Math 221 – Final Exam (Two Hours) – Wednesday May 15, 2002 Answers

I. (60 points.) (a) Find the second derivative d^2y/dx^2 of $y = x^7$ with respect to x.

Answer:
$$
\frac{dy}{dx} = 7x^6
$$
, $\frac{d^2y}{dx^2} = 42x^5$.
\n(b) Evaluate $\int_{\pi/4}^{\pi/3} \sin t \, dt$
\nAnswer: $\int_{\pi/4}^{\pi/3} \sin t \, dt = -\cos t \Big|_{t=\pi/4}^{t=\pi/3} = \cos(\pi/4) - \cos(\pi/3) = \frac{\sqrt{2}}{2} - \frac{1}{2}$.
\n(c) Evaluate $\int_{\ln 3}^{\ln 6} 8e^x \, dx$.
\nAnswer: $\int_{\ln 3}^{\ln 6} 8e^x \, dx = 8e^x \Big|_{x=\ln 3}^{x=\ln 6} = 48 - 24$.
\n(d) Evaluate $\int_8^9 2^t \, dt$
\nAnswer: $\int_8^9 2^t \, dt = \int_8^9 e^{(\ln 2)t} \, dt = \frac{e^{(\ln 2)t}}{\ln 2} \Big|_{t=8}^{t=9} = \frac{2^9 - 2^8}{\ln 2}$.

II. (40 points.) (a) Find the equation of the tangent line to the curve $3xy^2 2x^2y = 1$ at the point $(x, y) = (1, 1)$.

Answer: By implicit differentiation we have

$$
3y^2 + 6xy\frac{dy}{dx} - 4xy - 2x^2\frac{dy}{dx} = 0
$$
 (*)

so

$$
\frac{dy}{dx} = \frac{4xy - 3y^2}{6xy - 2x^2}
$$

and

$$
\left. \frac{dy}{dx} \right|_{(x,y)=(1,1)} = \frac{4-3}{6-2} = \frac{1}{4}
$$

and the equation for the tangent line is

$$
y - 1 = \frac{x - 1}{4}.
$$

(b) Find d^2y/dx^2 at this point.

Answer: Differentiating (*) gives

$$
6y\frac{dy}{dx} + 6y\frac{dy}{dx} + 6\left(\frac{dy}{dx}\right)^2 + 6xy\frac{d^2y}{dx^2} - 4y - 4x\frac{dy}{dx} - 4x\frac{dy}{dx} - 2x^2\frac{d^2y}{dx^2} = 0.
$$

Evaluating at $(x, y) = (1, 1)$ gives

$$
6 \cdot \frac{1}{4} + 6 \cdot \frac{1}{4} + 6 \left(\frac{1}{4}\right)^2 + 6 \left. \frac{d^2y}{dx^2}\right|_{(x,y)=(1,1)} - 4 - 4 \cdot \frac{1}{4} - 4 \cdot \frac{1}{4} - 2 \left. \frac{d^2y}{dx^2}\right|_{(x,y)=(1,1)} = 0
$$

so

$$
(6-2)\frac{d^2y}{dx^2}\bigg|_{(x,y)=(1,1)} = -\frac{6}{4} - \frac{6}{4} - 6 \cdot \left(\frac{1}{4}\right)^2 + 4 + 4 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} = 2.625
$$

and the value of d^2y/dx^2 at $(x, y) = (1, 1)$ is $2.625/4 = 0.65625$.

III. (60 points.) (a) Explain what a Riemann sum is and write the definition of ℓ^b a $f(x) dx$ as a limit of Riemann sums.

Answer: A Riemann sum is a finite sum

$$
S = \sum_{k=1}^{n} f(c_k)(x_k - x_{k-1})
$$

where $a = x_0 < x_1 < \cdots < x_n = b$ and $x_{k-1} \le c_k \le x_k$. The Riemann integral is the limit \overline{c}

$$
\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} S
$$

where $||P|| = \max\{x_1 - x_0, x_2 - x_1, \ldots, x_n - x_{n-1}\}.$

(b) State the Fundamental Theorem of Calculus.

Answer: If
$$
I(x) = \int_a^x f(t) dt
$$
 then $I'(x) = f(x)$. Hence, if $F'(x) = f(x)$, then
$$
\int_a^b f(t) dt = F(b) - F(a).
$$

(c) Illustrate the Fundamental Theorem of Calculus by computing the definite (c) must are the Fundamental Theorem of Calculus by computing the definite
integral $\int^2 x dx$ in two ways, first by computing the area under the graph by taking 0 the limit of the sum of the areas of narrow rectangles and then by applying the Fundamental Theorem of Calculus to get same answer. Hint: $\sum_{n=1}^n$ $k=1$ $k = \frac{n(n+1)}{2}$ $\frac{1}{2}$.

Answer: Let $c_k = x_k = 2k/n$. Then $x_k - x_{k-1} = 2/n$, $||P|| = 2/n$, and

$$
S = \sum_{k=1}^{n} \frac{2k}{n} \cdot \frac{2}{n} = \frac{4}{n^2} \cdot \frac{n(n+1)}{2} = 2\left(1 + \frac{1}{n}\right).
$$

Hence

$$
\int_0^2 x \, dx = \lim_{n \to \infty} 2\left(1 + \frac{1}{n}\right) = 2.
$$

The function $F(x) = x^2/2$ has derivative $F'(x) = x$. Hence

$$
\int_0^2 x \, dx = F(2) - F(0) = \frac{2^2}{2} - 0 = 2.
$$

IV. (30 points.) (a) What does it mean for a function $f(x)$ to be continuous at $x = a$?

Answer: The function $f(x)$ is continuous at $x = a$ iff $\lim_{x \to a} f(x) = f(a)$.

(b) What does it mean for a function $f(x)$ to be differentiable at $x = a$?

Answer: The function $f(x)$ is differentiable at $x = a$ iff the limit

$$
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
$$

exists.

(c) Find the values of a and b so that the function

$$
f(x) = \begin{cases} x^2 + 3x + a, & \text{if } x \le 1, \\ bx + 2, & \text{if } x > 1, \end{cases}
$$

is differentiable for all values of x .

Answer: For $f(x)$ to be continuous we must have equality of the one sided limits

$$
\lim_{x \to 1-} f(x) = \lim_{x \to 1+} f(x).
$$

But

$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} + 3x + a = 4 + a, \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} bx + 2 = b + 2,
$$

so $f(1) = 4 + a = b + 2$. For $f(x)$ to be differentiable we must have equality of the one sided limits $\frac{f(x)}{g(x)}$

$$
\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}.
$$

The left limit is

$$
\lim_{x \to 1-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1-} \frac{(x^2 + 3x + a) - (4 + a)}{x - 1} = 2 + 3 = 5
$$

and the right limit is

$$
\lim_{x \to 1+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1+} \frac{(bx + 2) - (b + 2)}{x - 1} = b
$$

so $f'(1) = b = 5$. Hence $(as 4 + a = b + 2)$ we have $a = -1$. **V.** (50 points.) Graph $f(x) = xe^x$. Your graph should indicate the local maxima

and minima (if any), the inflection points (if any), and the limits $\lim_{x \to -\infty} f(x)$ and $\lim_{x\to\infty}f(x).$

Answer: For the limits at $\pm\infty$ we have

$$
\lim_{x \to \infty} x e^x = \infty \cdot \infty = \infty
$$

and, by l'Hôpital's rule,

$$
\lim_{x \to -\infty} x e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}} = \lim_{x \to -\infty} \frac{1}{-e^{-x}} = \frac{1}{\infty} = 0.
$$

By the product rule we have $f'(x) = (1+x)e^x$ and $f''(x) = (2+x)e^x$. As $e^x > 0$ we have the following table:

\boldsymbol{x}	f(x)		f'(x) f''(x)	
$x < -2$		< 0	< 0	
$x=-2$		< 0	$\vert = 0$	inflection point
$-2 < x < -1$		< 0	> 0	
$x=-1$		$= 0$	$\vert > 0$	minimum
$-1 < x$		> 0	> 0	

Here is the graph of $y = xe^x$ together with the tangent line at the point of inflection.

VI. (30 points.) A vase is constructed by **v1.** (50 points.) A vase is constructed by
rotating the curve $y = 10\sqrt{x-1}$ for $0 \le y \le 6$ around the y axis. It is filled with water to a height $y = h$ where $h < 6$.

(a) Find the volume of the water in terms of h .

Answer: Writing x as a function of y gives $x = 1 + \frac{y^2}{10}$ $\frac{9}{100}$. Using disks we have $dV = \pi x^2 dy = \pi \left(1 + \frac{y^2}{100}\right)^2 dy$ so \overline{a} $V(h) = \int^h$ 0 π \overline{a} $1 + \frac{y^2}{100}\right)^2 dy.$

(b) If the vase is filling with water at the rate of 2 cubic units per second, how fast is the height of the water increasing when this height is 5 units?

Answer: We are given that $\frac{dV}{dt} = 2$. By the Fundamental Theorem

$$
\frac{dV}{dh} = \pi \left(1 + \frac{h^2}{100} \right)^2
$$

so by the Chain Rule

$$
\frac{dh}{dt} = \frac{dV/dt}{dV/dh} = \frac{2}{\pi} \left(1 + \frac{h^2}{100} \right)^{-2}.
$$

Hence when $h = 5$ we have

$$
\left. \frac{dh}{dt} \right|_{h=5} = \frac{2}{\pi} \left(1 + \frac{25}{100} \right)^{-2} = \frac{32}{25\pi}.
$$

VII. (30 points.) The population of California grows exponentially at a rate of 2% per year. The population of California on January 1, 1990 was 20,000,000.

(a) Write a formula for the population $N(t)$ of California t years after January 1, 1990.

Answer: $N = 20,000,000e^{0.02t}$.

(b) Each Californian consumes pizzas at the rate of 70 pizzas per year. At what rate is California consuming pizzas t years after 1990?

Answer: Let $P(t)$ denote the total number of pizzas consumed by Californians since some fixed date (say January 1, 1990) till t years after January 1, 1990. The rate of pizza consumption by all Californians is the rate per Californian times the number of Californians. Thus

$$
\frac{dP}{dt} = 70N = 1,400,000,000e^{0.02t}
$$

is the rate of pizza consumption by Californians at time t .

(c) How many pizzas were consumed in California from January 1, 1995 to January 1, 1999?

Answer: This is

$$
P(9) - P(5) = \int_5^9 \frac{dP}{dt} dt = \frac{1,400,000,000e^{0.02t}}{0.02} \Big|_5^9
$$

The answer is $70,000,000,000(e^{0.18} - e^{0.10})$ pizzas.

__________ Thu May 16 13:30:47 2002

```
--
There are 204 scores
grade range count percent
 A 230...300 22 10.8%
 AB 210...229 20 9.8%
 B 170...209 44 21.6%
 BC 160...169 14 6.9%
 C 140...159 31 15.2%
 D 100...139 52 25.5%
 F 0... 99 21 10.3%
Mean score = 162.8. Mean grade = 2.15.
-\,-
```