Exercise A

Complete the following tables using the functions

$$f(x) = x^3, \qquad f'(x) = 3x^2.$$

Hint: $2.001 = 2 + 10^{-3}$, $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$. Use the first table to fill in the second. (The purpose is to accustom the student to the various forms the difference quotient takes.)

x_0	x	$f(x_0)$	f(x)	$x-x_0$	$f(x) - f(x_0)$	$\frac{f(x) - f(x_0)}{x - x_0}$	$f'(x_0)$
2	2.2	8	10.648	0.2	2.648	13.24	12
2	2.1	8	9.261	0.1	1.261	12.61	12
2	2.01	8	8.1206001	0.01	0.1206001	12.06001	12
2	2.001	8	8.012006001	0.001	0.012006001	12.006001	12
2	2.0001	8	8.001200060001	0.0001	0.001200060001	12.00060001	12

x	h	f(x)	f(x+h)	f(x+h) - f(x)	$\frac{f(x+h) - f(x)}{h}$	f'(x)
2	0.2	8	10.648	2.648	13.24	12
2	0.1	8	9.261	1.261	12.61	12
2	0.01	8	8.1206001	0.1206001	12.06001	12
2	0.001	8	8.012006001	0.012006001	12.006001	12
2	0.0001	8	8.001200060001	0.001200060001	12.00060001	12

Exercise B

Complete the following table using the functions

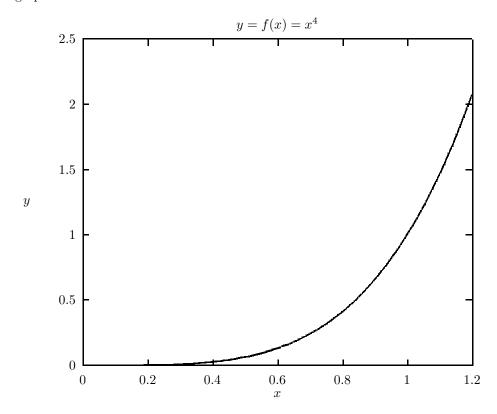
$$f(x) = \sin x, \qquad f'(x) = \cos x.$$

Use a calculator. Be sure to set the calculator to accept angles in radians, not in degrees.

x	h	f(x)	f(x+h)	$\frac{f(x+h) - f(x)}{h}$	f'(x)
$\pi/3$	0.2	.8660254040	.9480972191	.410359076	0.5
$\pi/3$	0.1	.8660254040	.9116155922	.455901882	0.5
$\pi/3$	0.01	.8660254040	.8709820194	.49566154	0.5
$\pi/3$	0.001	.8660254040	.8665249706	.4995666	0.5
$\pi/3$	0.0001	.8660254040	.8660753994	.499954	0.5

Exericise C

In the following let


$$f(x) = x^4, \qquad f'(x) = 4x^3,$$

$$x_1 = 1.2,$$
 $x_2 = 1.1,$ $x_3 = 1.05,$ $x_4 = 1.01,$ $x_0 = 1;$ $y_1 = f(x_1),$ $y_2 = f(x_2),$ $y_3 = f(x_3),$ $y_4 = f(x_4),$ $y_0 = f(x_0).$

Consider the five points

$$P_1(x_1, y_1), P_2(x_2, y_2), P_3(x_3, y_3), P_4(x_4, y_4), P_0(x_0, y_0).$$

Note that the points P_1 , P_2 , P_3 , P_4 are getting closer to P_0 . Plot the points on the graph.

$$P_0=(1,\ 1);$$
 $P_1=(1.2,\ 2.0736);$ $P_2=(1.1,\ 1.4641);$ $P_3=(1.05,\ 1.220625);$ $P_4=(1.01,\ 1.04060401).$

Exericise D

In the following continue the notation of Exercise C on the proceeding page. Consider the four lines

$$P_0P_1, P_0P_2, P_0P_3, P_0P_4.$$

For i = 1, 2, 3, 4 let m_i be the slope of the line P_0P_i , in other words,

$$m_1 = \frac{y_1 - y_0}{x_1 - x_0}, \qquad m_2 = \frac{y_2 - y_0}{x_2 - x_0}, \qquad m_3 = \frac{y_3 - y_0}{x_3 - x_0}, \qquad m_4 = \frac{y_4 - y_0}{x_4 - x_0}.$$

Calculate these slopes and draw the lines on the graph. What do you notice about the numbers m_1, m_2, m_3, m_4 and the quantity $f'(x_0)$?

$$m_1 = 5.368$$

$$m_2 = 4.641$$

$$m_3 = 4.4125$$

$$m_4 = 4.060401$$

$$f'(x_0) = 4$$

Hint: The binomial formula

$$(a+h)^4 = a^4 + 4a^3h + 6a^2h^2 + 4ah^3 + h^4$$

(which you should have learned in high school) with a=1 and h taking the four values

$$h = 0.2, \quad 0.1, \quad 0.05, \quad 0.01,$$

will make the arithmetic easier.