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1. The equation ax = b has

• a unique solution x = b/a if a 6= 0,

• no solution if a = 0 and b 6= 0,

• infinitely many solutions (namely any x) if a = b = 0.

2. The graph of the equation ax+ by = c is a line (assuming that a and b are
not both zero). Two lines intersect in a unique point if they have different
slopes, do not intersect at all if they have the same slope but are not the
same line (i.e. if they are parallel), and intersect in infinitely many points if
they are the same line. In other words, the linear system

a11x + a12y = b1, a21x + a22y = b2

• has a unique solution if a11a22 6= a12a21,

• no solution if a11a22 = a12a21 but neither equation is a multiple of the
other,

• infinitely many solutions if one equation is a multiple of the other.

3. The graph of the equation ax+ by + cz = d is a plane (assuming that a, b,
c, are not all zero). Two planes intersect in a line unless they are parallel or
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identical and a line and a plane intersect in a point unless the line is parallel
to the plane or lies in the plane. Hence the linear system

a11x + a12y + a13z = b2

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

has either a unique solution, no solution, or infinitely many solutions.

4. A linear system of m equations in n unknowns x1, x2, . . . , xn has the
form

a11x1 + a12x2+ · · ·+ a1nxn = b1,

a21x1 + a22x2+ · · ·+ a2nxn = b2,

· · · · · ·
am1x1 + am2x2+ · · ·+ amnxn = bm.

(†)

The system is called inconsistent iff has no solution and consistent iff it is
not inconsistent. Some authors call the system underdetermined iff it has
infinitely many solutions i.e. if the equations do not contain enough informa-
tion to determines a unique solution. The system is called homogeneous
iff b1 = b2 = · · · bm = 0. A homogeneous system is always consistent because
x1 = x2 = · · · = xn = 0 is a solution.

5. The following operations leave the set of solutions unchanged as they can
be undone by another operation of the same kind.

Swap. Interchange two of the equations.

Scale. Multiply an equation by a nonzero number.

Shear. Add a multiple of one equation to a different equation.

It ie easy to see that the elementary row operations do not change the set
of solutions of the system (†): each operation can be undone by another
operation of the same type. Swapping two equations twice, returns to the
original system, scaling a row by c and then scaling it again by c−1 returns
to the original system, and finally adding a multiple on one row to another
and then subtracting the multiple returns to the original system.
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2 Wednesday February 18

6. A matrix is an m× n array

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




of numbers. One says that A has size m× n or shape m× n or that A has
m rows and n columns. The augmented matrix

M := [A b] =




a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


 (‡)

represents the system of linear equations (†) in section 4. The elementary
row operations described above to transform a system into an equivalent
system may be represented as

Swap. M([p,q],:)=M([q,p],:) Interchange the pth and qth rows.

Scale. M(p,:)=c*M(p,:) Multiply the pth row by c.

Shear. M(p,:)=M(p,:)+c*M(q,:) Add c times qth row to pth row.

The notations used here are those of the computer language Matlab.1 The
equal sign denotes assignment, not equality, i.e. after the command X=Y is
executed the old value of X is replaced by the value of Y. For example, if the
value of a variable x is 7, the effect of the command x=x+2 is to change the
value of x to 9.

1An implementation of Matlab called Octave is available free on the internet. (Do a
Google search on Octave Matlab.) I believe it was written here at UW. A more primitive
version of Matlab called MiniMat (short for Minimal Matlab) which I wrote in 1989
is available on my website. There is a link to it on the Moodle main page for this course.
It is adequate for everything in this course. Its advantage is that it is a Java Applet and
doesn’t need to be downloaded to and installed on your computer. (It does require the
Java Plugin for your web browser.)
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Definition 7. A matrix is said to be in echelon form iff

(i) all zero rows (if any) occur at the bottom, and

(ii) the leading entry (i.e. the first nonzero entry) in any row occurs to
the right of the leading entry in any row above.

It is said to be in reduced echelon form iff it is in echelon form and in
addition

(iii) each leading entry is one, and

(iv) any other entry in the same column as a leading entry is zero.

When the matrix represents a system of linear equations, the variables cor-
responding to the leading entries are called leading variables and the other
variable are called free variables.

Remark 8. In military lingo an echelon formation is a formation of troops,
ships, aircraft, or vehicles in parallel rows with the end of each row projecting
farther than the one in front. Some books use the term row echelon form for
echelon form and reduced row echelon form or Gauss Jordan normal form for
reduced echelon form.

Definition 9. Two matrices are said to be row equivalent iff one can be
transformed to the other by elementary row operations.

Theorem 10. If the augmented coefficient matrices (‡) of two linear sys-
tems (†) are row equivalent, then the two systems have the same solution
set.

Proof. See Paragraph 5 above.

Remark 11. It is not hard to prove that the converse of Theorem 10 is
true if the linear systems are consistent, in particular if the linear systems
are homogeneous. Any two inconsistent systems have the same solution
set (namely the empty set) but need not have row equivalent augmented
coefficient matrices. For example, the augmented coefficient matrices

[
1 0 0
0 0 1

]
and

[
0 0 1
0 0 0

]

corresponding to the two inconsistent systems

x1 = 0, 0x2 = 1 and 0x1 = 1, 0x2 = 0

are not row equivalent.
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Theorem 12. Every matrix is row equivalent to exactly one reduced echelon
matrix.

Proof. The Gauss Jordan Elimination Algorithm described in the text2

on page 165 proves “at least one”. Figure 2 shows an implementation of this
algorithm in the Matlab programming language. “At most one” is tricky.
A proof appears in my book3 on page 182 (see also page 105).

Remark 13. Theorem 12 says that it doesn’t matter which elementary row
operations you apply to a matrix to transform it to reduced echelon form;
you always get the same reduced echelon form.

14. Once we find an equivalent system whose augmented coefficient matrix is
in reduced echelon form it is easy to say what all the solutions to the system
are: the free variables can take any values and then the other variables are
uniquely determined. If the last non zero row is [0 0 · · · 0 1] (corresponding
to an equation 0x1 + 0x2 + · · · + 0xn = 1) then the system is inconsistent.
For example, the system corresponding to the reduced echelon form

[
0 1 5 0 6 7
0 0 0 1 8 5

]

is
x2 +5x3 +6x5 = 7

x4 +8x5 = 5.

The free variables are x1, x3, x5 and the general solution is

x2 = 7− 5x3 − 6x5, x4 = 5− 8x5

where x1, x3, x5 are arbitrary.

3 Friday February 20

Now we define the operations of matrix algebra. This algebra is very useful
for (among other things) manipulating linear systems. The crucial point is
that all the usual laws of arithmetic hold except for the commutative law.

2Edwards & Penny: Differential Equations & Linear Algebra, 2nd ed.
3Robbin: Matrix Algebra Using MINImal MATlab
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Figure 1: Reduced Echelon (Gauss Jordan) Form

function [R, lead, free] = gj(A)

[m n] = size(A);

R=A; lead=zeros(1,0); free=zeros(1,0);

r = 0; % rank of first k columns

for k=1:n

if r==m, free=[free, k:n]; return; end

[y,h] = max(abs(R(r+1:m, k))); h=r+h; % (*)

if (y < 1.0E-9) % (i.e if y == 0)

free = [free, k];

else

lead = [lead, k]; r=r+1;

R([r h],:) = R([h r],:); % swap

R(r,:) = R(r,:)/R(r,k); % scale

for i = [1:r-1,r+1:m] % shear

R(i,:) = R(i,:) - R(i,k)*R(r,:);

end

end % if

end % for

(The effect of the line marked (*) in the program is to test that the column
being considered contains a leading entry. The swap means that the subse-
quent rescaling is by the largest possible entry; this minimizes the relative
roundoff error in the calculation.)
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Definition 15. Two matrices are equal iff they have the same size (SIZE
MATTERS!) and corresponding entries are equal, i.e. A = B iff A and B
are both m× n and

entryij(A) = entryij(B)

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. The text sometimes writes A = [aij]
to indicate that aij = entryij(A).

Definition 16. Matrix Addition. Two matrices may be added only if
they are the same size; addition is performed elementwise, i.e if A and B are
m× n matrices then

entryij(A + B) := entryij(A) + entryij(B)

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. The zero matrix (of whatever size)
is the matrix whose entries are all zero and is denoted by 0. Subtraction is
defined by

A−B := A + (−B), −B := (−1)B.

Definition 17. Scalar Multiplication. A matrix can be multiplied by a
number (scalar); every entry is multiplied by that number, i.e. if A is an
m× n matrix and c is a number, then

entryij(cA) := c entryij(A)

for i = 1, 2, . . . , m and j = 1, 2, . . . , n.

18. The operations of matrix addition and scalar multiplication satisfy the
following laws:

(A + B) + C = A + (B + C). (Additive Associative Law)
A + B = B + A. (Additive Commutative Law)
A + 0 = A. (Additive Identity)
A + (−A) = 0. (Additive Inverse)
c(A + B) = cA + cB, (Distributive Laws)
(b + c)A = bA + cA.
(bc)A = b

(
cA

)
. (Scalar Asscociative Law)

1A = A. (Scalar Unit)
0A = 0, c0 = 0 (Multiplication by Zero).

In terms of lingo we will meet later in the semester these laws say that the
set of all m× n matrices form a vector space.
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Definition 19. The product of the matrix A and the matrix B is defined
only if the number of columns in A is the same as the number or rows in B,
and it that case the product AB is defined by

entryik(AB) =
n∑

j=1

entryij(A)entryjk(B)

for i = 1, 2, . . . ,m and k = 1, 2, . . . , p where A is m × n and B is n × p.
Note that the ith row of A is a 1× n matrix, the kth column of B is a n× 1
matrix, and

entryik(AB) = rowi(A)columnk(B).

20. With the notations

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 , x =




x1

x2
...

xn


 , b =




b1

b2
...
bn


 ,

the linear system (†) of section 4 may be succinctly written

Ax = b.

21. A square matrix is one with the same number of rows as columns, i.e
of size n× n. A diagonal matrix is a square matrix D of form

D =




d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn




i.e. all the nonzero entries are on the diagonal. The identity matrix is
the square matrix whose diagonal entries are all 1. We denote the identity
matrix (of any size) by I. The jth column of the identity matrix is denoted
by ej and is called the jth basic unit vector. Thus

I =
[

e1 e2 · · · en

]
.
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22. The matrix operations satisfy the following laws:

(AB)C) = A(BC), (aB)C) = a(BC). (Asscociative Laws)
C(A + B) = CA + CB. (Left Distributive Law)
(A + B)C = AC + BC. (Right Distributive Law)
IA = A, AI = A. (Multiplicative Identity)
0A = 0, A0 = 0. (Multiplication by Zero)

23. The commutative law for matrix multiplication is in general false. Two
matrices A and B are said to commute if AB = BA. This can only happen
when both A and B are square and when they have the same size, but even
then it can be false. For example,
[

0 1
0 0

] [
0 0
1 0

]
=

[
1 0
0 0

]
but

[
0 0
1 0

] [
0 1
0 0

]
=

[
0 0
0 1

]
.

4 Monday February 23

Definition 24. An elementary matrix is a matrix which results from the
identity matrix by performing a single elementary row operation.

Theorem 25 (Elementary Matrices and Row Operations). Let A be an an
m× n matrix and E be an m×m elementary matrix. Then the product EA
is equal to the matrix which results from applying to A the same elementary
row operation as was used to produce E from I.

26. Suppose a matrix A is transformed to a matrix R by elementary row
operations, i.e.

R = Ek · · ·E2E1A

where each Ej is elementary. Thus R = MA where M = Ek · · ·E2E1.
Because of the general rule

E
[

A B
]

=
[

EA EB
]

(we might say that matrix multiplication distributes over concatenation) we
can find M via the formula

M
[

A I
]

=
[

MA MI
]

=
[

R M
]
.

The Matlab program shown in Figure 4 implements this algorithm.
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Figure 2: Reduced Echelon Form and Multiplier

function [M, R] = gjm(A)

[m,n] = size(A);

RaM = gj([A eye(m)]);

R = RaM(:,1:n);

M = RaM(:,n+1:n+m);

Definition 27. A matrix B is called a right inverse to the matrix A iff
AB = I. A matrix C is called a left inverse to the matrix A iff CA = I.
The matrix A is called invertible iff it has a left inverse and a right inverse.

Theorem 28 (Uniqueness of the Inverse). If a matrix has both a left inverse
and a right inverse then they are equal. Hence if A is invertible there is
exactly one matrix denoted A−1 such that

AA−1 = A−1A = I.

Proof. C = CI = A(AB) = (CA)B = IB = B.

Definition 29. The matrix A−1 is called the (not an) inverse of A.

Remark 30. The example

[
1 0 0
0 1 0

] 


1 0
0 1
0 0


 =

[
1 0
0 1

]

shows that a nonsquare matrix can have a one-sided inverse. Since

[
1 0 c13

0 1 c23

] 


1 0
0 1
0 0


 =

[
1 0
0 1

]

we see that left inverses are not unique. Since

[
1 0 0
0 1 0

] 


1 0
0 1

b31 b32


 =

[
1 0
0 1

]

we see that right inverses are not unique. Theorem 28 says two sided inverses
are unique. Below we will prove that an invertible matrix must be square.
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5 Wednesday February 25

31. Here is what usually (but not always) happens when we transform an
m×n matrix A to a matrix R in reduced echelon form. (The phrase “usually
but not always” means that this is what happens if the matrix is chosen at
random using (say) the Matlab command A=rand(m,n).)

Case 1: (More columns than rows). If m < n then (usually but not
always) matrix R has no zero rows on the bottom and has the form

R =
[

I F
]

where I denotes the m×m identity matrix. In this case the homogeoneous
system Ax = 0 has nontrivial (i.e. nonzero) solutions, the inhomogeneous
system Ax = b is consistent for every b, and both the matrix A and the
matrix R have infinitely many right inverses. In this case the last n − m
variables are the free variables. The homogeneous system Ax = 0 takes the
form

Rx =
[

I F
] [

x′

x′′

]
=

[
0
0

]
, x′ =




x1

x2
...

xm


 , x′′ =




xm+1

xm+2
...

xn




and the general solution of the homogeneous system is given by

x′ = −Fx′′.

(The free variables x′′ determines the other variables x′.)

Case 2: (More rows than columns). If n < m then (usually but not
always) the matrix R has m− n zero rows on the bottom and has the form

R =

[
I
0

]

where I denotes the n × n identity matrix. In this case the homogeoneous
system Ax = 0 has no nontrivial (i.e. nonzero) solutions, the inhomogeneous
system Ax = b is inconsistent for infinitely b, and both the matrix A and

11



the matrix R have infinitely many left inverses. The system Ax = b may be
written as Rx = MAx = Mb or

[
I
0

]
x =

[
x
0

]
= Mb =

[
b′

b′′

]
, b′ =




b1

b2
...
bn


 , b′′ =




bn+1

bn+2
...

bm




which is inconsistent unless b′′ = 0.

Case 3: (Square matrix). If n = m then (usually but not always) the ma-
trix R is the identity and the matrix A is invertible. In this case the inverse
matrix A−1 is the multiplier M found by the algorithm in paragraph 26 and
figure 4. In this case the homogeneous system Ax = 0 has only the triv-
ial solution x = 0 and the inhomogeneous system Ax = b has the unique
solution x = A−1b.

Theorem 32 (Invertible Matrices and Elementary Matrices). Elementary
matrices are invertible. A matrix is invertible if and only if it is row equiva-
lent to the identity, i.e. if and only if if it is a product of elementary matrices.

Proof. See Case(3) of paragraph 31 and paragraph 35 below.

Theorem 33 (Algebra of Inverse Matrices). The invertible matrices satisfy
the following three properties:

1. The identity matrix I is invertible and

I−1 = I.

2. The inverse of an invertible matrix A is invertible and
(
A−1

)−1
= A.

3. The product AB of two invertible matrices is invertible, and
(
AB

)−1
= B−1A−1.

Proof. That I−1 = I follows from IC = CI = I if C = I. That
(
A−1

)−1
= A

follows from CA = AC = I if C = A−1. To prove
(
AB

)−1
= B−1A−1 let

C = B−1A−1. Then C(AB) = B−1A−1AB = B−1IB = B−1B = I and
(AB)C = ABB−1A−1 = AIA−1 = AA−1 = I.
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Remark 34. Note the structure of the last proof. We are proving “If P, then
Q” where “if P” is the statement “if A and B are invertible” and “then Q” is
the statement “then AB is invertible”. The first step is “Assume that A and
B are invertible.” The second step is “Let C = B−1A−1.” Then there is some
calculation. The penultimate step is “Therefore C(AB) = (AB)C = I” and
the last step is “Therefore AB is invertible”. Each step is either a hypothesis
(like the first step) or introduces notation (like the second step) or follows
from earlier steps. The last step follows from the penultimate step by the
definition of what it means for a matrix to be invertible.

35. The algorithm in paragraph 26 can be used to compute the inverse A−1

of an invertible matrix A as follows. We form the n × 2n matrix
[

A I
]
.

Performing elementary row operations produces a sequence
[

A I
]

=
[

A0 B0

]
,
[

A1 B1

]
, · · · [ Am Bm

]
=

[
I M

]
,

where each matrix in the sequence is obtained from the previous one by
multiplication by an elementary matrix

[
Ak+1 Bk+1

]
= Ek

[
Ak Bk

]
=

[
EkAk EBk

]
.

Hence there is an invariant relation

A−1
k+1Bk+1 = (EkAk)

−1 (EBk) = A−1
k E−1EBk = A−1

k Bk,

i.e. the matrix A−1
k Bk doesn’t change during the algorithm. Hence

A−1 = A−1I = A−1
0 B0 = A−1

m Bm = I−1M = M.

This proves that the algorithm computes the inverse A−1 when A is invert-
ible. See Case 3 of paragraph 31.

36. If n is an integer and A is a square matrix, we define

An := AA · · ·A︸ ︷︷ ︸
n

for n ≥ 0 with
A−n :=

(
A−1

)n
.

The power laws
Am+n = AmAn, A0 = I

follow from these definitions and the associative law.
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6 Friday February 27 and Monday March 2

37. In this section A denotes an n×n matrix and aj denotes the jth column
of A. We indicate this by writing

A =
[

a1 a2 · · · an

]
.

We also use the notation ej for the jth column of the identity matrix I:

I =
[

e1 e2 · · · en

]
.

Theorem 38. There is a unique function called the determinant4 which
assigns a number det(A) to each square matrix A and has the following
properties.

(1) The determinant of the identity matrix is one:

det(I) = 1.

(2) The determinant is additive in each column:

det(
[ · · · a′j + a′′j · · · ]

) = det(
[ · · · a′j · · · ]

)+det(
[ · · · a′′j · · · ]

)

(3) Rescaling a column multiplies the determinant by the same factor:

det(
[

a1 · · · caj · · · an

]
) = c det(

[
a1 · · · aj · · · an

]
).

(4) The determinant is skew symmetric in the columns: Interchanging two
columns reverses the sign:

det(
[ · · · ai · · · aj · · · ]

) = − det(
[ · · · aj · · · ai · · · ]

).

Lemma 39. The following properties of the determinant function follow from
properties (2-4)

(5) Adding a multiple of one column to a different column leaves the deter-
minant unchanged:

det(
[ · · · ai + caj · · · ]

) = det(
[ · · · ai · · · ]

) (i 6= j)

4The text uses the notation |A| where I have written det(A).
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(6) If a matrix has two identical columns its determinant is zero:

i 6= j, ai = aj =⇒ det(
[ · · · ai · · · aj · · · ]

) = 0.

Proof. Item (6) is easy: interchanging the two columns leaves the matrix un-
changed (because the columns are identical) and reverses the sign by item (4).
To prove (5)

det(
[ · · · ai + caj · · · ]

) = det(
[ · · · ai · · · ]

) + det(
[ · · · caj · · · ]

)

= det(
[ · · · ai · · · ]

) + c det(
[ · · · aj · · · ]

)

= det(
[ · · · ai · · · ]

)

by (2), (3), and (6) respectively.

Remark 40. The theorem defines the determinant implicitly by saying that
there is only one function satisfying the properties (1-4). The text gives an
inductive definition of the determinant on page 201. “Inductive” means that
the determinant of an n×n matrix is defined in terms of other determinants
(called minors) of certain (n− 1)× (n− 1) matrices. Other definitions are
given in other textbooks. We won’t prove Theorem 38 but will instead show
how it gives an algorithm for computing the determinant. (This essentially
proves the uniqueness part of Theorem 38.)

Example 41. The determinant of a 2× 2 matrix is given by

det

([
a11 a12

a21 a22

])
= a11a22 − a12a21.

The determinant of a 3× 3 matrix is given by

det







a11 a12 a31

a21 a22 a23

a31 a32 a33





 = a11a22a33 + a12a23a31 + a13a21a32

− a12a21a33 − a11a23a32 − a13a22a31.

The student should check that (with these definitions) the properties of the
determinant listed in Theorem 38 hold.

Theorem 42 (Elementary Matrices and Column Operations). Let A be an
an m × n matrix and E be an n × n elementary matrix. Then the product
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AE is equal to the matrix which results from applying to A the same elemen-
tary column operation as was used to produce E from I. (The elementary
column operations are swapping two columns, rescaling a column by a
nonzero factor, and adding a multiple of one column to another.)

Proof. This is just like Theorem 25. (The student should write out the proof
for 2× 2 matrices.)

Theorem 43. If E is an elementary matrix, and A is a square matrix of
the same size, then the determinant of the product AE is given by

(Swap) det(AE) = − det(A) if (right multiplication by) E swaps two columns;

(Scale) det(AE) = c det(A) if E rescales a column by c;

(Shear) det(AE) = det(A) if E adds a multiple of one column to another.

Proof. These are properties (2-4) in Theorem 38.

Theorem 44. The determinant of a product is the product of the determi-
nants:

det(AB) = det(A) det(B).

Hence a matrix is invertible if and only if its determinant is nonzero and
det(A−1) = det(A)−1.

Proof. An invertible matrix is a product of elementary matrices, so this fol-
lows from Theorem 43 if A and B are invertible. Just as a noninvertible
square matrix can be transformed to a matrix with a row of zeros by ele-
mentary row operations so also a noninvertible square matrix can be trans-
formed to a matrix with a column of zeros by elementary column opera-
tions. A matrix with a column of zeros has determinant zero because of
part (3) of Theorem 38: multiplying the zero column by 2 leaves the ma-
trix unchanged and mutiplies the determinanat by 2 so the determinant
must be zero. Hence the determinant is zero if either A or B (and hence
also AB) in not invertible. The formula det(A−1) = det(A)−1 follows as
det(A−1) det(A) = det(A−1A) = det(I) = 1. The fact that a matrix is in-
vertible if and only if its determinant is nonzero follows form the facts that an
invertible matrix is a product of elementary matrices (Theorem 32), the de-
terminant of an elementary matrix is not zero (by Theorem 43 with A = I),
and the determinant of a matrix with a zero column is zero.
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Remark 45. The text contains a formula for the inverse of a matrix in
terms of determinants (the transposed matrix of cofactors) and a related
formula (Cramer’s Rule) for the solution of the inhomogeneous system
Ax = b where A is invertible. We will skip this, except that the student
should memorize the formula

A−1 =
1

det(A)

[
a22 −a12

−a21 a11

]

for the inverse of the 2× 2 matrix

A =

[
a11 a12

a21 a22

]
.

Corollary 46. If E is an elementary matrix, and A is a square matrix of
the same size, then the determinant of the product EA is given by

(Swap) det(EA) = − det(A) if (left multiplication by) E swaps two rows;

(Scale) det(EA) = c det(A) if E rescales a row by c;

(Shear) det(EA) = det(A) if E adds a multiple of one row to another.

47. Figure 6 shows a Matlab program which uses this corollary to compute
the determinant at the same time as it computes the reduced echelon form.
The algorithm can be understood as follows. If E is an elementary matrix
then

det(EA) = c det(A)

where c is the scale factor if multiplication by E rescales a row, c = −1
if multiplication by E swaps two rows, and c = 1 if multiplication by E
subtracts a multiple of one row from another. We initialize a variable d to
1 and as we transform A we update d so that the relation d det(A) = k
always holds with k constant, i.e. k = det(A). (This is called an invariant
relation in computer science lingo.) Thus when we rescale a row by c−1 we
replace d by dc, when we swap two rows we replace d by −d, and when when
we subtract one row from another we leave d unchanged. (The matrix A
changes but k does not.) At the end we have replaced A by I so d det(I) = k
so d = k = det(A).
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Figure 3: Computing the Determinant and Row Operations

function d = det(A)

% invariant relation d*det(A) = constant

[m n] = size(A); d=1;

for k=1:n

[y,h] = max(abs(A(k:m, k))); h=k-1+h;

if y < 1.0E-9 % (i.e if y == 0)

d=0; return

else

if (k~=h)

A([k h],:) = A([h k],:); % swap

d=-d;

end

c = A(k,k);

A(k,:) = A(k,:)/c; % scale

d=c*d;

for i = k+1:m % shear

A(i,:) = A(i,:) - A(i,k)*A(k,:);

end

end % if

end % for

18
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Definition 48. The transpose of an m× n matrix A is the n×m matrix
AT defined by

entryij(A
T) = entryji(A)

for i = 1, . . . , n, j = 1, . . . , m.

49. The following properties of the transpose operation (see page 206 of the
text) are easy to prove:

(i) (AT)T = A;

(ii) (A + B)T = AT + BT;

(iii) (cAT) = cAT;

(iv) (AB)T = BTAT.

For example, to prove (iv)

entryij((AB)T) = entryji(AB) =
∑

k

entryjk(A)entryki(B)

=
∑

k

entryki(B)entryjk(A) =
∑

k

entryik(B
T)entrykj(A

T)

= entryij(B
TAT).

Note also that the transpose of an elementary matrix is again an elementary
matrix. For example.

[
1 c
0 1

]T

=

[
1 0
c 1

]
,

[
c 0
0 1

]T

=

[
c 0
0 1

]
,

[
0 1
1 0

]T

=

[
0 1
1 0

]
.

Finally a matrix A is invertible if and only if its transpose AT is invertible
(because BA = AB = I =⇒ ATBT = BTAT = IT = I) and the inverse of
the transpose is the transpose of the inverse:

(
AT

)−1
=

(
A−1

)T
.
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Remark 50. The text (see page 235) does not distinguish Rn and Rn×1

and sometimes uses parentheses in place of square brackets for typographical
reasons. It also uses the transpose notation for the same purpose so

x = (x1, x2, . . . , xn) =
[

x1 x2 · · · xn

]T
=




x1

x2
...

xn


 .

Theorem 51. A matrix and its transpose have the same determinant:

det(AT) = det(A).

Proof. The theorem is true for elementary matrices and every invertible ma-
trix is a product of elementary matrices. Hence it holds for invertible matrices
by Theorem 44. If A is not invertible then det(AT) = 0 and det(A) = 0 so
again det(AT) = det(A).

8 Friday March 6

Definition 52. A vector space is a set V whose elements are called vectors
and equipped with

(i) an element 0 called the zero vector,

(ii) a binary operation called vector addition which assigns to each pair
(u,v) of vectors another vector u + v, and

(iii) an operation called scalar multiplication which assigns to each num-
ber c and each vector v another vector cv,

such that the following properties hold:

(u + v) + w = u + (v + w). (Additive Associative Law)
u + v = v + u. (Additive Commutative Law)
u + 0 = u. (Additive Identity)
u + (−1)u = 0. (Additive Inverse)
c(u + v) = cu + cv, (b + c)u = bu + cu. (Distributive Laws)
(bc)u = b

(
cu

)
. (Scalar Asscociative Law)

1u = u. (Scalar Unit)
0u = 0, c0 = 0 (Multiplication by Zero).
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Example 53. As noted above in paragraph 18 the set of all m× n matrices
with the operations defined there is a vector space. This vector space is
denoted by Mmn in the text (see page 272); other textbooks denote it by
Rm×n. (R denotes the set of real numbers.) Note that the text (see page 235
and Remark 50 above) uses Rn as a synonym for Rn×1 and has three notations
for the elements of Rn:

x = (x1, x2, . . . , xn) =
[

x1 x2 · · · xn

]T
=




x1

x2
...

xn


 .

Examples 54. Here are some examples of vector spaces.

(i) The set F of all real valued functions of a real variable.

(ii) The set P of all polynomials with real coefficients.

(iii) The set Pn of all polynomials of degree ≤ n.

(iv) The set of all solutions of the homogeneous linear differential equation

d2x

dt2
+ x = 0.

(v) The set of all solutions of any homogeneous linear differential equation.

The zero vector in F is the constant function whose value is zero and the
operations of addition and scalar multiplication are defined pointwise, i.e. by

(f + g)(x) := f(x) + g(x), (cf)(x) = cf(x).

The set P is a subspace of F (a polynomial is a function); in fact, all these
vector spaces are subspaces of F . The zero polynomial has zero coefficients,
adding two polynomials of degree ≤ n is the same as adding the coeficients:

(a0 + a1x + · · ·+ anx
n) + (b0 + b1x + · · ·+ bnx

n) =

= (a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn,

and multiplying a polynomial by number c is the same as multiplying each
coefficient by c:

c(a0 + a1x + · · · anx
n) = ca0 + ca1x + · · · canx

n.
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Definition 55. A subset W ⊆ V of a vector space V is called a subspace
iff it is closed under the vector space operations, i.e. iff

(i) 0 ∈ W ,

(ii) u,v ∈ W =⇒ u + w ∈ W , and

(iii) c ∈ R,u ∈ W =⇒ cu ∈ W .

Remark 56. The definition of subspace on page 237 of the text appears
not to require the condition (i) that 0 ∈ W . However that definition does
specify that W is non empty; this implies that 0 ∈ W as follows. There is
an element u ∈ W since W is nonempty. Hence (−1)u ∈ W by (iii) and
0 = u + (−1)u ∈ W by (ii). Conversely, if 0 ∈ W , then the set W is
nonempty as it contains the element 0.

The student is cautioned not to confuse the vector 0 with the empty set.
The latter is usually denoted by ∅. The empty set is characterized by the
fact that it has no elements, i.e. the statement x ∈ ∅ is always false. In
particular, 0 /∈ ∅. The student should also take care to distinguish the words
subset and subspace. A subspace of a vector space V is a subset of V with
certain properties, and not every subset of V is a subspace.

57. A subspace of a vector space is itself a vector space. To decide if a subset
W of a vector space V is a subspace you must check that the three properties
in Definition 55 hold.

Example 58. The set Pn of ploynomials of degree ≤ n is a subset of the
vector space P (its elements are polynomials) and the set Pn is a subspace
of Pm if n ≤ m (if n ≤ m then a p polynomial of degree ≤ n has degree
≤ m). These are also subspace because they are closed under the vector
space operations.

9 Monday March 9 – Wednesday March 11

Definition 59. Let v1,v2, . . . ,vk be vectors in a vector space V . The vector
w in V is said to be linear combination of the vectors v1,v2, . . . ,vk iff
there exist numbers x1, x2, . . . , xk such that

w = x1v2 + x2v2 + · · ·+ xkvk.
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The set of all linear combinations of v1,v2, . . . ,vk is called the span of
v1,v2, . . . ,vk. The vectors v1,v2, . . . ,vk are said to span V iff V is the
span of v1,v2, . . . ,vk, i.e. iff every vector in V is a linear combination of
v1,v2, . . . ,vk.

Theorem 60. Let v1,v2, . . . ,vk be vectors in a vector space V . Then the
span v1,v2, . . . ,vk is a subspace of V .

Proof. (See Theorem 1 page 243 of the text.) The theorem says that a linear
combination of linear combinations is a linear combination. Here are the
details of the proof.

(i) 0 is in the span since 0 = 0v1 + 0v2 + · · ·+ 0vk.

(ii) If v and w are in the span, there are numbers a1, . . . , bk such that
v = a1v1 + a2v2 + · · · + akvk and w = b1v1 + b2v2 + · · · + bkvk so
v + w = (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ak + bk)vk so v + w is in the
span.

(iii) If c is a number and v is in the span then there are numbers a1, . . . , ak

such that v = a1v1+a2v2+· · ·+akvk so cv = ca1v1+ca2v2+· · ·+cakvk

so cv is in the span.

Thus we have proved that the span satisfies the three conditions in the defi-
nition of subspace so the span is a subspace.

Example 61. If A =
[

a1 a2 · · · an

]
is an m× n matrix and b ∈ Rm,

then b is a linear combination of a1, a2, . . . , an if and only if the linear system
b = Ax is consistent, i.e. has a solution x. This is because of the formula

Ax = x1a2 + x2a2 + · · ·+ xnan

for x = (x1, x2, . . . , xn). The span of the columns a1, a2, · · · , an is called the
column space of A.

Definition 62. Let v1,v2, . . . ,vk be vectors in a vector space V . The vec-
tors v1,v2, . . . ,vk are said to be independent5 iff the only solution of the
equation

x1v2 + x2v2 + · · ·+ xkvk = 0 (∗)
5The more precise term linearly independent is usually used. We will use the shorter

term since this is the only kind of independence we will study in this course.
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is the trivial solution x1 = x2 = · · · = xk = 0. The vectors v1,v2, . . . ,vk

are said to be dependent iff they are not independent, i.e. iff there are
numbers x1, x2, . . . , xk not all zero which satisfy (∗).
Theorem 63. The vectors v1,v2, . . . ,vk are dependent if and only if one of
them is in the span of the others.

Proof. Assume that v1,v2, . . . ,vk are dependent. Then there are numbers
x1, x2 . . . , xk not all zero such that x1v1 + x2v2 + · · · + xkvk = 0. Since the
numbers x1, x2, . . . , xk are not all zero, one of them, say xi is not zero so

vi = −x1

xi

v1 − · · · − xi−1

xi

vi−1 − xi+1

xi

vi+1 − · · · − xk

xi

vk,

i.e. vi is a linear combination of v1, . . . .vi−1,vi+1 . . . ,vk. Suppose con-
versely that vi is a linear combination of v1, . . . .vi−1,vi+1 . . . ,vk. Then there
are numbers c1, . . . , ci−1, ci+1, . . . , ck such that vi = c1v1 + · · · + ci−1vi−1 +
ci+1vi+1 + · · · + ckvk. Then x1v1 + x2v2 + · · ·+ xkvk = 0 where xj = cj for
j 6= i and xi = −1. Since −1 6= 0 the numbers x1, x2, . . . , xk are not all zero
and so the vectors v1,v2, . . . ,vk are dependent.

Remark 64. (A pedantic quibble.) The text says things like “the set of
vectors v1,v2, . . . ,vk” is independent” but it is better to use the word “se-
quence” instead of “set”. The sets {v,v} and {v} are the same (both consist
of the single element v) but if v 6= 0 the sequence whose one and only ele-
ment is v is independent (since cv = 0 only if c = 0) whereas the two element
sequence v,v (same vector repeated) is always dependent since c1v+c2v = 0
if c1 = 1 and c2 = −1.

Definition 65. A basis for a vector space V is a sequence v1,v2, . . . ,vn of
vectors in V which both spans V and is independent.

Theorem 66. If v1,v2, . . . ,vn is a basis for V and w1,w2, . . . ,wm is a basis
for V , then m = n.

This is Theorem 2 on page 251 of the text. We will prove it next time.
It justifies the following

Definition 67. The dimension of a vector space is the number of elements
in some (and hence every) basis.

Remark 68. It can happen that there are arbitrarily long independent se-
quences in V . For example, this is the case if V = P , the space of all
polynomials: for every n the vectors 1, x, x2, . . . , xn are independent. In this
case we say that V is infinite dimensional.
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Proof of Theorem 66. Let w1,w2, . . . ,wm and v1,v2, . . . ,vn be two sequences
of vectors in a vector space V . It is enough to prove

(†) If w1,w2, . . . ,wm span V , and v1,v2, . . . ,vn are independent,
then n ≤ m.

To deduce Theorem 66 from this we argue as follows: If both sequences
w1,w2, . . . ,wm and v1,v2, . . . ,vn are bases then the former spans and the
latter is independent so n ≤ m. Reversing the roles gives m ≤ n. If n ≤ m
and m ≤ n, then m = n. To prove the assertion (†) is enough to prove the
contrapositive:

If w1,w2, . . . ,wm span V and n > m, then v1,v2, . . . ,vn are
dependent.

To prove the contrapositive note that because w1,w2, . . . ,wm span there are
(for each j = 1, . . . , n) constants a1j, . . . , amj such that

vj =
m∑

i=1

aijwi.

This implies that for any numbers x1, x2, . . . , xn we have

n∑
j=1

xjvj =
n∑

j=1

xj

(
m∑

i=1

aijwi

)
=

m∑
i=1

(
n∑

j=1

aijxj

)
wi. (#)

Since n > m the homogeneous linear system

n∑
j=1

aijxj = 0, i = 1, 2, . . . , m ([)

has more unknowns than equations so there is a nontrivial solution x =
(x1, x2, . . . , xn). The left hand side of ([) is the coefficient of wi in (#) so ([)
implies that

∑n
j=1 xjvj = 0, i.e. that v1,v2, . . . ,vn are dependent.

Definition 69. For an m× n matrix A

(i) The row space is the span of the rows of A.
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(ii) The column space is the span of the columns of A.

(iii) The null space is the set of all solutions x ∈ Rn of the homogeneous
system Ax = 0.

The dimension of the row space of A is called the rank of A. The text
calls the dimension of the row space the row rank and the dimension of the
columns space the column rank but Theorem 72 below says that these are
equal.

Theorem 70 (Equivalent matrices). Suppose that A and B are equivalent
m× n matrices. Then

(i) A and B have the same null space.

(ii) A and B have the same row space.

Proof. Assume that A and B are equivalent. Then B = MA where M =
E1E2 · · ·Ek is a product of elementary matrices. If Ax = 0 then Bx =
MAx = M0 = 0. Similarly if Bx = 0 then Ax = M−1Bx = M−10 = 0.
Hence Ax = 0 ⇐⇒ Bx = 0 which shows that A and B have the same
null space. Another way to look at it is that performing an elementary
row operation doesn’t change the space of solutions of the corresponding
homogeneous linear system. This proves (i)

Similarly performing an elementary row operation doesn’t change the row
space. This is because if E is an elementary matrix then each row of EA
is either a row of A or is a linear combination of two rows of A so a linear
combination of rows of EA is also a linear combination of rows of A (and
vice versa since E−1 is also an elementary matrix). This proves (ii).

Theorem 71. The rank of a matrix A is the number r of non zero rows in
the reduced echelon form of A.

Proof. By part (ii) of Theorem 70 it is enough to prove this for a matrix
which is in reduced echelon form. The non zero rows clearly span the row
space (by the definition of the row space) and they are independent since the
identity matrix appears as an r × r submatrix.

Theorem 72. The null space of an m×n matrix has dimension n− r where
r is the rank of the matrix.
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Proof. The algorithm on page 254 of the text finds a basis for the null space.
You put the matrix in reduced echelon form. The number of leading variables
is r so there are n− r free variables. A basis consists of the solutions of the
system obtained by setting one of the free variables to one and the others to
zero.

Spring recess. Mar 14-22 (S-N)
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73. Theorem 70 says that equivalent matrices have the same row space, but
they need not have the same column space. The matrices

A =

[
1 0
1 0

]
and B =

[
1 0
0 0

]

are equivalent and the row space of each is the set of multiples of the row[
1 0

]
, but the column spaces are different: the column space of A consists

of all multiples of the column (1, 1) while the column space of B consists of
all multiples of column (1, 0). However

Theorem 74. The row rank equals the column rank, i.e. the column space
and row space of an m× n matrix A have the same dimension.

Proof. Theorem 63 says that if a sequence v1, . . . ,vn of vectors is dependent
then one of them is a linear combination of the others. This vector can be
deleted without changing the span. In particular, if the columns of a matrix
are dependent we can delete one of them without changing the column space.
This process can be repeated until the vectors that remain are independent.
The remaining vectors then form a basis. Thus a basis for the column space
of A can be selected from the columns of A. The algorithm in the text on
page 259 tells us that these can be the pivot columns of A: these are the
columns corresponding to the leading variables in the reduced echelon form.

Let ak be the kth column of A and rk be the kth column of the redced
echelon form R of A. Then

A =
[

a1 a2 · · · an

]
, R =

[
r1 r2 · · · rn

]
,
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and MA = R where M is the invertible matrix which is the product of
the elementary matrices used to transform A to its reduced echelon form R.
Now matrix multiplication distributes over concatenation:

MA =
[

Ma1 Ma2 · · · Man

]
= R =

[
r1 r2 · · · rn

]
,

so
Mak = rk, and rk = M−1ak

for k = 1, 2, . . . , n. After rearranging the columns of R and rearranging
the columns of A the same way we may assume that the first r columns of
R are the first r columns e1, e2, . . . , er of the identity matrix and the last
n − r rows of R are zero. Then each of the last n − r columns of R is a
linear combination of the first r columns so (multiplying by M) each of the
last n− r columns of A is a linear combination of the first r columns (with
the same coefficients). Hence the first columns of A span the column space
of A. If some linear combination of the first r columns of A is zero, then
(multiplying by M−1) the same linear combination of the first r columns is
zero. But the first r columns of R are the first r columns of the identity
matrix so the coefficients must be zero. Hence the first r columns of A are
independent.

Example 75. The following matrices were computer generated.

A =




1 3 19 23
−1 −2 −14 −17
−2 −6 −38 −46
−2 −7 −43 −52


 , R =




1 0 4 5
0 1 5 6
0 0 0 0
0 0 0 0


 ,

M =




−2 −1 −3 2
−6 0 −2 −1

5 3 −2 3
1 1 −1 1


 , M−1 =




1 3 10 −29
−1 −2 −7 21
−2 −6 −19 55
−2 −7 −22 64


 .

The matrix R is the reduced echelon form of A and MA = R. The pivot
columns are the first two columns. The third column of R is 4e1 + 5e2 and
the third column of A is a3 = 4a1 +5a2. The fourth column of R is 5e1 +6e2

and the fourth column of A is a4 = 5a1 + 6a2. The first two columns of A
are the same as the first two columns of M−1.

28



11.1 Wednesday March 22

The following material is treated in Section 4.6 of the text. We may not have
time to cover it in class so you should learn it on your own,

Definition 76. The inner product of two vectors u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) in Rn is denoted 〈u,v〉 and defined by

〈u,v〉 = u1v2 + u2v2 + · · ·+ unvn.

It was called the dot product in Math 222. It can also be expressed in
terms of the transpose operation as

〈u,v〉 = uTv.

The length |u| of the vector u is defined as

|u| :=
√
〈u,u〉.

Two vectors are called orthogonal iff their inner product is zero.

77. The inner product satisfies the following.

(i) 〈u,v〉 = 〈v,u〉.
(ii) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉.
(iii) 〈cu,v〉 = c〈u,v〉.
(iv) 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 ⇐⇒ u = 0.

(v) |〈u,v〉| ≤ |u| |v|.
(vi) |u + v| ≤ |u|+ |v|.
The inequality (v) is called the Cauchy Schwartz Inequality. It justifies
defining the angle θ between two nonzero vectors u and v by the formula

〈u,v〉 = |u| |v| cos θ

Thus two vectors are orthogonal iff the angle between them is π/2. The
inequality (vi) is called the triangle inequality.
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Theorem 78. Suppose that the vectors v1,v2, . . . ,vk are non zero and pair-
wise orthogonal, i.e. 〈vi,vj〉 = 0 for i 6= j. Then the sequence v1,v2, . . . ,vk

is independent.

Definition 79. Let V be a subspace of Rn. The orthogonal complement
is the set V ⊥ of vectors which are orthogonal to all the vectors in V , in other
words

w ∈ V ⊥ ⇐⇒ 〈v, w〉 = 0 for all v ∈ V.

Theorem 80. The column space of AT is the orthogonal complement to the
null space of A.

Exam II. Friday Mar 27

30


