Caculus 221

Possible questions for Exam II

March 19, 2002

These notes cover the recent material in a style more like the lecture than
the book. The proofs in the book are in section 1-11. At the end there is a
list of questions. At least one of these will appear on the next exam.

§1 The Max-Min Existence Theorem. Let the function f(z) be continu-
ous on the closed finite interval a < x < b. Then there is at least one number
¢ such that a < ¢ < b and f(x) < f(c) for all x in the interval a < x < b
and there is at least one number d such that a < d <b and f(d) < f(x) for
all x in the interval a < x <b.

82 We say that f attains its maximum at ¢ and its minimum at d and
that f(c) is the maximum value of f and f(d) is the minimum value
of f on the interval. Often the maximum is attained at an endpoint, i.e.
¢ =a or ¢ = b and similarly for the minimum. For example, on the interval
2 < z < 3 the function f(z) = z? attains its minimum value 4 = f(2) at the
left endpoint and its maximum value 9 = f(3) at the right endpoint. When
a < ¢ < b we say that c is an interior minimum; when a < d < b we say
that d is an interior maximum. For example, on the interval —2 < z <1
the function f(z) = x? attains its maximum f(—2) = 4 at the left endpoint
and its minimum value f(0) = 0 at the interior point 0. On an interval
which is not closed a continuous function need not assume its maximum or
minimum. For example, the function g(z) = 1/x is continuous on the interval
0 < z <1 but there is no number ¢ satisfying 0 < ¢ < 1 and g(z) < g(c) for
all z. This is because no matter what ¢ we pick in the interval 0 < x < 1 we
have that f(¢’) > f(c) when ¢ is nearer 0 then ¢, e.g. when ¢ = ¢/2.

The Max-Min Existence Theorem is normally proved in more advanced
courses like Math 521.

Calculus can help us find the maximum and the minimum when the
continuous function is differentiable. The key tool is the following



§3 First Derivative Test. Suppose that a function f(x) defined on an
interval a < x < b attains its minimum (or its mazimum) at a point ¢ in the
interval. Then either

(1) ¢ is an endpoint, i.e. ¢ =a or c=">b; or
(2) f is not differentiable at c; or

(3) c is a critical point of f, i.e. f'(c)=0.

Proof: Assume that (1) and (2) fail, i.e. that @ < ¢ < b and that f'(c) exists.
We will prove (3). Since f’(c) exists we have that

f(z) = f(e)

r —cC

~ f'(c) (*)

for x ~ c. If the ratio on the left is positive, then the numerator f(x) — f(c)
and the denominator x — ¢ have the same sign; if the ratio on the left is
negative, then f(x) — f(c) and = — ¢ have opposite signs. Since ¢ is an
interior point, there are numbers in the interval to the right of ¢ and close to
c and other numbers in the interval to the left of ¢ and close to c. Thus

o If f'(c) is positive, then f(z) — f(c) > 0 for x near and to the right of
¢, SO ¢ is not a minimum.

o If f'(c) is positive, then f(z) — f(c) < 0 for x near and to the left of c,
SO ¢ 1s not a maximum.

o If f'(c) is negative, then f(z) — f(c¢) < 0 z near and to the right of ¢,
so ¢ is not a minimum.

o If f'(c) is negative, then f(x) — f(c) > 0 for x near and to the left of
¢, SO ¢ is not a maximum.

Thus the only possibility is f’(¢) = 0.

§4 Examples. (1) The function L(z) = 2z + 3 satisfies L'(z) = 2 and
so is differentiable and has no critical point. On any interval it attains its
minimum at the left endpoint and its maximum at the right endpoint.

(2) The absolute value function g(z) = |z| satisfies

g(x) = =

R
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for x # 0 but ¢’(0) does not exist. On any interval containing 0 it attains its
minimum at 0 and its maximum at one of the two endpoints.

(3) The derivative of the function f(x) = 23 — 3z is f'(x) = 3(2* — 1) and
f'(x) = 0for z = £1. The point x = —1 does not lie in the interval 0 < z < 2
and f(0) =0, f(1) = =2, and f(2) = —1 so on the interval 0 < x < 2 the

function attains its minimum value at 1 and its maximum value at 0.

§5 Mean Value Theorem. Assume f(x) is continuous on the closed inter-
val a < x < b and differentiable on a < x < b. Then there is a point ¢ with
a<c<band

i.e. the tangent line to the graph at (c, f(c)) is parallel to the “secant line”
joining (a, f(a)) and (b, f(b)).

Proof: Consider the linear function

W(z) = f(a)+ (M> Nz —a).

b—a
The graph y = W (x) is the line joining (a, f(a)) and (b, f(b)), i.e.
W(a) = f(a), — W(b) = f(b).

The function

satisfies

g(a) = fla) - TEEE gy = g =0

By the Max-Min Existence Theorem the function g attains its maximum and
its minimum. Since g(a) = g(b) = 0 either the maximum or the minimum
(or both) must occur at an interior point ¢. By the First Derivative Test we
have

g(c)=0
as required. (The special case of the Mean Value Theorem where the values
at the endpoints are the same is called Rolle’s Theorem.)

§6 Definition. A function y = f(x) is said to be increasing on an interval
iff
1 < 1wy = f(21) < f(72)
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for any two points 1, xs of the interval. (The symbol = means implies.)
Similarly f is said to be decreasing on an interval iff

T < Ty — f(.fL'l) > f(l'z)

A function is monotonic on an interval iff either it is increasing on that
interval or else it is decreasing on that interval.

f'(@) >0
§7 Monotonicity Theorem. If < f'(x) <0 » for all x in an interval I,
f(x)=0
Imcreasing
then f is < decreasing p on that interval.
constant

Proof. Choose x; and x5 in the interval [ with ; < x5. By the Mean Value
Theorem there is a ¢ with 21 < ¢ < x5 and

f(z2) — f(z1)

To — 1

= f'(o). (#)

Since c¢ is between x; and x9 it lie in the interval I and hence f’(c) has the
sign (positive, negative, or zero) of the hypothesis. Hence the ratio on the left
in equation (#) has this same sign. Since x; < x5 the denominator xs — x;
is positive and hence the numerator f(x) — f(x;) has this same sign. If the
sign is positive, then f'(¢c) > 0 so f(x2) — f(z1) > 0 s0 f(z1) < f(x2). If
the sign is negative, then f'(c) < 0 so f(z2) — f(x1) < 0s0 f(x1) > f(xa).
If the derivative is identically zero, then f'(c) = 0 so f(z2) — f(z1) = 0 so
f(@1) = f(x2).

§8 Definition. A function y = f(z) is concave up on an interval iff the
second derivative f”(x) is positive at every point z in the interval. The
derivative of f"is f” so, by the Monotonicity Theorem, the derivative f’ of a
concave up function is increasing. Similarly, the function is concave down
iff its second derivative is negative. For example, the function f(z) = 22 is

concave up on any interval and the function g(z) = —z? is concave down.

§9 Secant Concavity Theorem. Suppose that f(x) is concave up on the
interval a < x < b and define

wie) = i)+ (152 - a



so that the graph y = W (x) is the secant line joining the points (a, f(a)) and
(b, f(b)). Then the graph y = f(x) lies below the graph of the secant line, i.e.

flz) < W(x).

for a < x <b. Similarly, if f(x) is concave down, the graph of the function
lies above the graph of the secant line.

Proof: Define g(z) = f(xz)—W (x) as in the proof of the Mean Value Theorem.
Since W (z) is a linear function, its second derivative is zero so ¢"(z) = f"(x)
and g is also concave up. By the Mean Value Theorem there is a point
c with @ < ¢ < b and ¢'(¢) = 0. Since ¢’ is increasing this means that
g () < ¢g'(c) =0fora <z < cand ¢ (z) >0 for ¢c <z < b. Hence g is
decreasing on the interval a < z < c and increasing on the interval ¢ < x < b.
Hence g(a) > g(z) for a < 2 < c and g(x) < g(b) for c < x < b, i.e. g(x) <0
fora <z <b Asg=f—W we get f(x) < W(z) for a < xz < b as
required. If f is concave down, then —f is concave up, so —f < —W, and
hence W < f.

§10 Tangent Concavity Theorem. Suppose that f(x) is concave up on
the interval a < x < b and let ¢ be an interior point of that interval, i.e.
a < c<b. Define

L(z) = f(c) + f'(c)(z — ¢)
so that the graph y = L(x) is the tangent line to the graph y = f(x) at the
point (¢, f(c)). Then the graph y = f(x) lies above the graph of the tangent
line, i.e.

L(z) < (=)

for a < x <b. Similarly if f(x) is concave down, the graph of the function
lies below the graph of the tangent line.

Proof: Consider the function g(x) = f(x) — L(z). As the function L(z) is
linear, its second derivative is zero, so ¢”(z) = f”(x) and g is also concave
up. Moreover f’(c) = L'(c) = the slope of the tangent line at ¢, so ¢’(c) = 0.
Since ¢’ is increasing this means that ¢'(z) < ¢/(c) = 0 for a < = < ¢ and
g'(x) > 0 for ¢ < x < b. Hence g is decreasing on the interval a < x < ¢ and
increasing on the interval ¢ < x < b. Hence g(z) > g(c) =0 fora <z < ¢
and 0 = g(c) < g(z) forc < x < b,ie. g(x) >0fora<z <b Asg=f—L
we get L(z) < f(x) for a < z < b as required. If f is concave down, then — f
is concave up, so —L < —f, and hence f < L.



§11 Definition. Let f(z) be a differentiable function and a a point in its
domain. The linear approximation to f(z) at © = a is the linear function
L(z) whose graph is the tangent line to the curve y = f(z) at the point

(a, f(a)), i.e.
L(z) = f(a) + f'(a)(z — a)

Note that L(a) = f(a) and L'(a) = f'(a).

§12 Linear Approximation Theorem. The linear approximation L(z) is
the linear function which best approximates f(x) near x = a in the sense that

o 1@) = L@)

r—a Tr —a

=0.

Proof: lim Jlo) = L) = lim <M - f’(a)) =0.

Tr—a Tr— a Tr—a TrT — Q

§13 Chain Rule. Suppose that the function y = f(x) is differentiable at
x = a, that b = f(a), and that the function z = g(x) is differentiable at
y =b. Then the composition g o f is differentiable at v = a and

(go f)(a) =g (f(a))f (a).

Denote the linear approximations to f near a and to g near b by

L(z) = f(a) + f'(a)(x —a),  M(y) = g(b) + g'(b)(y — b).

By high school algebra
Mo L(z) = g(f(a)) + ¢'(f(a) f'(a)(z — a).

Thus the Chain Rule says that M o L is the linear approximation to g o f,
i.e. the linear approximation to the composition is the composition of the
linear approximations.

§14 When f is a function and k& > 0 is an integer the notation f*) denotes
kth derivative of f. Thus

fO2)=flz),  fO)=f(2), fP2)=f"(2),



and so on. Given a number a in the domain of f and an integer n > 0, the
polynomial

" fB(a)(x — a)*
Py =y =) #)
k=0 ’

is called the degree n Taylor polynomial of f centered at a. The Taylor
polynomial P, (x) is the unique polynomial of degree n which has the same
derivatives as f at a up to order n:

P (a) = f®(a) for k=0,1,2,... n.

§15 The letter ) is the Greek S (for sum) and is pronounced sigma so the
notation used in (#) is called sigma notation. It is a handy notation but
if you don’t like it you can indicate the summation with dots:

Zak:am+am+l+"'+an—l+an-

k=m

Hence the first few Taylor polynomials are

Pi(x) = f(a) + f'(a)(x — a),

Pa) = (@) + f(@)(o —a) + LT

5 :
Py(z) = f(a) + f'(a)(z — a) + f"(a)(;’ —a)? N f”’(a)(g —a)*

§16 The Taylor polynomial P, (x) for f(z) centered at a is the polynomial of
degree n which best approximates f(x) for z near a. The precise statement
1s

Taylor’s Theorem. Suppose that f is n + 1 times differentiable and that

FOHY s continuous. Let a be a point in the domain of f. Then

i 0= o ©



Possible Questions

817 State the First Derivative Test and prove it. Answer: Write what is
in §3
8§18 State and prove the Mean Value Theorem. In your proof you may use

(without proof) the Max-Min Existence Theorem and the First Derivative
Test. Answer: Write what is in §5.

819 State and prove the Monotonicity Theorem. In your proof you may use
(without proof) the Mean Value Theorem. Answer: Write what is in §7.

8§20 Prove that if the derivative of a function is positive on an interval that
function is increasing on that interval. In your proof you may use (without
proof) the Mean Value Theorem. Answer: Write an appropriately simplified
version of what in §7.

§21 State and prove the Secant Concavity Theorem. In your proof you
may use (without proof) the Mean Value Theorem and the Monotonicity
Theorem. Answer: Write what is in §9.

8§22 State the Tangent Concavity Theorem. Answer: Write what is in §10
before the word “Proof”.

8§23 Let f be a function and a a number in its domain. Write a formula for
the linear function which best approximates f(z) near a. Explain what “best
approximates” means and prove it. Answer: Write what is in §11 and §12.

824 Let f be a function, a a number in its domain, and n a nonnegative
integer. Write a formula for the polynomial of degree < n which best ap-
proximates f(z) near a. Answer:

" f0(a)(x — a)k



