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1 Laws of algebra

1.1. Terminology and Notation. In this section we review the notations
used in algebra. Some are peculiar to these notes. For example the notation
A := B indicates that the equality holds by definition of the notations in-
volved. (See for example Paragraph 1.2 which follows.) Two other notations
which will become important when we solve equations are =⇒ and ⇐⇒ .
The notation P =⇒ Q means that P implies Q i.e. “If P , then Q”. For
example, x = 2 =⇒ x2 = 4. (Note however that the converse statement
x2 = 4 =⇒ x = 2 is not always true since it might be that x = −2.) The
notation P ⇐⇒ Q means P =⇒ Q and Q =⇒ P , i.e. “P if and only if
Q”. For example 3x − 6 = 0 ⇐⇒ x = 2. The notations =⇒ and ⇐⇒
are explained more carefully in Paragraphs 8.2 and 8.3 below.

1.2. Implicit Multiplication. In mathematics the absence of an operation
symbol usually indicates multiplication: ab mean a × b. Sometimes a dot
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is used to indicate multiplication and in computer languages an asterisk is
often used.

ab := a · b := a ∗ b := a× b

1.3. Order of operations. Parentheses are used to indicate the order
of doing the operations: in evaluating an expression with parentheses the
innermost matching pairs are evaluated first as in

((1 + 2)2 + 5)2 = (32 + 5)2 = (9 + 5)2 = 142 = 196.

There are conventions which allow us not to write the parentheses. For
example, multiplication is done before addition

ab+ c means (ab) + c and not a(b+ c),

and powers are done before multiplication:

ab2c means a(b2)c and not (ab)2c.

In the absence of other rules and parentheses, the left most operations are
done first.

a− b− c means (a− b)− c and not a− (b− c).

The long fraction line indicates that the division is done last:

a+ b

c
means (a+ b)/c and not a+ (b/c).

In writing fractions the length of the fraction line indicates which fraction is
evaluated first:

a
b
c

means a/(b/c) and not (a/b)/c,

a
b

c
means (a/b)/c and not a/(b/c).

The length of the horizontal line in the radical sign indicates the order of
evaluation:

√
a+ b means

√
(a+ b) and not (

√
a) + b.

√
a+ b means (

√
a) + b and not

√
(a+ b).
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1.4. The Laws of Algebra. There are four fundamental operations which
can be performed on numbers.

1. Addition. The sum of a and b is denoted a+ b.

2. Multiplication. The product of a and b is denoted ab.

3. Reversing the sign. The negative of a is denoted −a.

4. Inverting. The reciprocal of a (for a 6= 0) is denoted by a−1 or by
1

a
.

These operations satisfy the following laws.

Associative a+ (b+ c) = (a+ b) + c a(bc) = (ab)c

Commutative a+ (b+ c) = (a+ b) + c a(bc) = (ab)c

Identity a+ 0 = 0 + a = a a · 1 = 1 · a = a

Inverse a+ (−a) = (−a) + a = 0 a · a−1 = a−1 · a = 1

Distributive a(b+ c) = ab+ ac (a+ b)c = ac+ bc

The operations of subtraction and division are then defined by

a− b := a+ (−b) a÷ b :=
a

b
:= a · b−1 = a · 1

b
.

All the rules of calculation that you learned in elementary school follow from
the above fundamental laws. In particular, the Commutative and Associative
Laws say that you can add a bunch of numbers in any order and similarly
you can multiply a bunch of numbers in any order. For example,

(A+B)+(C+D) = (A+C)+(B+D), (A ·B) ·(C ·D) = (A ·C) ·(B ·D).

1.5. Because both addition and multiplication satisfy the commutative, as-
sociative, identity, and inverse laws, there are other analogies:
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(i) −(−a) = a (a−1)−1 = a

(ii) −(a+ b) = −a− b (ab)−1 = a−1b−1

(iii) −(a− b) = b− a
(a
b

)−1

=
b

a

(iv) (a− b) + (c− d) = (a+ c)− (b+ d)
a

b
· c
d

=
ac

bd

(v) a− b = (a+ c)− (b+ c)
a

b
=
ac

bc

(vi) (a− b)− (c− d) = (a− b) + (d− c) a/b

c/d
=
a

b
· d
c

These identities are proved in the Guided Exercises. (An identity is an
equation which is true for all values of the variables which appear in it.)

1.6. Here are some further identities which are proved using the distributive
law.

(i) a · 0 = 0 (ii) −a = (−1)a

(iii) a(−b) = −ab (iv) (−a)(−b) = ab

(v)
a

b
+
c

d
=
ad+ cb

bd
(vi) (a+ b)(c+ d) = ab+ ad+ bc+ bd

(vii) (a+ b)2 = a2 + 2ab+ b2 (viii) (a+ b)(a− b) = a2 − b2

These are also proved in the Guided Exercises.

1.7. The following Zero-Product Property will be used to solve equations.

pq = 0 ⇐⇒ p = 0 or q = 0 (or both).

Proof: If p = 0 (or q = 0) then pq = 0 by (i) in Paragraph 1.6 . Conversely,
if p 6= 0 then q = p−1pq = p−10 = 0.
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Definition 1.8. For a natural number n and any number a the nth power
of a is

an := a · a · a · · · a︸ ︷︷ ︸
n factors

The zeroth power is
a0 := 1

and negative powers are defined by

a−n :=
1

an
.

1.9. The following laws are easy to understand when m and n are integers.
In Theorem 4.1 below we will learn that these laws also hold whenever a
and b are positive real numbers and m and n are any real numbers, not just
integers.

(i) aman = am+n e.g. a2a3 = (aa)(aaa) = a5

(ii) (am)n = amn e.g. (a2)3 = (aa)(aa)(aa) = a6

(iii)
am

an
= am−n e.g.

a2

a5
= a−3 =

1

a3

(iv) (ab)m = ambm e.g. (ab)2 = (ab)(ab) = (aa)(bb) = a2b2

(v)
(a
b

)m

=
am

bm
e.g.

(a
b

)2

=
a

b
· a
b

=
aa

bb
=
a2

b2

2 Kinds of Numbers

2.1. We distinguish the following different kinds of numbers.

• The natural numbers are 1, 2, 3 . . ..

• The integers are . . .− 3,−2,−1, 0, 1, 2, 3 . . ..

• The rational numbers are ratios of integers like 3/2, 14/99, −1/2.
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• The real numbers are numbers which have an infinite decimal expan-
sion like

3

2
= 1.5000 . . . ,

14

99
= 0.141414 . . . ,

√
2 = 1.4142135623730951 . . . .

• The complex numbers are those numbers of form z = x + iy where
x and y are real numbers and i is a special new number called the
imaginary unit which has the property that

i2 = −1;

Every integer is a rational number (because n = n/1), every rational number
is a real number (see Remark 2.3 below), and every real number is a complex
number (because x = x + 0i). A real number which is not rational is called
irrational.

2.2. Each kind of number enables us to solve equations that the previous
kind couldn’t solve:

• The solution of the equation x + 5 = 3 is x = −2 which is an integer
but not a natural number.

• The solution of the equation 5x = 3 is x = 3
5

which is a rational number
but not an integer.

• The equation x2 = 2 has two solutions x =
√

2. The number
√

2 is a
real number but not a rational number. (See Remark 2.5 below.)

• The equation x2 = 4 has two real solutions x = ±2 but the equation
z2 = −4 has no real solutions because the square of a nonzero real
number is always positive. However it does have two complex solutions,
namely z = ±2i.

We will not use complex numbers until Section 22 but may refer to them
implicitly as in

The equation x2 = −4 has no (real) solution.
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Remark 2.3. It will be proved in Theorem 21.6 that a real number is rational
if and only if its decimal expansion eventually repeats periodically forever as
in the following examples:

1

3
= 0.3333 . . . ,

17

6
= 2.83333 . . . ,

7

4
= 1.250000 . . . ,

1

7
= 0.142857 142857 142857 . . . .

Remark 2.4. Unless the decimal expansion of a real number is eventually
zero, as in 1

2
= 0.5000 . . ., any finite part of the decimal expansion is close

to, but not exactly equal to, the real number. For example 1.414 is close to
the square root of two but not exactly equal:

(1.414)2 = 1.999396 6= 2, (
√

2)2 = 2.

If we compute the square root to more decimal places we get a better ap-
proximation, but it still isn’t exactly correct:

(1.4142135623730951)2 = 2.00000000000000014481069235364401.

Remark 2.5. Here is a proof that the square root of 2 is irrational. If it
were rational there would be integers m and n with(m

n

)2

= 2.

By canceling common factors we may assume that m and n have no common
factors and hence that they are not both even. Now m2 = 2n2 so m2 is even
so m is even, say m = 2p. Then 4p2 = (2p)2 = m2 = 2n2 so 2p2 = n2 so n2

is even so n is even. This contradicts the fact m and n are not both even.

3 Coordinates on the Line and Order

3.1. The choice of two points O and I on a line ` determines a correspondence
between the points of the line and the real numbers as indicated in the
following picture.
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O I
√

2 π-1 0 1 2 3 4

The correspondence is called a coordinate system on the line ` and the line
` is called a number line. When the point A corresponds to the number a
we say that the number a is the coordinate of the point A. The positive
numbers are the real numbers on the same side of 0 as 1 and the negative
numbers are on the other side. We usually draw the number line as above
so that it is horizontal and 1 is to the right of 0. We write say a is less than
b and write a < b b is to the right of a, i.e. when b − a is positive. it is
equivalent to say that b is greater than a or a to the left of b and to write
b > a. The notation a ≤ b means that a is less than or equal to b i.e. either
a < b or else a = b. Similarly, b ≥ a means that b is greater than or equal to
a i.e. either b > a or else b = a. Thus when a < b, a number 1

c is between a and b ⇐⇒ a < c < b.

Sometimes we insert the word strictly for emphasis: a is strictly less than b
means that a < b (not just a ≤ b).

3.2. The order relation just described is characterized by the following.

(Trichotomy) Every real number is either positive, negative, or zero (and
no number satisfies two of these conditions).

(Sum) The sum of two positive numbers is positive.

(Product) The product of two positive numbers is positive.

This characterization together with the notation explained in the previous
paragraph implies the following:

1The notation ⇐⇒ is an abbreviation for “if and only if”.
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(i) Either a < b, a = b, or a > b.

(ii) If a < b and b < c, then a < c.

(iii) If a < b, then a+ c < b+ c.

(iv) If a < b and c > 0, then ac < bc.

(v) If a < b and c < 0, then ac > bc.

(vi) If 0 < a < b, then 0 <
1

b
<

1

a
.

3.3. Interval Notation. The open interval (a, b) is the set of all real
numbers x such that a < x < b, and the closed interval [a, b] is the set of
all real numbers x such that a ≤ x ≤ b. Thus

x is in the set (a, b) ⇐⇒ a < x < b

and
x is in the set [a, b] ⇐⇒ a ≤ x ≤ b.

These notations are extended to include half open intervals and un-
bounded intervals as in

x is in the set (a, b] ⇐⇒ a < x ≤ b,

x is in the set (a,∞) ⇐⇒ a < x,

x is in the set (−∞, a] ⇐⇒ x ≤ a, etc.

The union symbol ∪ is used to denote a set consisting of more than one
interval as in

x is in the set (a, b) ∪ (c,∞) ⇐⇒ either a < x < b or else c < x.

The symbol∞ is pronounced infinity and is used to indicate that an interval
is unbounded. It is not a number so we never write (c,∞].
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3.4. Here are some pictures of sets. In these pictures the set is indicated
by thickening the corresponding part(s) of the line, parentheses are used
to indicated an endpoint which is not in the interval, brackets are used to
indicated an endpoint which is in the interval, and the arrow indicates that
the interval extends to infinity.

(3, 4] ( ]
3 4

(6,∞) (
6

(3, 4] ∪ (6,∞) ( ] (
3 4 6

3.5. The absolute value of a real number a is defined by |a| and defined by

|a| :=
{

a if a ≥ 0
−a if a < 0

Since the
√

denotes the nonnegative square root, an equivalent definition is

|a| =
√
a2

The distance between two numbers a and b is the absolute value |a− b| of
their difference. Thus the absolute value of a real number is its distance from
0.

3.6. The average c = 1
2
(a + b) of two real numbers a and b is the midpoint

of the interval [a, b]. The following calculation shows that the distance from
a to c is the same as the distance from b to c:

|a− c| =
∣∣∣∣a− a+ b

2

∣∣∣∣ =

∣∣∣∣2a− (a+ b)

2

∣∣∣∣ =

∣∣∣∣a− b2

∣∣∣∣
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and

|b− c| =
∣∣∣∣b− a+ b

2

∣∣∣∣ =

∣∣∣∣2b− (a+ b)

2

∣∣∣∣ =

∣∣∣∣b− a2

∣∣∣∣
so |a− c| = 1

2
|a− b| = 1

2
|b− a| = |b− c|.

Remark 3.7. The number line described in Paragraph 3.1 is completely
characterized by the following properties: (i) The coordinate of the point O
is the number 0. (ii) The coordinate of the point I is the number 1. (iii) If
the coordinates of the points A and B are the numbers a and b, then the
coordinate of the midpoint M of the segment AB is the average 1

2
(a + b).

(iv) If three distinct points A, B, C have coordinates a, b, c respectively, and
C lies on the line segment AB, then the real number c lies between the real
numbers a and b.

4 Exponents

The proof of the following theorem requires a more careful definition of the
set of real numbers than we have given and is best left for more advanced
courses.

Theorem 4.1. Suppose that a is a positive real number. Then there is one
and only one way to define ax for all real numbers x such that

(i) ax+y = ax · ay, a0 = 1, a1 = a, 1x = 1.

(ii) If a > 1 and x < y then ax < ay.

(iii) If a < 1 and x < y then ax > ay.

With this definition, the laws of exponents in Paragraph 1.9 continue to hold
when a and b are positive real numbers and m and n are arbitrary real num-
bers. The number ax is positive (when a is positive) regardless of the sign of
x.

4.2. In particular by property (v) in Paragraph 1.9 we have (ax)y = axy so
(am/n)n = am and (am)1/n = am/n. Hence for positive numbers a and b we
have

b = am/n ⇐⇒ bn = am.
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When m = 1 and n is a natural number the number a1/n is called the nth
root (square root if n = 2 and cube root if n = 3) and is sometimes
denoted

n
√
a := a1/n.

When n is absent, n = 2 is understood:

√
a := a1/2.

Remark 4.3. A number b is said to be an nth root of a iff bn = a. When
n is odd, every real number a has exactly one (real) nth root and this is
denoted by n

√
a. When n is even, a positive real number a has two (real) nth

roots (and n
√
a denotes the one which is positive) but a negative number has

no real nth roots. (In trigonometry it is proved that every nonzero complex
number has exactly n distinct complex nth roots.)

The equation b2 = 9 has two solutions, namely b = 3 and b = −3 and
each is “a” square root of 9 but only b = 3 is “the” square root of 9. However
−2 is the (only) real cube root of −8 because (−2)3 = −8. The number −9
has no real square root (because b2 = (−b)2 > 0 if b 6= 0) but does have two
complex square roots (because (3i)2 = (−3i)2 = −9). For most of this course
we only use real numbers and we say that

√
a is undefined when a < 0

and that

you can’t take the square root of a negative number.

Also
√
a always denotes the nonnegative square root: thus (−3)2 = 32 = 9

but
√

9 = 3 and
√

9 6= −3.

5 Coordinates in the Plane and Graphs

5.1. In Paragraph 3.1 we saw that a choice of two points O and I on a line `
determined a correspondence between the set of real numbers and the points
of `. Similarly two perpendicular lines `1 and `2 intersecting in a point O
and points I1 on `1 and I2 on `2 determine a correspondence between pairs
(x, y) of real numbers and points P on the plane of `1 and `2. Given a point
P in the plane we draw a line parallel to `1 through P intersecting `2 in Y
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and a line parallel to `2 through P intersecting `1 in X. The point X has
coordinate x in `1 and the point Y has coordinate y in `2. The point P then
corresponds to the pair (x, y). We say that the coordinates of P are (x, y).
The notation P (x, y) is used as an abbreviation for the more cumbersome
phrase “the point P whose coordinates are (x, y).” The lines `1 and `2 are
called the coordinate axes and the point O is called the origin. The point
I1 has coordinates (1, 0), the point I2 has coordinates (0, 1), and the origin
O has coordinates (0, 0). This correspondence between points P in the plane
and pairs (x, y) is called a rectangular coordinate system (or sometimes
a Cartesian coordinate system in honor of it’s inventor René Descartes).

`1

`2

O I1

I2

P

X

Y x

y

P (2, 3)

Q(3, 2)

The coordinate axes divide the plane
into four parts called quadrants. The
first quadrant is the set of points
P (x, y) where both coordinates are
positive and the remaining quadrants
are numbered consecutively in the
counter clockwise direction as in the
diagram.

(−3, 2) (3, 2)

(−3,−2) (3,−2)

III

III IV

Definition 5.2. The graph of an equation in the variables x and y is the
set of all points P (x, y) such that (x, y) satisfies the equation. Here are two
examples.
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x

y

x− 2y + 2 = 0

x

y

x2 + y2 = 1

Remark 5.3. We can use any two variables, but usually we use x and y. We
always label the axes and write the equation to avoid confusion. When using
the variables x and y we will usually call the first coordinate of a point the
x-coordinate and the second coordinate the y-coordinate. For example,
the x-coordinate of the point P (2, 3) is 2 and the y-coordinate is 3. Also we
call the horizontal axis (i.e. the line `1 in Paragraph 5.1) the x-axis and the
vertical axis (i.e. the line `2) the y-axis.

When we are using coordinates to study geometry it is most natural to
make the scale on the x-axis the same as the scale on the y-axis, i.e. to choose
the points O, I1, I2 in 5.1 so that the distance from O to I1 is the same as
the distance from O to I2 and that this distance is one unit. We will often
assume this without comment. In other problems this is not so natural. (See
for example Remark 12.11 below.)

Theorem 5.4 (The Distance Formula). The distance d(P1, P2) between
the two points P1(x1, y1) and P2(x2, y2) is given by

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.

Proof. The point Q(x2, y1) has the same y-coordinate as P1 and the same y-
coordinate as P2. The points P1, P2, Q are the vertices of a right triangle with
legs QP1 and QP2 of length a = |x1 − x2| and b = |y1 − y2|. (See the picture
below.) The length c of the hypotenuse P1P2 is the distance d(P1, P2) from
P1 to P2. Hence the distance formula follows from the Pythogorean Theorem
a2 + b2 = c2.
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x

y P2(x2, y2)

P1(x1, y1)Q(x2, y1)

|y2 − y1|

|x2 − x1|

5.5. The circle with center C and radius r is the set of all points P such
that the distance d(C,P ) from C to P is exactly r. If C = C(h, k) and
P = P (x, y) the condition that P lies on this circle may be written√

(x− h)2 + (y − k)2 = d(C,P ) = r.

Squaring both sides we see that the circle is the graph of the equation

(x− h)2 + (y − k)2 = r2.

Theorem 5.6 (The Midpoint Formula). The midpoint M of the the line
segment joining the points P1(x1, y1) and P2(x2, y2) is computed by averaging
the coordinates:

M =

(
x1 + x2

2
,
y1 + y2

2

)
Proof. There are two ways to prove this. First we can compute the distance
d(P1,M) from P1 to M and the distance d(P2,M) from P2 to M and check
that

d(P1,M) = d(P2,M) = 1
2
d(P1, P2).
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The second way is to use congruent
triangles as in the diagram to the right.
The point Q(x2, y1) is the vertex of
a right triangle P1QP2. The point
A(1

2
(x1 + x2), y1) is the midpoint of

the line segment P1Q and the point
B(x1,

1
2
(y1 +y2)) is the midpoint of the

line segment P1Q. (See Paragraphs 3.1
and 3.6.) The point M is a vertex of

x

y
P1

P2

QA

B
M

the congruent right triangles P1AM and MBP2 so d(P1M) = d(P2M).

6 Lines

6.1. The graph of an equation of form

Ax+By + C = 0

(where not both A and B are zero) is a line. If A = 0, the equation may
be written in the form y = b with b = −C/B and the line is horizontal. If
B = 0, the equation may be written in the form x = a with a = −C/A and
the line is vertical.

Definition 6.2. The slope of the line through the distinct points P1(x1, y1)
and P2(x2, y2) is

m =
y2 − y1

x2 − x1

.

In calculus this is sometimes written as

m =
∆y

∆x
, ∆y = y2 − y1, ∆x = x2 − x1

and described as the “change in y divided by the change in x”.
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x

y

P1

P2

Q∆x

∆y

x

y

P1

P2 Q′
P ′1

P ′2

Q

As we move from P1 to P2 the x-coordinate “runs” form x1 to x2 and the
y-coordinate “rises” from y1 to y2, so the slope is sometimes described as
rise over run. If the y coordinate decreases as the x coordinate increases,
the slope is negative.

The slope depends on the coordinate system but is independent of the
choice of the pair of distinct points on the line. If P ′1(x′1, y

′
1) and P ′2(x′2, y

′
2)

are two other points on the line and Q = Q(x1, y2), Q′ = Q′(x′2, y
′
1) then

y2 − y1

x2 − x1

=
y′2 − y′1
x′2 − x′1

as the triangles P1QP2 and P ′1Q
′P ′2 are similar right triangles.

6.3. A vertical line is one which is parallel to the y-axis. The x-coordinate
is constant along such a line so it has and equation of form x = a. For any
two points on a vertical line we have ∆x = a− a = 0. Hence the slope of a
vertical line is not defined since we never divide by zero. A horizontal line
is one which is parallel to the y-axis. It has an equation of form y = b. The
slope of a horizontal line is zero (which is defined).

6.4. The Point-Slope Equation of a Line. Let P0(x0, y0) be a point on
a line ` of slope m. Since any two points on the line can be used to define
the slope we see that a point P (x, y) which llies on the line ` satisfies

y − y0

x− x0

= m.

This equation has one minor flaw; it doesn’t work when (x, y) = (x0, y0)
(never divide by zero). To remedy this multiply by (x − x0) and add y0 to
both sides:
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y = y0 +m(x− x0).

This is the point-slope form of the equation for line through P0(x0, y0) with
slope m; this form makes it obvious that the point P0(x0, y0) lies on the line.
For example, the equation for the line through P0(2, 3) and P1(4, 11) is

y − 3

x− 2
=

11− 3

4− 2
= 4, or y = 3 + 4(x− 2),

When x0 = 0 and y0 = b the point-slope form becomes

y = mx+ b.

This is called the slope-intercept form of the equation for the line because
the point (0, b) is the point where the line intercepts (intersects) the y-axis.

Theorem 6.5 (Parallel Lines). Two lines have the same slope if and only
if they are parallel (or the same).

Proof. Assume two lines have the same slope m.

Then their slope intercept forms are
y = mx + b and y = mx + b′ If some
point (x, y) lies on both lines then
mx+b = y = mx+b′ so b = b′ and the
lines are the same, Hence if b 6= b′ the
lines do not intersect, i.e. they are par-
allel. Conversely if the lines are par-
allel, then in the picture to the right
the two triangles are similar so the hy-
potenuses are parallel.

x

y

y = mx+ b

y = mx+ b′

(0, b)

(0, b′)

Theorem 6.6 (Perpendicular Lines). Two lines are perpendicular if and
only if the slope of one is the negative reciprocal of the slope of the other.

Proof. If we draw the parallels to the two lines through the origin we get two
new lines with (by Theorem 6.5) the same slopes and which are perpendicular
if and only if the original lines are. Hence we might as well assume the two
lines pass through the origin. The diagram shows two lines with slopes m
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and −m−1 and passing through the
origin. The point P (a, b) lies on the
line y = mx so b = ma, and hence
−a = −m−1b so the point (−b, a) lies
on the line y = −m−1x. Hence the
two right triangles OAP and OBQ are
congruent. The two acute angles in
a right triangle are complementary so
the angle AOP is the complement of
the angle BQO. Since QB is parallel
to the x-axis the angle QO makes with
the x-axis is the complement to POA.
Hence POQ is a right angle.

x

y

y = mx

y = −m−1x

O

P (a, b)

Q(−b, a)

A(a, 0)

B(0, a)

7 Parabolas and Ellipses

Definition 7.1. Let ` be a line and F be a point not on `. The parabola
with focus F and directrix ` is the set of points P which are equidistant
from F and `. The line through F and perpendicular to ` is called the axis
of the parabola and the point where the axis intersects the parabola is called
the vertex of the parabola.

Theorem 7.2 (Parabola Formula). If the directrix is parallel to the x-axis
then the parabola is the graph of the equation of form

y = a(x− h)2 + k.

The vertex is V (h, k).

Proof. Guided Exercise.

Example 7.3. If the directrix is the horizontal line y = −1
4

and the focus is
the point F (1

4
, 0), then the parabola is the graph of the equation

y = x2.
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To see this assume that the point
P (x, y) lies on the parabola. The
distance from the point P (x, y) to
the point F is

d(P, F ) =
√

(x2 + (y − 1
4
)2.

The distance from P to ` is

d(P, `) =
∣∣y + 1

4

∣∣ .
x

y
y = x2

F

P

Q
`

Squaring both sides of the equation d(P, `) = d(P, F ) gives(
y + 1

4

)2
= x2 + (y − 1

4
)2.

Expand and cancel to get y = x2. In this example, the vertex is at the origin.

Remark 7.4. A parabolic mirror is a mirror in the shape of a parabola.
If the sun’s rays are directed perpendicular to the directrix, i.e. parallel to
the axis, then they reflect so that the angle of incidence equals the angle of
reflection. Using calculus it can be proved that all the rays pass through the
focus. The diagram shows the tangent line ` to the parabola at the point P
and the focus F of the parabola. The line perpendicular to ` through P is
called the normal. The ray from the sun is the vertical line through P . The
angle between the vertical and the normal is called the angle of incidence
and the angle between the normal and the reflected ray is called the angle of
reflection. For the parabola, the reflected ray goes through the focus.

F
P

`

The same process works in reverse. Movie projectors used to have a
carbon arc lamp located at the focus of a parabolic mirror so that the light
rays would reflect from the mirror and pass through the lens in parallel
supplying a uniformly illuminated image.
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Definition 7.5. Let F1 and F2 be two points in the plane an a be a number
greater than the distance d(F1, F2) from F1 to F2. The ellipse with foci F1

and F2 and diameter 2a is the set of all points P such that

d(F1, P ) + d(F2, P ) = 2a,

i.e. the sum of the distances from P to the two given points F1 and F2 is the
constant 2a. A picture appears in Example 7.7 below. Note: The word foci
is the plural of focus.

Theorem 7.6 (Standard Formula for Ellipse). If the foci are F1(−c, 0)
and F2(c, 0) where c > 0 then the ellipse with foci F1 and F2 and diameter
2a is the graph of the equation

x2

a2
+
y2

b2
= 1

where b2 = a2 − c2.

Proof. Guided Exercise.

Example 7.7. Assume that the foci are F1(−3, 0) and F2(3, 0) and that the
diameter is 10. Then the equation d(F1, P ) + d(F2, P ) = 2a is√

(x+ 3)2 + y2 +
√

(x− 3)2 + y2 = 10.

According to Theorem 7.6 this last
equation can be simplified to

x2

25
+
y2

16
= 1.

You can derive the latter equation
from the former by subtracting one
of the square roots from both sides

x

y

F1 F2

P

and squaring. This still leaves a square root on the right, but if you subtract
all the other terms on the right from both sides and square again you get an
equation with no square roots. After a bit more algebraic manipulation, the
equation simplifies as claimed.
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Remark 7.8. An ellipse has a reflective property much like a parabola does.
When a light ray (or sound wave) strikes a surface, it bounces back so that
the angle of incidence equals the angle of reflection. If the surface is elliptical,
a ray emanating from one focus bounces off the ellipse and passes through
the other focus. (This is often proved in second semester calculus.)

x

y

∠(`, F1P ) = ∠(`, F2P )

F1 F2

P
`

x

y

A Whispering Gallery

A whispering gallery works on this principle. There is one in the Museum
of Science and Industry in Chicago. The entire room is in the shape of an
ellipse. If you stand at one focus and your friend stands at the other, each
of you can hear the other whisper, even though people only a few yards
away cannot hear you. There are also whispering galleries in the United
States Capitol, the rotundas of the Texas State Capitol and the Missouri
State Capitol, St. Peter’s Basilica in the Vatican City, St Paul’s Cathedral
in London, and many other places.

8 Solving Equations

Definition 8.1. A number a is called a solution of an equation containing
the variable x if the equation becomes a true statement when a is substituted
for x. A solution of an equation is sometimes also called a root of the
equation. Two equations are said to be equivalent iff they have exactly the
same solutions. We will sometimes use the symbol ⇐⇒ to indicate that
two equations are equivalent.

8.2. Usually two equations are equivalent because one can be obtained from
the other by performing an operation to both sides of the equation which
can be reversed by another operation of the same kind. For example, the
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equations 3x+ 7 = 13 and x = 2 are equivalent because

3x+ 7 = 13 ⇐⇒ 3x = 6 (subtract 7 from both sides),

⇐⇒ x = 2 (divide both sides by 3).

The reasoning is reversible: we can go from x = 2 to 3x = 6 by multiplying
both sides by by 3 and from 3x = 6 to 3x+7 = 13 by adding 7 to both sides.

8.3. We use the symbol =⇒ when we want to assert that one equation im-
plies another but do not want to assert the converse. The guiding principal
here is

If an equation E ′ results from an equation E by performing the
same operation to both sides, then E =⇒ E ′, i.e. every solution
of E is a solution of E ′.

If the operation is not “reversible” as explained above, there is the possibility
that the set of solutions gets bigger in which case the new solutions are called
extraneous solutions. (They do not solve the original equation.) The
simplest example of how an extraneous solution can arise is

x = 3 =⇒ x2 = 9 (square both sides)

but the operation of squaring both sides is not reversible: it is incorrect to
conclude that x2 = 9 implies that x = 3. What is correct is that x2 = 9 ⇐⇒
x = ±3, i.e. either x = 3 or else x = −3. When solving an equation you
may use operations which are not reversible provided that you

Always check your answer!

(In addition to catching mistakes, this will show you which – if any – of the
solutions you found are extraneous.)

8.4. Here are two ways in which extraneous solutions can arise:

(i) Squaring both sides of an equation.

(ii) Multiplying both sides of of an equation by a quantity not known to be
nonzero.
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As an example of (i) consider the equation
√

10− x = −x− 2.

Squaring both sides gives the quadratic equation 10− x = x2 + 4x+ 4 which
has two solutions x = −6 and x = 1. Now

√
10− (−6) = −(−6) − 2 but√

10− 1 6= −1− 2. (
√

means the positive square root.) Thus x = −6 is the
only solution of the original equation and x = 1 is an extraneous solution.

As an example of (ii) consider

1

x− 1
= 2 +

1

x− 1
.

This equation has no solution: if it did we would subtract (x − 1)−1 from
both sides and deduce that 0 = 2 which is false. But if we multiply both
sides by x − 1 we get 1 = 2(x − 1) + 1 which has the (extraneous) solution
x = 1.

Remark 8.5. The symbols ⇐⇒ and =⇒ relate equations (or more
generally statements) not numbers. The notation P =⇒ Q means that Q
is true if P true. The notation x =⇒ 5 is nonsense. On exams always write
complete sentences (e.g. x = 2 or “the answer is 2”) never just numbers
(nouns are neither true nor false).

8.6. The definition of equivalent equations given in 8.1 applies to equations in
two variables where the solution set is (usually) infinite: A pair of numbers
(a, b) is a solution of an equation containing the variables x and y if the
equation becomes a true statement when a is substituted for x and b is
substituted for y. By Definition 5.2

Two equations are equivalent if and only if they have the same graph.

Again we usually show that two equations are equivalent by transforming
one to the other by operations which can be reversed by another operation
of the same kind. As a simple example

6x+ 3y = 12 ⇐⇒ 3y = −6x+ 12 ⇐⇒ y = −2x+ 4

so the equations have the same graph, namely the line of slope −2 through
the point (0, 4).
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9 Systems of Equations

9.1. A solution to a system of two equations in two variables x and y is a
pair (a, b) of numbers which is a solution of each of the two equations. Each
equation has a graph and the solutions to the system are the point where
the two graphs intersect. Two systems are equivalent iff they have exactly
the same solutions. As in Paragraphs 8.2 and 8.6 we usually show that two
systems are equivalent by performing an operation on one system which can
be reversed by another operation of the same kind.

Example 9.2. As an example we solve the system 3x+3y = 21, x+2y = 11.

3x+ 3y = 21
x+ 2y = 11

⇐⇒ x+ y = 7
x+ 2y = 11

(1)

⇐⇒ x+ y = 7
y = 4

(2)

⇐⇒ x = 3
y = 4

(3)

In step (1) we divided the first equation by 3; this can be undone by multiply-
ing the first equation by 3. In step (2) we subtracted the first equation from
the second; this can be undone by adding the first equation to the second. In
step (3) we subtracted the second equation from the first; this can be undone
by adding the second equation to the first. In each step we replace a system
of two equations in x and y by an equivalent system, i.e. we replace a pair of
lines through the point (x, y) = (3, 4) by another pair of lines through that
point.

9.3. The process of simplifying a system of equations by multiplying one
of the equations by a nonzero number or replacing one of the equations by
its difference with another is called Gaussian Elimination. The guiding
principle is to “eliminate” one of the variables from the first equation and
the other variable from the second equation leaving us with an equivalent
system of form x = a, y = b.

Gaussian Elimination can be used for any number of equations in any
number of variables. For problems as in the example (two equations in two
unknowns) which are intended to be worked by hand, there is no reason
to supply so much detail. For much larger problems (100 equations in 100
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unknowns) which will be solved on a computer, Gaussian Elimination is used
because we can prove it gets the correct answer.

9.4. Another nice feature of Gaussian Elimination is that it handles grace-
fully the case where the two lines determined by the two equations are parallel
or the same. If the two equations correspond to lines with the same slope,
Gaussian Elimination will lead to an equivalent system of form

ax+ by = c
0 = d.

If d 6= 0 then the original lines are parallel but distinct and there is no
solution. If d = 0, then the original lines are the same and there are infinitely
many solutions (any point on the line solves both equations). A system with
no solutions is said to be inconsistent.

10 Symmetry

Definition 10.1. The reflection of a point P in a line ` is the point Q on
the other side of the line at the same distance from the line. The reflection
of a point P in a through the point O is the point Q on the the line OP at
the same distance from O as is P . For example:

1. The reflection of (x, y) in the y-axis is (−x, y).

2. The reflection of (x, y) in the x-axis is (x,−y).

3. The reflection of (x, y) in the line y = x is (y, x).

4. The reflection of (x, y) about the origin is (−x,−y).

A graph is symmetric about the line ` iff whenever a point P lies on the
graph so does its reflection in `. A graph is symmetric about the point
O iff whenever a point P lies on the graph so does its reflection through O.

10.2. Symmetry tests. Combining these definitions we see that

1. The graph of an equation is symmetric about the y-axis if and and only
if the equation that results by replacing x by −x yields an equivalent
equation.
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2. The graph of an equation is symmetric about the x-axis if and and only
if the equation that results by replacing y by −y yields an equivalent
equation

3. The graph of an equation is symmetric about the y-axis if and only if
the equation that results by replacing x and y by −x and −y yields an
equivalent equation.

For example, the graph of y = x2 is symmetric about the y-axis as (−x)2 = x2

and similarly the graph of x = y2 is symmetric about the x-axis. The graph
of y = x3 is symmetric about the origin as (−x)3 = −x3 so

y = x3 ⇐⇒ (−y) = (−x)3.

x

y

y = x2

x

y

x = y2

x

y

y = x3

Note that it might be better to say“replacing x by (−x)” rather than “re-
placing x by −x” as (−x)2 = x2 6= −x2.

11 Completing the Square

11.1. By completing the square we mean the identity

ax2 + bx+ c = a

(
x+

b

2a

)2

− b2 − 4ac

4a
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which is easily proved by expanding the right hand side. In this section
we use this identity for three purposes: to solve a quadratic equation (the
Quadratic Formula), to find the center of a circle, and to find the vertex of
a parabola.

Theorem 11.2 (Quadratic Formula). The solutions of the quadratic equa-
tion

ax2 + bx+ c = 0

are

x =
−b±

√
b2 − 4ac

2a
.

Proof. Guided Exercise.

Theorem 11.3 (Center of a Circle). If a 6= 0, the equation

ax2 + ay2 + bx+ cy + d = 0

is equivalent to the equation

(x− h)2 + (y − k)2 = R

where

h = − b

2a
, k = − d

2a
, R =

b2 + c2

4a2
− d.

Hence the graph is a circle of radius
√
R if R > 0, the single point (h, k) if

R = 0, and empty if R < 0.

Proof. Guided Exercise.

Theorem 11.4 (Vertex Formula). If a 6= 0, the equation

y = ax2 + bx+ c

is equivalent to the equation

y = a(x− h)2 + k

where

h = − b

2a
, k = −b

2 − 4ac

4a
.

Hence the graph is a parabola with vertex V (h, k).
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Proof. Guided Exercise.

11.5. Translating the Axes The substitutions

u = x− h, v = y − k

transform the equation
v = u2

into the equation
y − h = (x− k)2.

The point (u, v) = (0, 0) on the former graph corresponds to the point
(x, y) = (h, k) on the latter. This is the vertex of the parabola. To draw the
graph draw the graph of v = u2 first and then draw in the x and y axes.

x

y

u

v

y − 1 = (x− 2)2

v = u2

(2, 1)

12 Functions

Definition 12.1. A function is a rule which produces an output f(x) from
an input x. The set of inputs x for which the function is defined is called the
domain and f(x) (pronounced “f of x”) is the value of f at x. The set of
all possible outputs f(x) as x runs over the domain is called the range of
the function.

12.2. Functional Notation. We usually define a function f by writing an
equation

f(x) = some expression in x.
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It is then understood that f(a) denotes the result of substituting a for x in the
expression. If a is itself an expression, it should be surrounded by parentheses
before doing the substitution. Thus if f(x) = x2, then f(p + q) = (p + q)2

not p+ q2.

12.3. If a function f(x) is given by an expression in the variable x and the
domain is not explicitly specified, then the domain is understood to be the
set of all x for which the expression is meaningful. For example, for the
function f(x) = 1/x2 the domain is the set of all nonzero real numbers x
(the value f(0) is not defined because we don’t divide by zero) and the range
is the set of all positive real numbers (the square of any nonzero number is
positive). The domain and range of the square root function

√
x is the set of

all nonnegative numbers x. The domain of the function y =
√

1− x2 is the
interval [−1, 1], i.e.

√
1− x2 is meaningful only if −1 ≤ x ≤ 1 (otherwise the

input to the square root function is negative). The range of the function is
the interval [0, 1] as 0 ≤

√
1− x2 ≤ 1.

Definition 12.4. The graph of a function f is the graph of the equation

y = f(x),

i.e. the set of all points P (x, y) whose coordinates (x, y) satsfy the equation
y = f(x). According to Definition 5.2, the graph of an equation is the set
of all points P (x, y) in the (x, y)-plane whose coordinates (x, y) satisfy the
equation. The graph of a function y = f(x) is a special case.To decide if a
graph is the graph of a function we apply the

Vertical Line Test. A graph is the graph of a function f if and only
if every vertical line x = a intersects the graph in at most one point.
Then, if the number a is in the domain of f , the vertical line x = a
intersects the graph y = f(x) in the point P (a, f(a)).

Example 12.5. The graph of the equation x2 + y2 = 1 is a circle; it is not
the graph of a function since the vertical line x = 0 (the y-axis) intersects
the graph in two points P1(0, 1) and P2(0,−1). This graph is however the
union of two different graphs each of which is the graph of a function:

x2 + y2 = 1 ⇐⇒ either y =
√

1− x2 or y = −
√

1− x2.
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x

y

y =
√

1− x2

x

y

y = −
√

1− x2

Remark 12.6. To find the domain of a function we project its graph on the
horizontal axis. To find the range of a function we project its graph on the
vertical axis. More precisely,

The domain of the function f is the set of all real numbers a such that
the vertical line x = a intersects the graph y = f(x). The range of
the function f is the set of all real numbers b such that the horizontal
line y = b intersects the graph y = f(x).

12.7. You can add, subtract, multiply and divide two functions:

(f + g)(x) := f(x) + g(x), (f − g)(x) := f(x)− g(x),

(f · g)(x) := f(x) · g(x), (f/g)(x) :=
f(x)

g(x)
.

In each case the domain is the intersection of the domains of f and g; in the
case where the functions are divided those x where g(x) = 0 must also be
removed from the domain.

Definition 12.8. The composition g◦f of two functions g and f is defined
by

(g ◦ f)(x) := g(f(x)).

Remark 12.9. Composition of functions is not a commutative operation.
For example, if f(x) = x2 and g(x) = x + 1, then (g ◦ f)(x) = x2 + 1 and
(f ◦ g)(x) = (x+ 1)2.

12.10. Two functions are said to be equal when they have the same domain
and give the same output for every input. A consequence of this definition is
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that it doesn’t matter what letters we use to define a function. For example,
the functions

f(x) = x2, g(u) = u2

are equal since the domain of each is the set (−∞,∞) of all real numbers
and f(t) = g(t) for all real numbers t. In story problems, we usually use
letters which suggest the meaning like t for time or A for area.

Remark 12.11. When we are using coordinates to study geometry it is most
natural to make the scale on the x-axis the same as the scale on the y-axis.
In other problems this is not so natural. Here is a graph showing the height
y in feet of an object t seconds after it is thrown into the air and another
graph the showing relation between the temperature F in Fahrenheit and
the temperature C in Celsius. Both graphs are graphs of functions and the
units on the vertical axis are different from the units on the horizontal axis.

1 2 3 4

32

64
y ft

t sec

(i) y = 16t2 − 4t

C

F

-40

-40

100

212

32

(37,98.6)

(ii) F = 1.8C + 32

13 Inverse Functions

Definition 13.1. Two functions f and g are said to be inverse functions
iff the graphs the equations y = f(x) and x = g(y) are the same, i.e. iff

y = f(x) ⇐⇒ x = g(y).

We also say that g is the inverse of f and write

g = f−1.

Example 13.2. Since

y = 3x+ 7 ⇐⇒ x =
y − 7

3

the functions f(x) = 3x+ 7 and g(y) = (y − 7)/3 are inverse functions.
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Remark 13.3. Be careful not to confuse f(x)−1 and f−1(x). For example,
if f(x) = 3x+ 7, then

f(x)−1 =
1

3x+ 7
, but f−1(x) =

x− 7

3
.

13.4. If f and g are inverse functions, then the range of f is the domain of g
and the domain of f is the range of g. To decide if a function has an inverse
we apply the

Horizontal Line Test. A function y = f(x) has an inverse if and
only if every horizontal line y = b intersects the graph in at most one
point. Then the horizontal line y = b intersects the graph y = f(x)
in the point P (f−1(b), b).

13.5. A function f is said to be one-to-one iff

f(x1) = f(x2) =⇒ x1 = x2.

Saying that a function is one-to-one is just another way of saying its graph
satisfies the horizontal line test, i.e. that the function has an inverse. The
function f(x) = x2 is not one-to-one since f(3) = f(−3) but 3 6= −3.

Definition 13.6. A function f is said to be increasing iff

x1 < x2 =⇒ f(x1) < f(x2).

A function f is said to be decreasing iff

x1 < x2 =⇒ f(x1) > f(x2).

Theorem 13.7. If a function either increasing or decreasing it is one-to-one
and therefore has an inverse.

Proof. Assume f is increasing and that f(x1) = f(x2). Then it is not the
case that x1 < x2 since that would imply f(x1) < f(x2) and it is not the case
that x1 > x2 since that would imply f(x1) > f(x2). The only possibility us
that x1 = x2.
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Remark 13.8. Just because a function has an inverse doesn’t mean that we
can find a formula for the inverse. For example, the function f(x) = x5 + x
is increasing and therefore has an inverse f−1, but in graduate courses in
algebra it is proved that there is no elementary formula for f−1(y), i.e. there
is no expression for f−1(y) involving only the operations we have have defined
in these notes. Put another way, there is no nice formula for the solution of
the equation 3 = x5 + x.

Even if we can’t find a formula for the inverse of a function, we can still
compute its value for any given input to any degree of accuracy with (say)
a computer. So we can give the inverse a name and compute with it using
the rules of algebra. This is exactly what we shall do in Section 17. with the
exponential function

f(x) = 2x.

This function is increasing so has an inverse function. and the inverse func-
tion is denoted by log2(y):

y = 2x ⇐⇒ x = log2(y).

13.9. In Section 12.3 we said that, unless the contrary is stated, the domain
of a function f(x) which is defined by an expression in x is the set of x for
which the expression is meaningful. However, we may decide to restrict the
domain to a smaller set in order to define an inverse function. For example,
in Section 13.5 we saw that the function f(x) = x2 is not one-to-one since
f(3) = f(−3) and hence this function does not have an inverse function. But
we can define

q(x) = x2, x ≥ 0

so the domain is [0,∞). Then

y = q(x) ⇐⇒ x =
√
y

so q(x) and
√
y are inverse functions. (This device is used in trigonometry to

define the inverse trigonometric functions.) If we were to program a computer
to compute the function q(x), asking the computer to compute q(−3) would
produce an error message like “function undefined for this input”.

13.10. If the function f has an inverse, then the graph of the equation
y = f(x) is the same as the graph of the equation x = f−1(y). Of course
the graph of the equation y = f−1(x) is (usually) different. The graphs of
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the equations y = f(x) and y = f−1(x) are obtained from each other by
interchanging the x-axis and the y-axis, i.e. by reflecting in the line y = x.

x

y

y = f(x)

x

y

y = f−1(x)

14 Average Rate of Change

Definition 14.1. The average rate of change of the function f over the
interval [a, b] is the slope of the line joining the point (a, f(a)) to the point
(b, f(b)). When y = f(x) the average rate of change is often written as

∆y

∆x
=

∆f

∆x
=
f(b)− f(a)

b− a
,

i.e. the average rate of change is the change ∆y = f(b) − f(a) in y divided
by the change ∆x = b− a in x.

Example 14.2. The average rate of change of the function f(x) = x2 on
the interval [a, b] is

∆f

∆x
=
f(b)− f(a)

b− a
=
b2 − a2

b− a
=

(b+ a)(b− a)

b− a
= b+ a.

Note that the b−a in the denominator cancels out. To see way this happens
we will repeat the calculation using the notation h = b − a = ∆x so that
b = a + h. When we expand the numerator the terms which don’t contain
an h cancel. Then the h in the denominator cancels with (some of) the h’s
in the numerator as follows:

∆f

∆x
=

(a+ h)2 − a2

h
=
a2 + 2ah+ h2 − a2

h
=

2ah+ h2

h
= 2a+ h.
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This cancellation will always happen when you are asked to simplify an
average rate of change.

14.3. The average rate of change of a function f over the interval [a, b] is
undefined when a = b (zero divided by zero is nonsense) but for b very close
to a the average rate of change will usually be close to a number called the
instantaneous rate of change. This is the slope of the tangent line to the
graph y = f(x) at the point (a, f(a)).

x

y

∆x = 0.5
x

y

∆x = 0.05

In calculus the instantaneous rate of change is called the derivative. In the
previous paragraph we saw that for the function f(x) = x2 the average rate
of change over the interval [a, b] is a+b. This is 2a+h where h = ∆x = b−a.
The instantaneous rate of change at the point (a, f(a)) is 2a which is obtained
from the average rate of change by taking h = 0.

14.4. Suppose you are traveling from Madison to Milwaukee by automobile
via the interstate highway I-94. Your position is a function s = f(t) of the
time t. The value s is the number on the mile marker at the side of the
road. (Along much of the road there is a mile marker every tenth of a mile,
but imagine there is one every few feet.) The change ∆s = f(t+ ∆t)− f(t)
is also the change in the odometer reading in your car. If the time interval
∆t is so short that your speed doesn’t change much in the time interval, the
average rate of change ∆s/∆t is your speed as shown on the speedometer.
The speed is the instantaneous rate of change of the position.

15 Polynomials

15.1. For any graph the points where it intersects the x-axis are called the
x-intercepts and the points where it intersects the y-axis are called the y-
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intercepts. The equation of the x-axis is y = 0 so we find the x-intercepts
of the graph of an equation by plugging in y = 0 and solving for x. Similarly
the equation of the y-axis is x = 0 so we find the y-intercepts by plugging in
x = 0 and solving for y. If the graph is the graph of a function y = f(x),
then (assuming that 0 is in the domain) the y-intercept is the point (0, f(0)),
and the x-intercepts are the points (r, 0) such that f(r) = 0. The numbers
r such that f(r) = 0 are called the zeros (and sometimes also the roots) of
the function.

Definition 15.2. A polynomial is a function of form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where the exponents on x are nonnegative integers. A polynomial equation
is an equation of form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = 0.

Its solutions are the zeros of the polynomial and are also called the roots of
the polynomial. When an 6= 0 we say that the degree of the polynomial is n.
The constants a0, a1, . . . , an are called the coefficients. For any polynomial
f(0) = a0 (the constant term) so the y-intercept of the graph is the point
(0, a0).

15.3. A polynomial of degree one (or zero) is called linear (since its graph
is a line), a polynomial of degree two is called quadratic, and a polynomial
of degree three is called cubic. In Paragraph 6.4 we used the notation
f(x) = mx + b (slope-intercept form) rather than f(x) = a1x + a0 for a
linear function and in Theorem 11.2 we wrote the quadratic equation as
ax2 + bx+ c = 0 rather than as a2x

2 + a1x+ a0 = 0.

15.4. It is easy to graph a linear function: just find two points (x1, f(x1))
and (x2, f(x2)) on the graph and draw the line through them. It is also not
hard to graph a quadratic function f(x) = ax2 + bx + c. The graph is a
parabola which opens up (like y = x2) if a > 0 and down (like y = −x2)
if a < 0. By the Quadratic Formula in Theorem 11.2 the graph has two
x-intercepts if the discriminant b2 − 4ac is positive, one x-intercept if the
discriminant is zero, and no x-intercept if the discriminant is negative.
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Remark 15.5. When a = 1 and b and c are integers we could try to solve
the quadratic equation x2 + bx+ c = 0 by factoring. If

x2 + bx+ c = (x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2

(for all x) then
b = −(r1 + r2), c = r1r2.

If we suspect that the roots are integers, we can try all possible ways of
factoring c. For example, to solve x2 − 5x + 6 = 0 we try (r1, r2) = (1, 6),
(−1,−6), (2, 3), (−2,−3). Only (r1, r2) = (2, 3) gives −(r1 + r2) = −5 so

x2 − 5x+ 6 = (x− 2)(x− 3)

and the solutions of x2 − 5x + 6 = 0 are x = 2 and x = 3. Of course, there
is usually no reason to suspect that the roots are integers so it is best to use
the Quadratic Formula (Theorem 11.2) to solve a quadratic equation.

15.6. A polynomial inequality like

xn + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0 > 0

is easy to solve if we can factor the left hand side. Then we can write it in
the form

(x− r1)(x− r2) · · · (x− rn) > 0.

On each of the intervals (−∞, r1), (r1, r2), . . . , (rn−1, rn), (rn,∞) the sign of
the polynomial is constant so we can compute the sign by evaluating the
polynomial at some point in the interval. For example,

(x− 1)(x− 4)(x− 9) > 0 ⇐⇒ x in (1, 4) ∪ (9,∞)

and
(x− 1)(x− 4)(x− 9) ≥ 0 ⇐⇒ x in [1, 4] ∪ [9,∞)

As a check we evaluate
at x = 0 in (−∞, 1) and get (0− 1)(0− 4)(0− 9) = −36 < 0,
at x = 2 in (1, 4) and get (2− 1)(2− 4)(2− 9) = 14 > 0,
at x = 5 in (4, 9) and get (5− 1)(5− 4)(5− 9) = −16 < 0, and
at x = 10 in (9,∞) and get (10− 1)(10− 4)(10− 9) = 54 > 0.

15.7. To graph a polynomial f(x) we use the following rules:
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(i) The sign of the polynomial does not change between two adjacent roots.
To determine this sign we can evaluate the polynomial at any number
in between.

(ii) If the polynomial can be factored so that

f(x) = an(x− r1)(x− r2) · · · (x− rn)

where r1 < r2 < · · · < rn are the roots, then between each pair of
roots rk, rk+1 the graph reverses direction exactly once, i.e. either the
function value f(x) increases on some interval [rk, ck] and then decreases
on the interval [ck, rk+1] or it decreases on some interval [rk, ck] and then
increases on the interval [ck, rk+1]

(iii) The absolute value of f(x) is large when the absolute value of x is large.
Whether f(x) is large positive or large negative depends only on the
sign of the coefficient of xn (where n is the degree) and on whether n
is odd or even.

In calculus you will learn how to determine on which intervals the function
is increasing and you will learn enough to understand why (ii) is true.

Below we have graphed the polynomial

f(x) = x4 − 2x3 − x2 + 2x = (x+ 1)(x− 0)(x− 1)(x− 2)

which factors completely as in item (ii). The degree is 4 and the roots are
−1, 0, 1, 2. In each of the intervals (−1, 0), (0, 1), (1, 2) between roots the
function reverses direction exactly once. Next to the graph y = f(x) is the
graph y = f(x)− 1. The degree is still 4 but the graph y = f(x)− 1 has two
x-intercepts (not 4 as does y = f(x)) and between them the function reverses
direction three times. According to item (ii) this means that the polynomial
f(x)− 1 does not factor completely (into real linear polynomials).
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x

y

y = f(x)

x

y

y = f(x)− 1

16 Rational Functions

Definition 16.1. A rational function is a quotient

f(x) =
g(x)

h(x)

of two polynomials. The domain is the set of all real numbers where the
denominator h(x) os not zero. Since the denominator h(x) is not zero for x
in the domain, a zero of f is the same as a zero of the numerator g. A point
where the denominator is zero (and the numerator is not zero) is called a
pole of f .

16.2. To graph a rational function

f(x) =
anx

n + · · ·+ a1x+ a0

bmxm + · · ·+ b1x+ b0

we use the following rules:

(i) On any interval which contains neither a zero nor a pole, the sign of f(x)
does not change. To determine this sign we can evaluate the rational
function at any number in the interval.

(ii) If n > m (and an, bm 6= 0) then the absolute value of f(x) is arbitrarily
large when the absolute value of x is sufficiently large.

(iii) If n ≤ m (and an, bm 6= 0) then f(x) is arbitrarily close to c when the
absolute value of x is sufficiently large, where c = an/bm if n = m and
c = 0 is n < m.

41



(iv) If p is a pole, then the absolute value of f(x) is arbitrarily large when
x is sufficiently close to p.

In case (iii) the horizontal line y = c is called a horizontal asymptote of
the graph of y = f(x). The vertical line x = p as in case (iv) is called a
vertical asymptote of the graph.

If a nonzero number is divided by a relatively small number, the result is
large. This is why the absolute value of f(x) is large when x is near a pole.
This is why (i) is true.

The reason why (ii)-(iv) are true is as follows. With q(x), r(x), h(x) as in
the Division Algorithm the term r(x)/h(x) is very small when the absolute
value of x is large. This is because the degree of r(x) is less than the degree
of h(x) so the absolute value of r(x) is much smaller than the absolute value
of h(x) when the absolute value of x is large. Hence the ratio r(x)/h(x)
is small and f(x) is close to q(x). When m = n, the quotient q(x) is the
constant an/bn, when n < m q(x) is the zero polynomial, and when n < m,
the quotient q(x) has positive degree and hnce has large absolute value when
the absolute value of x is large.

Example 16.3. The x-axis is a horizontal asymptote of the graph y =
4

1 + x2

and also of the graph y =
1

1− x2
. The lines x = ±1 are vertical asymptotes

of the graph y =
1

1− x2
.

x

y

y = 4/(1 + x2)

x

y

y = 1/(1− x2)
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17 Exponentials and Logarithms

17.1. Each positive number a distinct from one determines a function

f(x) = ax

called the exponential function base a. It is characterized by the following
properties:

(i) The domain is the set of all real numbers and the range is the set of all
positive real numbers.

(ii) au+v = au · av, a0 = 1.

(iii) If a > 1, the exponential function base a is increasing.

(iv) If 0 < a < 1, the exponential function base a is decreasing.

This was stated as Theorem 4.1. A careful definition of the exponential
function requires concepts which are normally taught in calculus. All the
exponent laws in Paragraph 1.9 which hold hold when the exponents are
integers continue to hold for real exponents. Here are the graphs y = 2x and
y =

(
1
2

)x
.

x

y

y = 2x

x

y

y = (1/2)x

If a > 1 then 0 < 1/a = a−1 < 1 and (1/a)x (a−1)
x

= a−x. Hence the graph
of y = (1/a)x is obtained from the graph of y = ax by reflection in the y-axis.

17.2. For a > 1 as x increases through positive values the function value
y = ax increases very rapidly; one calls this exponential growth. For
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example, 210 = 1024 while 220 = 1, 048, 576, i.e. doubling the input from ten
to twenty changes the output from about one thousand to about one million.
On the other hand as x decreases through negative values the value y = ax

approaches the x-axis very rapidly, but (since ax > 0) never intersects it.
For 0 < a < 1, the situation is reversed: as x increases, the function value
y = ax approaches the x-axis very rapidly – this is called exponential decay
– while as x decreases through negative values the function value becomes
large very rapidly. Whether or not a > 1 or a < 1 the function value is
always positive.

Remark 17.3. We say that the x-axis is a horizontal asymptote for the
graph y = ax but the situation is not exactly the same as it was for the graph
of a rational function. When a rational function has a horizontal asymptote,
the graph is close to the asymptote whenever the absolute value of x is large
whether x is positive or x is negative. For the exponential function, the
graph approaches the x-axis when x is large positive or large negative, but
not both.

Definition 17.4. The logarithm base a is the inverse function to the
exponential function base a. It is denoted by loga so

y = loga(x) ⇐⇒ x = ay.

i.e.

y = loga(ay) x = aloga(x).

17.5. The exponential function satisfies the identity

auav = au+v

which says that “exponentiation changes addition into multiplication”. Anal-
ogously, “the logarithm changes multiplication into addition”. If U = au and
V = av then UV = au+v. But these equations also say that u = loga(U),
v = loga(V ), and u+ v = loga(UV ). Hence

loga(UV ) = loga(U) + loga(V ).
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The other laws of exponentiation imply in the same way corresponding laws
for logarithms as follows:

(i) auav = au+v loga(UV ) = loga(U) + loga(V )

(ii) a0 = 1 0 = loga(1)

(iii) (au)p = apu loga(Up) = p loga(U)

(iv)
au

av
= au−v loga

(
U

V

)
= loga(U)− loga(V )

Remark 17.6. Before the advent of electronic computers, logarithms and
exponentials were used to do arithmetic. To multiply two numbers U and
V one would look up their logarithms in a table, add the logarithms, and
then find the number in the table with (almost) the same logarithm as the
sum. That number was the product UV . (The point is that addition of long
numbers is much easier than multiplication.)

Scientists and engineers used a device called a slide rule to perform
these operations quickly. Essentially it consisted of two rulers marked with
numbers spaced according to their logarithms as in this diagram:

1 2 3 4 5 6 7 8 9 10

To compute the product of (say) 2×3 you place the 1 on one of the logarithmic
rulers above the 2 on the other. The number on the bottom ruler below the 3
on the top ruler is then at a distance of log(2) + log(3) = log(2× 3) from the
1 on the bottom ruler and using the markings on the ruler you can read off
the product. The above diagram was created with a computer and is quite
accurate. You can see how it works by marking off the distance between the
1 and the 2 on a piece of paper. You will see that this distance is exactly the
same as the distance between the 3 and the 6.
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17.7. The equations y = loga(x) and x = ay have the same graph. (This
is always true for inverse functions.) The graph of y = loga(x) is obtained
from the graph of y = ax by reflecting in the line y = x, i.e. interchanging
the x-axis and the y-axis.

x

y

y = log2(x)

x

y

y = 2x

18 Exponential Growth and Decay

Definition 18.1. A quantity N is said to obey an exponential law iff its
value at time t is given by the formula

N = N0a
t

where a is a positive real number distinct from 1. Since a0 = 1 it follows
that N0 is the value of N at time t = 0 and since at+1 = at · a it follows that
N changes by a factor of a in each time interval of length 1. When a > 1
we say that N grows exponentialy while if a < 1 we say that N decays
exponentially.

18.2. Many phenomena are governed by exponential growth laws. To name
a few:

1. Money invested in a bank account grows exponentially at 6% per year
(or whatever the interest rate is). If you invest B0 dollars in a bank
account that pays 6% per year in t years your balance will be

B = B0(1.06)t dollars.
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2. The population of the world grows exponentially at 1.5% per year.
(This will not continue forever.) As long as this growth rate continues
the population P of the world in t years will be

P = P0(1.015)t

where P0 is the population today. Other populations (e.g. bacteria)
obey the same law (albeit with a different growth rate).

3. The amount of radioactivity in a radioactive material decays exponen-
tially (at a rate that depends on the material). For example carbon-14
decays at 0.012% per year so that amount N of carbon-14 in a sample
of organic material is given by

N = N0(0.988)t

where N0 is the amount of carbon-14 that was in the sample t years
ago. (Since the percentage of carbon-14 in living material is known,
this formula can be used to estimate how long it has been since the
organic material was alive.)

18.3. It is easy to understand why a quantity might grow or decay expo-
nentially. Consider for example a population of bacteria. At any moment a
certain percentage of the population will be at the right stage of development
to subdivide. Each bacterium which subdivides adds a new bacterium to the
population. If (say) 2% of the bacteria subdivide every hour, then in the
first hour the population grows from N0 to N1 = N0(1.02). In the second
hour the population grows from N1 to N2 = N1(1.02) so N2 = N0(1.02)2. In
general, after t hours the population will be N0(1.02)t.

19 The Natural Logarithm

19.1. The irrational number

e = 2.7182818284590451 . . .

is most often used as the base for the exponential function. The exponential
function base e is called the natural exponential and the inverse function

ln(x) := loge(x)

is called the natural logarithm. We shall explain what is natural about
the natural logarithm in two ways.
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19.2. First we note that the average rate of change (see Section 14) for the
natural exponential on the interval [x, x+ h] is given by

ex+h − ex

h
= ex

(
eh − 1

h

)
It is proved in calculus that the number e is characterized by the fact that

the ratio

(
eh − 1

h

)
is very close to one when h is small. This means that

the average rate of change over a short interval [x, x+ h] (the instantaneous
rate of change) is the value ex of the natural exponential.

Now consider a quantity N governed by an exponential law

N = N0a
t

and let r = ln(a) be the natural logarithm of the base a. Then a = er so
at = (er)t = ert and the exponential law takes the form

N = N0e
rt.

Now consider the average rate of change of N over a short time interval
[t, t+ ∆t] of duration ∆t. Using the above formula with x = rt and h = r∆t
we get

∆N

∆t
=
N0e

rt+r∆t − ert

∆t
= N0e

rt

(
er∆t − 1

∆t

)
= Nr

(
eh − 1

h

)
which says that the instantaneous rate of change is Nr. For example, if r =
0.06 this says that the instantaneous rate of change is 6% of N . (Remember:
“per” means divide, ”of” means times, and ”cent” means 100 so 6 % means
6/100 and 6% of N is 0.06N .) In summary

The instantaneous rate of change of a quantity governed
by the exponential law N = N0e

rt is 100r% (of N).
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19.3. The second way of understanding what is natural about the natural
exponential function is to consider a bank account which earns a nominal
interest rate of (say) 6% per year. The interest rate is called nominal because
the actual amount of interest paid depends on how often the bank pays the
interest. An interest rate of 6% per year is the same as an interest rate of
6%/12 = 0.5% per month but if the bank pays the interest every month, the
account will grow by slightly more than 6% in a year. Here is how a few
different banks might pay interest.

(i) The Alaska Bank pays interest compounded annually. This means that
every year it looks at the balance in an account and adds 6%. Thus an initial
deposit of B0 dollars grows to

B = B0(1.06)t

dollars after t years (assuming no other deposits are made during this period).

(ii) The Minnesota Bank pays interest compounded monthly. This means
that every month it looks at the balance in an account and adds 6/12% =
0.5%. Thus an initial deposit of B0 dollars grows to

B = B0(1.005)12t

dollars after 12t months = t years (assuming no other deposits are made
during this period.)

(iii) The Wisconsin Bank pays interest compounded weekly. This means
that every week it looks at the balance in an account and adds 6/52% =
0.001154%. Thus an initial deposit of B0 dollars grows to

B = B0

(
1 +

0.06

52

)52t

dollars after 52t weeks = t years.

(iv) The Delaware Bank pays interest compounded daily. This means that
every day it looks at the balance in an account and adds 6/365%. Thus an
initial deposit of B0 dollars grows to

B = B0

(
1 +

0.06

365

)365t

dollars after 365t days = t years.
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The general formula for the balance B in a bank account after t years if
the balance is initially B0, the interest rate is r per year, and the interest is
compounded (i.e. paid) m times per year is

B = B0

(
1 +

r

m

)mt

.

In all cases the formula is of the form

B = B0a
t

where a = (1 + r/m)m an the compounding period is 1/m years i.e. the
interest is compounded m times per year; When m becomes infinite we say
that the interest is compounded continuously and in calculus it is proved
that this formula works with a = er so the balance after t years is given by

B = B0e
rt.

The following table shows the values of at =
(
1 + r

m

)mt
for t = 2, r = 0.05,

n = mt, and various values of the number m of compounding periods per
year.

m
(

1 +
r

m

)mt

=

(
1 +

0.05

m

)2m

1 1.102500000000000

12 1.104941335558328

52 1.105117820169223

365 1.105163349128883

∞ 1.105170918075648

Thus an account with a starting value of $1000 at 5% per year will, in two
years, earn $102.50 in interest if the interest is compounded annually and
$105.17 in interest if the interest is compounded continuously.

Remark 19.4. Presumably in the old days the interest was credited to the
account at the the end of each compounding period and if the account was
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closed in the middle of a compounding period the amount of interest earned
since the beginning of the compounding period was forfeited. Today most
banks would use the formula B = B0

(
1 + r

m

)mt
for all values of t not just

when mt is an integer. Of course, the contract signed when the account was
opened will make this precise.

19.5. The doubling time of a quantity N = N0e
rt which is increasing

exponentially is the time t such that N = 2N0. Since

2N0 = N0e
rt =⇒ 2 = ert =⇒ ln 2 = rt

the doubling time is t = (ln 2)/r. Similarly, the half life of a quantity N =
N0e

rt which is decreasing exponentially is the time t such that N = N0/2,
i.e. t = −(ln 2)/r.

20 Sequences and Series

Definition 20.1. A sequence is a function whose domain is a set of integers
usually either the natural numbers 1, 2, 3, . . . or the nonnegative integers
0, 1, 2, 3, . . .. The output of the sequence when the input is n is called the
nth term of the sequence.

20.2. Usually the input is denoted by a letter like n near the middle of the
alphabet and the output for input n is denoted by making n a subscript
rather than by surrounding n by parentheses, i.e. we write an rather than
a(n). Here are some examples.

an = 5 + 3n, bn = 2n, cn = n2.

Definition 20.3. An arithmetic sequence is one of form

an = a+ nd

where a and d are constants. An arithmetic sequence has the property that
the difference of successive terms is a constant:

an+1 − an = (a+ (n+ 1)d)− (a+ nd) = d.
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Definition 20.4. A geometric sequence is one of form

gn = arn

where a and r are constants. A geometric sequence has the property that
the ratio of successive terms is a constant:

gn+1

gn

=
arn+1

arn
= r.

Example 20.5. The sequence cn = n2 is neither arithmetic nor geometric.
The sequence is not arithmetic because the difference

cn+1 − cn = (n+ 1)2 − n2 = 2n+ 1

is not constant (i.e. it depends on n) and the sequence is not geometric
because the ratio

cn+1

cn
=

(n+ 1)2

n2
= 1 +

2

n
=

1

n2

is not constant (i.e. it also depends on n).

Definition 20.6. Every sequence determines another sequence called the
corresponding series. The nth term of the series is the sum of the first n
terms of the sequence. Thus if the nth term of the sequence is an, then the
nth term of the series is

Sn = a1 + a2 + · · ·+ an.

Definition 20.7. A series is often written using Sigma notation as in

Sn =
n∑

k=1

ak.

More generally
n∑

k=m

ak := am + am+1 + · · ·+ an.

Theorem 20.8. The sum of the first n terms of a geometric sequence is
given by

n∑
k=1

ark = a
rn+1 − r
r − 1

.
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Proof. Suppose for example that n = 3 (the general case is similar). Then

3∑
k=1

rk = r + r2 + r3

and multiplying by r gives

r

3∑
k=1

rk = r(r + r2 + r3) = r2 + r3 + r4

so

(1− r)
3∑

k=1

rk =
3∑

k=1

rk − r
3∑

k=1

rk = (r + r2 + r3)− (r2 + r3 + r4) = r − r4.

Now divide by (1− r) and multiply by a to get the formula.

20.9. Mortgages. A family takes out a 30 year $100,000 mortgage to buy
a house. The interest rate is 6% per year and they will repay the loan in 360
equal monthly payments. To compute the monthly payment imagine that
the family has taken 360 loans

100000 = L1 + L2 + · · ·+ L360

and they will repay the kth loan at the end of the kth month with the
monthly payment of a dollars. The monthly interest rate is 6%/12 = 0.005
so the amount owed on the kth loan after k months is (1.005)kLk. This is
the amount of the kth payment so a = (1.005)kLk so Lk = a(1.005)−k so

100000 = L1 +L2 + · · ·+L360 = a(1.005)−1 +a(1.005)−2 + · · ·+a(1.005)−360.

Using Sigma notation and Theorem 20.8 with r = (1.005)−1 this may be
written

100000 =
360∑
k=1

a(1.005)−k = a
(1.005)−361 − (1.005)−1

(1.005)−1 − 1

To evaluate the expression on the right multiply top and bottom by 1.005 to
get

(1.005)−361 − (1.005)−1

(1.005)−1 − 1
=

(1.005)−360 − 1

1− 1.005
=

1− (1.005)−360

0.005
= 166.79

so 100000 = 166.79a so the monthly payment is

a = 100000/166.79 = 599.56.

53



21 Infinite Series

Definition 21.1. For a sequence an the notation

lim
n→∞

an = b

means that that the numbers an are arbitrarily close to the number b when
n is sufficiently large. The expression on the left is called the the limit of an

as n becomes infinite. For a series we also use the notation

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak.

Theorem 21.2. If the ratio r of successive terms in a geometric series is
less than one in absolute value, then the sum of the infinite geometric series
is

∞∑
k=1

ark =
ar

1− r
.

Proof. By Theorem 20.8

n∑
k=1

ark =
ar − arn+1

1− r
=

ar

1− r
+ crn

where c = ar/(1 − r). In Section 17 we saw that for |r| < 1 the graph of
the exponential function y = rx decays exponentially as x becomes large
positive. This implies that

lim
n→∞

rn = 0

so
∞∑

k=1

ark = lim
n→∞

n∑
k=1

ark =
ar

1− r
+ c lim

n→∞
rn =

ar

1− r
.

Example 21.3. (Zeno’s Paradox) To travel one mile I must first travel the
first half mile, then half of the remaining distance, then half of the remaining
distance, and so on. How can I ever go whole distance? The answer is that
the sum of all the distances is one:

1

2
+

1

4
=

3

4
,

1

2
+

1

4
+

1

8
=

3

4
,

1

2
+

1

4
+

1

8
+

1

16
=

15

16
, . . . .
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The numerator is only one less than the denominator:
n∑

k=1

(
1

2

)k

=
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
=

2n − 1

2n
= 1− 2−n.

The finite sums are getting closer to one and the infinite sum is
∞∑

k=1

(
1

2

)k

=
1
2

1− 1
2

= 1.

Example 21.4. We use Theorem 21.2 to prove that the infinite repeating
decimal 0.1 36 36 36 36 36 36 . . .. is equal to 3/22. The first step is to make
the decimal look like a geometric series.

0.1 36 36 36 36 36 36 . . . =
1

10
+ 36

(
0.0 01 01 01 01 01 . . .

)
=

1

10
+

36

10

(
0.01 01 01 01 01 . . .

)
=

1

10
+

36

10

(
10−2 + 10−4 + 10−6 + 10−8 + · · ·

)
=

1

10
+

36

10

∞∑
k=1

(
1

100

)k

Now by Theorem 20.8
∞∑

k=1

(
1

100

)k

=
0.01

1− 0.01
=

0.01

0.99
=

1

99

so

0.1 36 36 36 36 . . . =
1

10
+

36

10
· 1

99
.

Now we do the arithmetic:

1

10
+

36

10
· 1

99
=

99 + 36

990
=

135

990
=

15

110
=

3

22
.

21.5. The concept of an infinite sum makes the definition of decimal expan-
sion more precise. If x is a real number between 0 and 1 it has a decimal
expansion

x =
∞∑

k=1

dk 10−k

where each dk is an integer between 0 and 9. For most real numbers the
digits dk won’t follow any pattern, but
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Theorem 21.6. A real number x is rational if and only if has a repeating
decimal expansion like the one in Example 21.4.

Proof. A rational number is a ratio p/q of two integers p and q. To see why
the decimal expansion eventually repeats periodically imagine computing
the decimal expansion by long division. At each step in the long division
algorithm we compute the next digit in the quotient, multiply that digit
by q, subtract the product to get the next remainder, and bring down the
next digit from the dividend. The remainder is smaller than q, otherwise
we would have used a larger digit in the quotient we are computing. Once
we are computing digits of the right of the decimal point the digit we bring
down from the dividend is always zero and since the remainder is always less
than q we will eventually find ourselves redoing what we have already done.

The proof that a real number with a repeating decimal expansion is ratio-
nal is just like the computation in Example 21.4. We first write the number
as the sum of a finite decimal and a negative power of ten times a geometric
series. We then use Theorem 21.2 and do the arithmetic.

22 Complex Numbers

Definition 22.1. The complex numbers are those numbers of form

z = x+ iy

where x and y are real numbers and i is a special new number called the
imaginary unit which has the property that i2 = −1.The real number x
is called the real part of z and the real number y is called the imaginary
part of z. Two complex numbers are equal iff their real parts are equal and
their imaginary parts are equal. The complex number

z̄ := x− iy

is called the conjugate of z.

22.2. The arithmetic operations are performed by treating i as a variable
and then replacing i2 by −1 if necessary. This makes clear that the com-
mutative, associative, and distributive laws hold, that the additive inverse
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is−z = −(xiy) = (−x) + (−y)i so that the law z + (−z) = 0, and that the
rule for multiplying complex numbers is

zw = (x+ iy)(u+ iv)

= xu+ (xv + yu)i+ yvi2

= xu+ (xv + yu)i− yv
= (xu− yv) + i(xv + yu)

where z = x+ iy and w = u+ iv and x y, u, v are real. Using the algebraic
law (a + b)(a − b) = a2 − b2 we see that the product of a complex number
and its conjugate is

zz̄ = (x+ iy)(x− iy) = x2 − i2y2 = x2 + y2

which is a positive real number if z 6= 0. Hence the multiplication inverse is
defined by

z−1 =
1

z
=

z̄

zz̄
=

x

x2 + y2
− iy

x2 + y2
.

22.3. Conjugation satisfies the following laws.

1. A complex number is real if and only if it is equal to its conjugate:

x+ iy = x− iy ⇐⇒ y = 0 ⇐⇒ z = x.

2. The conjugate of the conjugate is the original number.

¯̄z = (x− iy) = x+ iy = z.

3. Doing an arithmetic operation and then taking the conjugate gives the
same result as taking the conjugates first and then doing the operation:

z ± w = z̄ ± w̄, zw = z̄w̄,
( z
w

)
=
z̄

w̄
.

These are all easy to prove. For example if z = x+ iy, z̄ = x− iy, w = u+ iv,
w̄ = u− iv then

z̄w̄ = (x− iy)(u− iv)

= (xu− yv)− (xv + yu)i

= (xu− yv) + (xv + yu)i

= zw
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23 Division of Polynomials

Theorem 23.1 (Division Algorithm). Let p(x) and d(x) be polynomi-
als and assume that d(x) is not the zero polynomial. Then the are unique
polynomialsq(x) and r(x) such that

p(x) = d(x) · q(x) + r(x)

and either r(x) is the zero polynomial or the degree of the remainder r(x) is
less than the degree of the divisor d(x).

Proof. Guided Exercise.

Remark 23.2. An analogous statement holds for integers. Let p and d be
be integers with d > 0. Then there are unique integers q and r with

p = d · q + r, 0 ≤ r < d.

For example,
23 = 7 · 3 + 2, 0 ≤ 2 < 7.

In the case of rational numbers (as opposed to rational functions) the condi-
tion that the degree of r(x) is less than the degree of d(x) is replaced by the
condition that the remainder is less than the divisor. In fact there is a very
strong analogy between integers and rational numbers on the one hand and
polynomials and rational functions on the other.

24 The Fundamental Theorem of Algebra

Theorem 24.1 (Fundamental Theorem of Algebra). A polynomial equa-
tion (of positive degree) has a complex root.

Remark 24.2. The proof of the Fundamental Theorem is rather difficult
and is not ordinarily taught in undergraduate courses. The theorem is true
even if the coefficients in the polynomial are complex. In this section we shall
see what the theorem means for real polynomials, i.e. polynomials with
real coefficients.

Theorem 24.3 (Remainder Theorem). If a polynomial f(x) is divided
by (x− r), the remainder is f(r)
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Proof. By the Division Algorithm (Theorem 23.1) we have

f(x) = (x− r)q(x) + c (∗)

where c is a polynomial of degree less than the degree of the divisor (x− r).
But the degree of the divisor (x − r) is one so the degree of c is zero, i.e. c
is a constant. Now plug in x = r to get f(r) = (r − r)q(r) + c = 0 + c = c
so (∗) becomes f(x) = (x− r)q(x) + f(r).

Corollary 24.4 (Factor Theorem). If r is a root of the polynomial f(x),
then (x− r) evenly divides f(x), i.e. f(x) = (x− r)q(x).

Proof. By the Remainder Theorem just proved we have

f(x) = (x− r)q(x) + f(r).

Hence if f(r) = 0, then f(x) = (x− r)q(x).

Theorem 24.5 (Complete Factorization). Let f(x) be a polynomial of
degree n. Then

f(x) = c(x− r1)(x− r2) · · · (x− rn)

where c is a constant and r1, r2, . . . , rn are the roots of f(x), i.e. the solutions
of f(x) = 0.

Proof. By the Fundamental Theorem of Algebra, there is a complex number
r1 such that f(r1) = 0 so by the Factor Theorem just proved there is a
polynomial f1(x) such that

f(x) = (x− r1)f1(x).

Now f1(x) is a polynomial of degree n− 1 so by the same argument there is
a complex number r1 and a polynomial of f2(x) with f1(x) = (x − r2)f2(x)
and hence

f(x) = (x− r1)f1(x) = (x− r1)(x− r2)f2(x).

Repeating n times gives

f(x) = (x− r1)(x− r2) · · · (x− rn)c.

where c = fn(x) has degree 0, i.e. c is constant.
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Corollary 24.6. Every real polynomial may be written as a product of real
linear polynomials and real quadratic polynomials with negative discriminant.

Proof. If the coefficients of f(x) are real and r is a complex but non real root
of f(x) then 0 = f(r) = f(r̄) so the conjugate r̄ is also a root. Let p and
q bet the real and imaginary parts of r so r = p + qi and r̄ = p − qi. The
r + r̄ = 2p and rr̄ = p2 + q2. The quadratic polynomial

(x− r)(x− r̄) = x2 − (r + r̄)x+ rr̄ = x2 + 2px+ (p2 + q2)

has negative discriminant b2 − 4ac = 4p2 − 4(p2 + q2) = −q2. Thus the non
real complex roots occur in pairs in the complete factorization and may be
combined to give the desired factorization into real (quadratic and linear)
polynomials.
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A Where to Look in the Textbook

This appendix tells you where to look in the course textbook

David Cohen: College Algebra Fifth Edition, Thomson Brooks/Cole
2003.

for additional reading.

1 (Laws of algebra) The material in this section is mostly review but some
of it is discussed in Appendices A.2 and B.1 of the textbook. The ma-
terial in Paragraph 1.1 Paragraph 1.2 Paragraph 1.3 Paragraph 1.4
Page A-5 in Appendix A.2 Paragraph 1.5 Paragraph 1.6 Page A-5
in Appendix A.2 Paragraph 1.7 Pages 17 and 77, Definition 1.8 Ap-
pendix B.2 Page A-8, Paragraph 1.9

2 (Kinds of Numbers) Most of the material in this section is covered in Sec-
tion 1.1 of the textbook. Page 2. Paragraph 2.2 Remark 2.3 Page 729.
Remark 2.5 See Page A-7 Appendix A.3 of the textbook for the proof
that

√
2 is irrational.

3 (Coordinates on the Line and Order) Interval notation is explained in Sec-
tion 1.1 (Page 3). Paragraph 3.1 Page 1. Paragraph 3.2 Paragraph 3.3
Paragraph 3.4 Page 4 Paragraph 3.5 Section 1.2 Page 6. Paragraph 3.6
Section 1.2 Page 9. The properties of inequalities are reviewed at the
beginning of Section 2.5 of the textbook.

4 (Exponents) See Appendices B.2 and B.3 in the textbook. Theorem 4.1
Paragraph 4.2

5 (Coordinates in the Plane and Graphs) Coordinates in the plane are in-
troduced in Sections 1.2 of the textbook Paragraph 5.1 Definition 5.2
Page 36. The Distance Formula 5.4 first appears on Page 23-24. Para-
graph 5.5 Pages 68-70. The Midpoint Formula 5.6 is on Page 27. Def-
inition 7.1 Page 66, Page 636. Theorem 7.2 Page 638. Example 7.3
Page 639. Remark 7.4 Page 644, Page 652 (Exercise 19). Definition 7.5
Page 653. Theorem 7.6 Page 655. Example 7.7 Page 656.

6 (Lines) This material is covered in section 1.6 of the textbook. Para-
graph 6.1 Page 55. Definition 6.2 Page 48. Paragraph 6.3 Page 52.
Paragraph 6.4 Page 55. Theorem 6.5 Page 56, Theorem 6.6 Page 56.
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8 (Solving Equations) Definition 8.1 appears on Page 13 of the textbook.
Extraneous solutions are explained on pages 15-16. Paragraph 8.2
Paragraph 8.3 Paragraph 8.4 Page 104 Remark 8.5 Paragraph 8.6 This
material is reviewed in Section 1.3 of the textbook.

9 (Systems of Equations) Systems of two linear equations in two unknowns
are reviewed in Section 6.1 of the textbook. Paragraph 9.1 Example 9.2
Paragraph 9.3 Paragraph 9.4

10 (Symmetry) Definition 10.1 Section 1.7 Page 63. Paragraph 10.2 Page 64.

11 (Completing the Square) Paragraph 11.1 Theorem 11.2 Pages 18 and 87.
Theorem 11.3 Page 70. Theorem 11.4 Page 273. Paragraph 11.5
Pages 198-209.

12 (Functions) Definition 12.1 Section 3.1 Page 160. Paragraph 12.2 Sec-
tion 3.1 Page 167. Paragraph 12.3 12.3 Section 3.1 Pages 162-163.
Definition 12.4 Section 3.2 Page 173. The Vertical Line Test 12.4 Sec-
tion 3.2 Page 174. Example 12.5 Example 2 Page 174. Remark 12.6
Section 3.2 Pages 174-175. Paragraph 12.7 Section 3.5 Page 209. Defi-
nition 12.8 Section 3.5 Page 211. Remark 12.9 Section 3.5 Example 2
Page 211. Paragraph 12.10

13 (Inverse Functions) Definition 13.1 Section 3.6 Page 222. Example 13.2
Section 3.6 Example 2 Page 223. Remark 13.3 Paragraph 13.4 Sec-
tion 3.6 Example 2 Page 229. The Horizontal Line Test 13.4 Section 3.6
Page 229. Paragraph 13.5 Section 3.6 Page 229. Definition 13.6 186,
244 Theorem 13.7 Remark 13.8 Paragraph 13.9 Paragraph 13.10 Sec-
tion 3.6 Page 227.

14 (Average Rate of Change) Definition 14.1 Section 3.3 Page 189. Exam-
ple 14.2 Paragraph 14.3 Paragraph 14.4

15 (Polynomials) Section 4.6 Page 326. Paragraph 15.1 Definition 15.2 Para-
graph 15.3 Paragraph 15.4 15.4 Remark 15.5 Paragraph 15.6 Para-
graph 15.7

16 (Rational Functions) Definition 16.1 Section 4.7 Theorem 23.1 345, 569-
571 Paragraph 16.2 Section 4.7 Example 8 Page 350. Example 16.3
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17 (Exponentials and Logarithms) Paragraph 17.1 Section 5.1 Paragraph 17.2
Remark 17.3 Definition 17.4 Section 5.3 Paragraph 17.5 Box 17.5 Re-
mark 17.6 Paragraph 17.7

18 (Exponential Growth and Decay) Section 5.7. Definition 18.1 Para-
graph 18.2 Paragraph 18.3

19 (The Natural Logarithm) Paragraph 19.1 Section 5.2 Paragraph 19.2
Paragraph 19.3 Remark 19.4 Paragraph 19.5

22 (Complex Numbers) Definition 22.1 Section 7.1 Paragraph 22.2 Para-
graph 22.3

23 (Division of Polynomials) Theorem Division Algorithm 23.1 Remark 23.2
An analogous statement holds for integers.

24 (The Fundamental Theorem of Algebra) Theorem Fundamental Theorem
of Algebra] 24.1 Theorem Remainder Theorem] 24.3 Corollary Factor
Theorem] 24.4 Theorem Complete Factorization] 24.5 Corollary 24.6

20 (Sequences and Series) Section 9.3. Definition 20.1 Paragraph 20.2 Def-
inition 20.3 Section 9.4. Definition 20.4 Section 9.5. Example 20.5
Definition 20.6 Definition 20.7 Section 9.3 Theorem 20.8 Section 9.5.
Paragraph 20.9 (Extra)

21 (Infinite Series) Definition 21.1 Theorem 21.2 Example 21.3 Example 21.4
Paragraph 21.5 Theorem 21.6 Page 729.
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