.

Finally (if k 6= 0) divide by k2 and let x = u/k and t = −Ak2s to arrive at
dx/dt = 1± x2. (If k = 0, take x = u and t = As to arrive at dx/dt = x2.)

41. Trig functions and hyperbolic functions.

sin(t) =
eit − e−it

2i
sinh(t) =

et − e−t

2

cos(t) =
eit + e−it

2
cosh(t) =

et + e−t

2

i tan(t) =
eit − e−it

eit + e−it
tanh(t) =

et − e−t

et + e−t

cos2(t) + sin2(t) = 1 cosh2(t)− sinh2(t) = 1

d sin(t) = cos(t) dt d sinh(t) = cosh(t) dt

d cos(t) = − sin(t) dt d cosh(t) = sinh(t) dt

tan(t + s) =
tan(t) + tan(s)

1− tan(t) tan(s)
tanh(t + s) =

tanh(t) + tanh(s)

1 + tanh(t) tanh(s)

42. Bifurcation and dependence on parameters. The differential equation

dx

dt
= x(4− x)− h

models a logistic population equation with harvesting rate h. The equilibrium
points are

H = 2−
√

4− h, N = 2 +
√

4− h

if h < 4, There is a bifurcation at h = 4. This means that the qualitative
behavior of the system changes as h increases past 4. When h = 4 there is
a double root (H = N) and for h > 4 there is no real root and all solutions
reach −∞ in finite time.
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43. Air resistance proportional to v. The equation of motion is F = ma
where the force is F = FG + FR with

a =
dv

dt
, v =

dy

dt
, FG = −g, FR = −kv.

This can be solved by separation of variables and there is a terminal ve-
locity

v∞ := lim
t→∞

v = −mg/k

whicsh is independent of the initial velocity.

44. Air resistance proportional to v2. The equation of motion is F = ma
where the force is F = FG + FR with

a =
dv

dt
, v =

dy

dt
, FG = −g, FR = −kv|v|.

Thus

m
dv

dt
=

{ −g − kv2 when v > 0
−g + kv2 when v < 0.

After rescaling (i.e. a change of variable) we can suppose m = g = k and
we use the above. To find the height y we need to choose the constants of
integration correctly.

45. Escape velocity. A spaceship of mass m is attracted to a planet of mass
M by a gravitational force of magnitude GMm/r2 so that (after cancelling
m) the equation of motion (if gravity is the only force acting on the spaceship)
is

dv

dt
=

d2r

dt2
= −GM

r2

where r is the distance of the spaceship to the center of the planet and
v = dr/dt is the velovity of the spaceship. As above, the energy

E :=
mv2

2
− GMm

r

is a constant of the motion so if r(0) = r0 and v(0) = v0 we have (after
dividing by m/2)

v2 − 2GM

r
= v2

0 −
2GM

r0
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from which follows

v2 > v2
0 −

2GM

r0

.

The quantity
√

2GM/r0 is called the escape velocity. If v0 is greater than
the esacape velocity then

r(t) =

∫ t

0

dr

dt
dt =

∫ t

0

v dt >

∫ t

0

√
v2

0 −
2GM

r0

dt = t

√
v2

0 −
2GM

r0

so r becomes infinite in finite time.

9 Wednesday February 11

46. Monthly Investing. Mary starts a savings account. She plans to invest
100 + t dollars t months after opening the account. The account pays 6%
annual interest. How much is in the account after t months? Denote by S(t)
the amount in the account after t months. Then S(0) = 100 and S(t + 1) =
S(t)+interest+deposit, i.e.

S(t + 1) = S(t) +
0.06

12
S(t) + (100 + t)

This equation can be written in the form

S(t + h) = S(t) + f(t, S(t))h

where h = 1 and f(t, S) =
0.06

12
S(t) + (100 + t). It can also be written

∆S = f(t, S(t))∆t

where ∆S = S(t + h)− S(t) and ∆t = h = 1.

47. Daily Investing. Donald starts a savings account. He plans to invest daily
at a rate of 100+ t dollars per month after opening the account. The account
pays 6% annual interest. How much is in the account after t months? Denote
by S(t) the amount in the account after t months. This is n = 30t days. One
day is h months where h = 1/30. Then S(0) = 100 and S(t+h) = S(t)+one
day’s interest+one day’s deposit, i.e.

S(t + h) = S(t) +
0.06

12
S(t)h + (100 + t)h, h =

1

30
, t = nh
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This equation can be written in the form

S(t + h) = S(t) + f(t, S(t))h

where h = 1/30 and f(t, S) =
0.06

12
S(t) + (100 + t). It can also be written

∆S = f(t, S(t))∆t

where ∆S = S(t + h)− S(t) and ∆t = h = 1
30

.

48. Hourly Investing. Harold starts a savings account. He plans to invest
hourly at a rate of 100 + t dollars per month after opening the account.
The account pays 6% annual interest. How much is in the account after t
months? Denote by S(t) the amount in the account after t months. This is
n = 720t hours. One hour is h months where h = 1/720. Then S(0) = 100
and S(t + h) = S(t)+one hours’s interest+one hours’s deposit, i.e.

S(t + h) = S(t) +
0.06

12
S(t)h + (100 + t)h, h =

1

720
, t = nh

This equation can be written in the form

S(t + h) = S(t) + f(t, S(t))h

where h = 1/720 and f(t, S) =
0.06

12
S(t) + (100 + t). It can also be written

∆S = f(t, S(t))∆t

where ∆S = S(t + h)− S(t) and ∆t = h = 1
720

.

49. Continuous Investing. Cynthia starts a savings account. She plans to
invest continuously at a rate of 100 + t dollars per month after opening the
account. The account pays 6% annual interest. How much is in the account
after t months? Denote by S(t) the amount in the account after t months.
Then S(0) = 100 and the change dS in the account in an infinitessimal time
interval of size dt at time t is

dS =
0.06

12
S(t) dt + (100 + t) dt

This equation can be written in the form

dS = f(t, S(t)) dt

where f(t, S) =
0.06

12
S(t) + (100 + t).
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Remark 50. Mary is getting an annual interest rate of 6% compounded
monthly Donald is getting an annual interest rate of 6% compounded daily
and is investing a little more each month than is Mary. Harold is getting an
annual interest rate of 6% compounded hourly and is investing a little more
each month than is Donald. Cynthia is getting an annual interest rate of 6%
compounded continuously and is investing a little more each month than is
Harold. The point is that all the answers are about the same. Here’s why:

Theorem 51 (The Error in Euler’s Method). Assume that f(t, y) is contin-
uously diffentiable. Let y = y(t) be the solution to the initial value problem

dy

dt
= f(t, y), y(0) = y0

and yn be the solution to the difference equation

yn+1 = yn + f(nh, yn)h.

Then there is a constant C = C(f, T ) (dependent on T and f but independent
of h) such that

|y(t)− yn| ≤ Ch,

for t = nh and 0 ≤ t ≤ T .

Remark 52. This theorem is stated on page 122 of the text. When I get a
chance, I will put a formula for C in these notes and provide a proof. (Only
motivated students should try to learn the proof.)
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