NAME_____

Calculus 221 Final Exam

Wednesday, December 22, 1999

Circle your section.

321	Alkan	$7:45~\mathrm{TR}$	B129 Van Vleck
323	Mulaire	$9:55~\mathrm{TR}$	B211 Van Vleck
325	Slepcev	$11:00 \ \mathrm{TR}$	23 Ingraham
326	Slepcev	$12:05 \ \mathrm{TR}$	2323 Sterling
328	Laghi	$1:20 \ \mathrm{TR}$	B131 Van Vleck
329	Mulaire	$1:20 \ \mathrm{TR}$	B305 Van Vleck
330	Alkan	$2:25 \ \mathrm{TR}$	23 Ingraham
331	Laghi	$3:30 \ \mathrm{TR}$	B129 Van Vleck

Ι	20 Points	
II	30 Points	
III	30 Points	
IV	40 Points	
V	40 Points	
VI	30 Points	
VII	20 Points	
VIII	30 Points	
IX	30 Points	
Х	30 Points	
Total	300 Points	

Show your reasoning. No Calculators or Notes. You may leave numerical expressions unevaluated. **I.** (20 points.) (a) Find g'(x) where $g(x) = x^2 + \frac{1}{x^2}$.

(**b**) Find
$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x}$$
 where $f(x) = e^{\sqrt{x}}$.

II. (30 points.) (a) Evaluate $\int_{1}^{2} (x+1/x)^{2} dx$.

(b) Evaluate $\int_8^9 2^t dt$.

III. (30 points.) (a) Evaluate $\int_{-1}^{2} (x-2|x|) dx$.

(b) Find
$$h'(x)$$
 where $h(x) = \int_{2}^{1/x} \sin^4 t \, dt$.

IV. (40 points.) (a) Find the equation of the tangent line to the curve $xy - y^3 = 3$ at the point (4, 1).

(b) Find d^2y/dx^2 at this point.

V. (40 points.) Consider the function f(x) = xe^x.
(a) Find f'(x) and f''(x).

(b) Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.

(V continued) (c) Find all points x where the tangent line to the graph y = f(x) is horizontal.

(d) Find all inflection points x for the graph y = f(x).

(V continued) (e) On which intervals is the function f increasing?

(f) On which intervals is the function f concave up?

(g) Sketch the graph on the axes. Indicate the point(s) of inflection.

VI. (30 points.) Water leaked from a tank at a rate of r(t) liters per hour where the graph of r is as shown. Use the graph to estimate the volume V of water that leaked out during the first four hours. For full credit you should find positive numbers A and B so that $0 < A \le V \le B$ and say why your answer is correct and what it has to do with calculus. Do not try to find a formula for r(t).

VII. (20 points.) Interpret $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{1+(i/n)^2} \frac{1}{n}$ as a limit of Riemann sums and evaluate the corresponding definite integral.

VIII. (30 points.) (a) Find the volume that results by rotating the triangle $1 \le x \le 2, 0 \le y \le 3x - 3$ around the x axis.

b) Find the volume that results by rotating the triangle $1 \le x \le 2, 0 \le y \le 3x - 3$ around the y axis.

IX. (30 points.) State and prove the Product Rule for differentiation. You may use the Limit Laws without proving them.

X. (30 points.) (a) True or false? A differentiable function must be continuous. If true, give a proof; if false, illustrate with an example.

(b) True or false? A continuous function must be differentiable. If true, give a proof; if false, illustrate with an example.