Math 221 – Exam III (50 Minutes) – Friday, April 16 Answers

I. (20 points.) Write the formula for a Riemann sum S for a function f(x) on the interval $a \leq x \leq b$ and explain in what sense it approximates the definite integral $\int_{a}^{b} f(x) dx$.

Answer: A Riemann sum or a function f(x) on the interval $a \le x \le b$ is an expression of form

$$S = \sum_{k=1}^{n} f(\bar{x}_k)(x_k - x_{k-1})$$

where

$$a = x_0 \le \bar{x}_1 \le x_1 \le \bar{x}_2 \le x_2 \le \dots \le x_{n-1} \le \bar{x}_n \le x_n = b.$$

It approximates the definite integral in the sense that

$$S \approx \int_{a}^{b} f(x) \, dx$$

when all the $x_k - x_{k-1}$ are small.

II. (30 points.) (a) Find
$$\int_{-1}^{2} (3x^{-2} - 2x^{10} + 3) dx$$
.

Answer: This is Problem 3 on page 256.

(b) Find $\int_{1}^{3} \sqrt{7 + 2t^2} (8t) dt$.

Answer: This is Problem 21 on page 256.

III. (25 points.) Find y as a function of x if

$$\frac{dy}{dx} = -y^3(x^2 + 2)^2$$

and y = 1 when x = 0.

Answer: This is Problem 14 on page 220.

IV. (25 points.) (a) Find $\sum_{n=1}^{5} n \cos(n\pi)$. (An exact integer answer is required here.)

Answer: This is problem 7 page 226

(b) Write the sum $\sum_{i=3}^{19} i(i-2)$ in sigma notation with k = i-2 as the dummy variable.

Answer: This is problem 31 p 226.

V. (25 points.) Use Riemann sums with four intervals of length one to find positive numbers m and M with

$$0 < m \le \int_1^5 \left(3 + \frac{1}{x}\right) \, dx \le M.$$

Answer: This is Problem 35 page 250.

VI. (25 points.) Starting from rest, a train increases speed at constant acceleration a_1 , then travels at a constant speed v_m , and finally brakes to a stop at constant de-acceleration $-a_2$. It took 7 minutes to travel 3 miles from Addison to Howard and 3 minutes to travel 1 mile from Howard to Dempster. The train spent one minute in the Howard station.

(a) Sketch the graph of the speed v as a function of time t for $0 \le t \le 11$. (The time t = 0 corresponds to the moment when the train leaves Addison.)

(b) Find the maximum speed v_m and the accelerations a_1 and a_2 if the train takes 1/2 minute to accelerate to its maximum speed and 1/3 of minute to decelerate from the maximum speed to rest. Show YOUR REASONING.)

Answer: this is like Problem Problem 33 page 221.

_____ Mon Apr 19 15:37:34 2004

There	e are 194 score	es	
grade	e range	count	percent
А	120150	19	9.8%
AB	110119	27	13.9%
В	100109	32	16.5%
BC	90 99	41	21.1%
С	75 89	41	21.1%
D	60 74	21	10.8%
F	0 59	13	6.7%
Mean	score = 93.9.	Mean grade	= 2.43.