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• Kepler’s first law: A planet moves in a plane in an ellipse with the
sun at one focus.

• Kepler’s second law: The position vector from the sun to a planet
sweeps out area at a constant rate.

• Kepler’s third law: The square of the period of a planet is proportional
to the cube of its mean distance from the sun. (The mean distance is
the average of the closest distance and the furthest distance. The period
is the time required to go once around the sun.)

1. Let (x, y, z) be the position of a planet in space where x, y, and z are all
function of time t. Assume the sun is at the origin (0,0,0). We define the
position vector r, the velocity vector v, and the acceleration vector a by

r = xi + yj + zk, v =
dx

dt
i +

dy

dt
j +

dz

dt
k, a =

d2x

dt2
i +

d2y

dt2
j +

d2z

dt2
k.

Newton’s law of motion is
F = ma

where F is the force on the planet and m is the mass of the planet. Newton’s
inverse square law of gravity is

F = −GMm

|r|3
r

∗These notes are adapted from: Milnor, J: On the geometry of the Kepler problem.
Amer. Math. Monthly 90 (1983) 353-365.
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where G is a universal gravitational constant and M is the mass of the sun.
(The inverse square law is so called because the magnitude |F| = GMm|r|−2

of the force F is proportional to the reciprocal of the square of the distance
|r| from the planet to the sun.) Newton’s laws imply

a =
d2r

dt2
= −GMr

|r|3
. (1)

Note that m cancelled. This means that the mass of the planet does not
affect its motion. (We are assuming that the sun is motionless. In more
advanced treatments, this assumption is not made.)

2. First we show that the planet moves in a plane. By the product rule for
differentiation

d

dt
(r× v) = v × v + r× a (2)

By (1) and the fact that the cross product of parallel vectors is 0 the right
hand side of (2) is 0. It follows that the vector

h = r× v

is constant. We conclude that both the position and velocity vector lie in a
plane normal to h. Choose coordinates so that this plane is the xy-plane.
Then

h = hk

for some constant scaler h. (We have assumed h 6= 0; in case h = 0 it can
be shown that the planet moves on a straight line.)

3. Since the planet moves in the xy plane we have

r = xi + yj = r cos(θ)i + r sin(θ)j (3)

where the polar coordinates r and θ are functions of t. The derivative of r is

v =

[
dr

dt
cos(θ)− r sin(θ)

dθ

dt

]
i +

[
dr

dt
sin(θ) + r cos(θ)

dθ

dt

]
j (4)

From r× v = hk we get

r cos(θ)

[
dr

dt
sin(θ) + r cos(θ)

dθ

dt

]
− r sin(θ)

[
dr

dt
cos(θ)− r sin(θ)

dθ

dt

]
= h.
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After multiplying out and simplifying this reduces to

r2dθ

dt
= h (5)

The area A swept out from time t0 to time t1 by a curve in polar coordinates
is

A =
1

2

∫ t1

t0

r2dθ

dt
dt

so A = h(t1 − t0)/2 by (5). This is Kepler’s second law.

Theorem 4 (Hamilton). The velocity vector v moves on a circle.

Proof. Since r = |r| equation (1) can be written

dv

dt
= −GM

r2

[
cos(θ)i + sin(θ)j

]
. (6)

Divide (6) by (5) and use the chain rule:

dv

dθ
= −GM

h

[
cos(θ)i + sin(θ)j

]
.

Now integrate to obtain

v =
GM

h

[
− sin(θ)i + cos(θ)j

]
+ c (7)

where c is the constant of integration. Hence |v − c| = GM/h so v moves
on a circle centered at c with radius GM/h.

5. Now we can prove Kepler’s first law. Choose coordinates (in the xy plane)
so that c is parallel to j (and in the same direction) and let e = (c · j)h/GM
so that (7) takes the form

v =
GM

h

[
− sin(θ)i + (cos(θ) + e)j

]
. (8)

The cross product of (3) and (8) is

hk = h = r× v =
GMr

h
(1 + e cos(θ)) k

so

r =
k

1 + e cos θ
(9)

where k = h2/GM. Equation (9) is the polar equation of a conic section with
eccentricity e.
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6. Assume that the conic section (9) is an ellipse, i.e. that e < 1. The
ellipse (9) has one focus at the origin and the other on the negative x-axis so
the closest and farthest the planet comes to the sun are given by

rmin = r

∣∣∣∣
θ=0

=
k

1 + e
, rmax = r

∣∣∣∣
θ=π

=
k

1− e
.

These are the values of x = r cos(θ) where the i component dx/dt of v
vanishes, i.e. by equation (7) where sin(θ) = 0. The quantity

a =
rmin + rmax

2
=

k

1− e2
(10)

is the major semi-axis of the ellipse. The minor semi-axis b can be found by
maximizing y on the orbit. This maximum value of y = r sin(θ) occurs when
dy/dt = 0, i.e. when the j component of v vanishes, i.e. by equation (7)
when cos(θ) + e = 0. Thus

b = y

∣∣∣∣
θ=cos−1(−e)

=
k sin(cos−1(−e))

1 + e cos(cos−1(−e))
=
k
√

1− e2

1− e2
=

k√
1− e2

. (11)

The equation for the ellipse on rectangular coordinates is

(x+ ea)2

a2
+
y2

b2
= 1. (12)

7. We now prove Kepler’s third law in the form

T 2 =
4π2

GM

(
rmin + rmax

2

)3

(13)

where T is the period of the planet, i.e. the time it takes the planet to go
around the sun one time. The area of the ellipse is πab so by the second law
we get

πab =
1

2

∫ 2π

0

r2 dθ =
1

2

∫ T

0

r2dθ

dt
dt =

1

2

∫ T

0

h dt =
Th

2
(14)

Thus

T 2 =

(
2πab

h

)2

=
4π2k4

(1− e2)3h2
=

4π2a3k

h2
=

4π2a3

GM
. (15)

The first equality in (15) comes from (14), the second from (10) and (11), the
third from (10), and the fourth from the definition k = h2/GM of k given
after equation (9). Equation (13) results by substituting (10) in (15).
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8. Historical Remark. Kepler published his laws in 1609. Newton’s Prin-
cipia was published in 1687. The proof of Hamilton was published in 1846.
Exercise 15 below asks you to prove Newton’s inverse square law assuming
(a) Kepler’s first law (9) and (b) that the force on the planet is directed
towards the sun. Perhaps this is how Newton discovered the inverse square
law of gravitation.

9. In the special case where the orbit of the planet is a circle Kepler’s third
law is much easier to prove. Show that T 2 = (4π2/GM)a3 under the assump-
tion that

d2r

dt2
= −GMr

a3
, r = a cos(ωt)i + a sin(ωt)j

where a and ω are constants.

10. The proof of Kepler’s second law did not use the full force of (1). Prove
Kepler’s second law under the hypothesis that

m
d2r

dt2
= gr (16)

where g = g(x, y, z) is any function. The proof in the text is the special case
g = −GMm|r|−3.

11. The planet earth is 93 million miles from the sun and orbits the sun in
one year. The planet Pluto takes 248 years to orbit the sun. How far is Pluto
from the sun?

12. Halley’s comet goes once around the sun every 77 years. Its closest
approach is 53 million miles. What is its furthest distance from the sun?
What is the maximum speed of the comet and what is the minimum speed?

13. Calling the quantity a defined in equation (10) the mean distance is a
misnomer. Show that

1

T

∫ T

0

r dt = a(1 + e2/2).

Hint: By equation (12) the ellipse has parametric equations

x = −ea+ a cosφ, y = b sinφ.

Express the integral first in terms of θ and then in terms of φ.
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14. Show that
1

T

∫ T

0

r−1 dt = a−1.

15. Assume that the motion of a particle satisfies Kepler’s first law and that
the force is directed toward the origin; i.e. assume Equations (9) and (16).
Show that f = cr−2 (along the orbit) where c is a constant. (See Exercise 7
on page 566 of Thomas & Finney fifth edition.)

16. The quantity

W = −GMm

|r|
is called the potential energy of the planet, the quantity

K =
m|v|2

2
is called the kinetic energy, and the quantity

E = K +W =
m|v|2

2
− mGM

|r|
is called the energy. Show that

E =
m

2

(
GM

h

)2

(e2 − 1).

Conclude that E is constant along solutions of (1) and that the orbit (9) is
an ellipse, a parabola, or a hyperbola according as the energy E is negative,
zero, or positive. Hint: Use (7). (9), and the definition of k. Also show
that E is negative, zero, or positive according as the origin lies inside, on, or
outside the velocity circle of Theorem 4.

17. Show that the force

F = −GMm

|r|3
r

in the Kepler problem is the negative gradient

F = −gradW

of the potential energy. Conclude that

dE

dt
= 0

along any solution of (1). This confirms the result of Exercise 16. (Do this
exercise after you have learned partial differentiation.)
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Answers to the Exercises

18. Answer to Exercise 9. The formula r = a cos(ωt)i + a sin(ωt)j says that the
planet moves on a circle of radius a with angular velocity ω. Differentiating twice
gives that the acceleration vector is a = −ω2r. From Newton’s law the acceleration
vector is a = −GM |r|−3r = −GMa−3r so ω2 = GMa−3. The period is the time
required to go around once so ωT = 2π and hence ω2 = 4π2/T 2. Equate the two
formulas for ω2 to get T 2 = GMa3/4π2 which is Kepler’s third law.

19. Answer to Exercise 10. Part I. Suppose that ma = gr; we show that r lies in
a plane. By the product rule

d

dt
(r× v) =

dr
dt
× v + r× dv

dt
= v × v + r× a = v × v +

g

m
r× r = 0

as the cross product of a vector with itself is 0. Hence the vector (r×v) is constant;
we choose coordinates so that it is a multiple of k say

r× v = hk.

Since r ⊥ r×v we conclude that (if h 6= 0) r ⊥ k, i.e. that r lies in the (x, y)-plane.

20. Answer to Exercise 10. Part II. Suppose that r× v = hk where h is constant
so that r lies in the (x, y)-plane. We show that the radius vector r sweeps out area
at a constant rate. The radius vector r is given in polar coordinates by the formula

r = xi + yj = r cos θi + r sin θj = r(cos θi + sin θj)

where x, y, r, θ depend on t. Thus by the product rule for differentiation

v =
dr

dt
(cos θi + sin θj) + r

dθ

dt
(− sin θi + cos θj)

The first term on the left is proportional to r and the second is perpendicular to
r so

hk = r× v = r(cos θi + sin θj)× rdθ
dt

(− sin θi + cos θj) = r2dθ

dt
k.

so
h = r2dθ

dt
.

The rate at which the planet sweeps out area is

dA

dt
=
r2

2
dθ

dt
=
h

2
,

i.e. dA/dt is constant.
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21. Answer to Exercise 11. The period of the earth is T1 = one year and its
mean distance to the sun is a1 = 93 · 106 miles. The period of Pluto is T2 = 248
years; we are to find its mean distance a2 to the sun. Using Kepler’s third law
T 2

1 = 4π2a3
1/(GM) and the data for the earth we can find the constant GM :

GM =
4π2a3

1

T 2
1

= 4π2 · 933 · 1018 (17)

so using Kepler’s law with the data for Pluto determines its mean distance

a2 =
(
T 2

2GM

4π2

)1/2

= 2482/3 · 93 · 106 miles.

22. Answer to Exercise 12. As in the previous exercise the period of Halley’s
comet is T = 77 years; let a be its mean distance to the sun. Then

772 = T 2 =
4π2a3

GM
=

a3

933 · 1018

so a3 = 772 · 933 · 1018 so a = 772/3 · 93 · 106 miles. Now a = (rmin + rmax)/2 so
rmax = 2a− rmin = (2 · 772/3 · 93− 53) · 106. By Equation (7) the speed is

|v| = (GM/h)
√

sin2 θ + (cos(θ) + e)2 = (GM/h)
√

1 + 2e cos θ + e2 (18)

and is largest when θ = 0 and smallest when θ = π. From the values rmin and
rmax we can determine the constants e and k in Equation (9); we determined GM
in Equation (17), and we can determine h from the definition k = h2/GM of k
which appears after Equation (9). Specifically, a = rmin + ea so e = 1 − (rmin/a)
and k = a(1− e2) so the largest and smallest values of |v| are

GM
√

1± 2e+ e2

h
=
GM(1± e)

h

where GM = 4π2 ·933 ·1018, e = 1−(53/(772/3 ·93)), and k = 772/3 ·93 ·106(1−e2).

23. Answer to Exercises 13 and 14. Exercise 13 asks us to evaluate the integral

In =
1
T

∫ T

0
rn dt

for n = 1; Exercise 14 asks us to evaluate this integral for n = −1. The planet lies
on the ellipse

r =
k

1 + e cos θ
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where k = h2/GM and h is the constant in Kepler’s second law r2dθ/dt = h. Thus
dt/dθ = r2/h so

In =
1
hT

∫ 2π

0
rn+2 dθ. (19)

The semimajor axis a = (rmin + rmax)/2 of the ellipse, the semiminor axis b, and
the distance 2c between the foci are given by

a =
k

1− e2
, b =

√
a2 − c2, c = ea.

In rectangular coordinates x = r cos θ and y = r sin θ the equation of the ellipse is

(x+ c)2

a2
+
y2

b2
= 1

so the ellipse has parametric equations

x = −c+ a cosφ, y = b sinφ, 0 ≤ φ ≤ 2π.

We calculate dθ/dφ. Differentiate the equation

−c+ a cosφ = x = r cos θ =
k cos θ

1 + e cos θ

to get

−a sinφ
dφ

dθ
= − k sin θ

(1 + e cos θ)2
= −yr

k
.

substitute y = b sinφ and divide by −a sinφ to get

dφ

dθ
=
br

ak

and hence from Equation (19) we get

In =
1
hT

∫ 2π

0
rn+2 dθ

dφ
dφ =

ak

hTb

∫ 2π

0
rn+1 dφ. (20)

We express the constant ak/hTb in terms of a and e using the formulas

a =
k

1− e2
, T =

2πa3/2

√
GM

, k =
h2

GM
.

Then k = a(1− e2) and h =
√
kGM =

√
a(1− e2)GM so

ak

hTb
= a · a(1− e2) · 1√

a(1− e2)GM
·
√
GM

2πa3/2
· 1
a
√

1− e2
=

1
2πa
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so Equation (20) simplifies to

In =
1

2πa

∫ 2π

0
rn+1 dφ. (21)

Taking n = −1 in Equation (21) gives

I−1 =
1

2πa

∫ 2π

0
dφ =

1
a

which completes Exercise 14. For n = 1 we use r2 = x2 + y2, a2 = b2 + c2, and
c = ea so from the parametric equations for the ellipse and the half angle formula
we get

r2 = c2 − 2ac cosφ+ a2 cos2 φ+ b2 sin2 φ

= a2(1− 2e cosφ+ e2 cos2 φ)

= a2

(
1− 2e cosφ+

e2(1− cos 2φ)
2

)
.

Now
∫ 2π

0 cosφdφ =
∫ 2π

0 cos 2φdφ = 0 so by Equation (21) we have

I1 = a

(
1 +

e2

2

)
.

This completes Exercise 13.

24. Answer to Exercise 15. We assume that the force is directed toward the origin

ma = m
d2r
dt

= gr (16)

and that the planet moves in an ellipse

r =
k

1 + e cos θ
(9)

We are to prove that |ma| is proportional to 1/r2. We introduce the unit vector

u = cos θi + sin θj

in the direction r. Then r = ru and the unit vector

du
dθ

= − sin θi + cos θj
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is perpendicular to u, and a calculation (see Thomas Finney) shows that

a =

(
d2r

dt2
− r

(
dθ

dt

)2
)

u +
(
d2θ

dt2
+ 2

dr

dt

dθ

dt

)
du
dθ

From Equation (16) we get

d2r

dt2
− r

(
dθ

dt

)2

= gr (22)

d2θ

dt2
+ 2

dr

dt

dθ

dt
= 0. (23)

As is shown in Thomas Finney, Equation (23) leads to another proof of Kepler’s
second law r2dθ/dt = h. Differentiate Equation (9) and use (9) and Kepler’s
second law to get

dr

dt
=

ke sin θ
(1 + e cos θ)2

· dθ
dt

=
k2

(1 + e cos θ)2

dθ

dt

e sin θ
k

= r2dθ

dt

e sin θ
k

=
he sin θ
k

and hence
d2r

dt2
=
he cos θ

k
· dθ
dt
. (24)

By Kepler’s second law again

r

(
dθ

dt

)2

=
r2

r

(
dθ

dt

)2

=
h

r
· dθ
dt

=
h(1 + e cos θ)

k
· dθ
dt

(25)

so subtracting (25) from (24) gives

d2r

dt2
− r

(
dθ

dt

)2

=
h

k
· dθ
dt

=
h2

kr2
. (26)

By (22) and (23) the left hand side of (26) is |a| so |a| is inversely proportional to
r2 as claimed.

25. Answer to Exercise 16. By Equation (8)

K =
m|v|2

2
=
m

2

(
GM

h

)2

(sin2 θ + (cos θ + e)2) =
m

2

(
GM

h

)2

(1 + 2e cos θ + e2).

Recall that k = h2/GM [see the definition after Equation (9)] so by the definition
of W and k and Equation (9) we have

W = −mGM
r

= −mGM(1 + e cos θ)
k

= −m
(
GM

h

)2

(1 + e cos θ)
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so the total energy

E = K +W =
m

2

(
GM

h

)2

(e2 − 1)

is constant along the orbit. When the orbit is an ellipse (i.e. e < 1) the energy
is negative and taking θ = 0, π/2, π, 3π/2 in Equation (8) shows that v passes
through all four quadrants so the origin lies inside the velocity circle.

26. Answer to Exercise 17. Where r = |r| =
√
x2 + y2 + z2 we have

∇r =
∂r

∂x
i +

∂r

∂y
j +

∂r

∂z
k =

r
r

so by the chain rule

∇W = −∇
(
mGM

r

)
=
mGM

r2
∇r =

mGM

r3
r = −F = −ma

so
dE

dt
=
dK

dt
+
dW

dt
= mv · a +∇W · v = mv · a−ma · v = 0.

Possible Examination Questions

27. A particle moves in space according to a central force law md2r/dt2 = gr
where g = g(x, y, z) is any function and r = xi + yj + zk is the position vector of
the particle. Prove that the particle stays in a plane. Answer: Write what is in
section 19 above.

28. Suppose that the position vector r = xi + yj of a particle in the (x, y)-plane
satisfies r × v = hk where h is constant and v is the velocity vector. Show that
the radius vector r sweeps out area at a constant rate Answer: Write what is in
section 20 above.

29. A planet moves in space according to Newton’s law md2r/dt2 = −mGM |r|−3r
where r = xi + yj + zk is the position vector of the planet. Let v be the velocity
vector, K = m|v|2/2, and W = −mGM/|r|. Show that the quantity E = K +W
is constant. Answer: Write what is in section 26 above.
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