Calculus 221 Exam, Friday October 8, 1999 (In class: 55 Minutes)

I. (30 points.) Find the limit. Distinguish between an infinite limit and one which does not exist even if the values $\pm \infty$ are allowed. (If the limit does not exist, write DNE.)

(a)
$$
\lim_{x \to 1} \frac{1 - x^2}{1 - x^3}
$$

Answer:

$$
\lim_{x \to 1} \frac{1 - x^2}{1 - x^3} = \lim_{x \to 1} \frac{(1 - x)(1 + x)}{(1 - x)(1 + x + x^2)} = \lim_{x \to 1} \frac{(1 + x)}{(1 + x + x^2)} = \frac{2}{3}
$$

.

(b)
$$
\lim_{x \to \infty} \frac{1 - x^2}{1 - x^3}
$$

Answer:

$$
\lim_{x \to \infty} \frac{1 - x^2}{1 - x^3} = \lim_{x \to \infty} \frac{x^{-3} - x^{-1}}{x^{-3} - 1}
$$
\n
$$
= \frac{\lim_{x \to \infty} (x^{-3} - x^{-1})}{\lim_{x \to \infty} (x^{-3} - 1)}
$$
\n
$$
= \frac{\lim_{x \to \infty} x^{-3} - \lim_{x \to \infty} x^{-1}}{\lim_{x \to \infty} x^{-3} - 1}
$$
\n
$$
= \frac{0 - 0}{0 - 1} = 0.
$$

II. (30 points.) Find the indicated derivative:

(a)
$$
y = \sqrt{1 + 3x}
$$
. $\frac{d^2y}{dx^2} = ?$

Answer:

$$
y = (1 + 3x)^{1/2}
$$
 $\frac{dy}{dx} = \frac{1}{2}(1 + 3x)^{-1/2}(3)$ $\frac{d^2y}{dx^2} = -\frac{1}{4}(1 + 3x)^{-3/2}(9).$

(b)
$$
f(x) = \frac{\sin(x^2)}{\sin(x^3)}
$$
. $f'(x) = ?$.

Answer:

$$
f(x) = \frac{u(x)}{v(x)}, \quad \text{where} \quad u(x) = \sin(x^2) \quad \text{and} \quad v(x) = \sin(x^3).
$$

$$
u'(x) = (\cos(x^2))(2x), \quad v'(x) = (\cos(x^3))(3x^2),
$$

$$
f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{[(\cos(x^2))(2x)]\sin(x^3) - \sin(x^2)[(\cos(x^3))(3x^2)]}{\sin^2(x^3)}
$$

III. (30 points.) State and prove the chain rule for the derivative $(f \circ g)'(a)$ of the composition $f \circ g$ of the differentiable functions f and g . You may assume that $g'(a) \neq$ 0. Justify each step with one or more of the following: HSA (High School Algebra), LL (Limit Law), DC (A differentiable function is continuous), DEF (Definition), DV (change of dummy variable).

Answer: The chain rule says that the limit

$$
(f \circ g)'(a) = \lim_{x \to a} \frac{(f \circ g)(x) - (f \circ g)(a)}{x - a}
$$

exists and satisfies

$$
(f \circ g)'(a) = f'(g(a))g'(a).
$$

Condition DC says that

$$
\lim_{x \to a} g(x) = g(a).
$$

$$
(f \circ g)'(a) = \lim_{x \to a} \frac{(f \circ g))(x) - (f \circ g)(a)}{\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{\lim_{x \to a} \frac{f(g(x)) - g(g(a))}{\lim_{x \to a} \frac{f(g(a)) - g(g(a))}{\lim_{x \to a} \frac{f(g(a))}{\lim_{x \to a} \frac{f(g(a
$$

$$
= \lim_{x \to a} \frac{f(g(x)) - \tilde{f}(g(a))}{g(x) - g(a)} \cdot \frac{g(x) - g(a)}{x - a}
$$
 HSA (\heartsuit)

$$
= \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a}
$$
 LL

$$
= \lim_{\substack{y \to g(a) \\ g'(x) > 0}} \frac{f(y) - f(g(a))}{y - g(a)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a}
$$

$$
= f'(g(a))g'(a).
$$

DEF of $f'(g(a))$ and $g'(a)$.

In step (\heartsuit) the high school algebra is justified by the fact that $g(x) \neq g(a)$ for $x \approx a$ but $x \neq a$ (since $g'(a) \neq 0$).

IV. (30 points.) A cyclist moves along side AB of a square ABCD from A toward B. The square is 90 meters on a side and the speed of the cyclist is 24 meters per second.

(a) How fast is the distance from the cyclist to the corner C changing when the cyclist is 30 meters from A?

Answer: Let $b = 90$, $v = 24$, $a = 30$, t be the time, x be the distance from the cyclist to A , y be the distance from the cyclist to C , and z be the distance from the cyclist to D. Then b is the distance from B to C, b is the distance from D to A, $b - x$ is the distance from the cyclist to B , and

$$
z^2 = b^2 + x^2
$$
, $y^2 = (b - x)^2 + b^2$, $\frac{dx}{dt} = v = 24$.

Hence

$$
2z\frac{dz}{dt}=2x\frac{dx}{dt}=2xv,\qquad 2y\frac{dy}{dt}=-2(b-x)\frac{dx}{dt}=-2(b-x)v
$$

When $x = a$, we have $y = \sqrt{(b-a)^2 + b^2}$ and $z = \sqrt{b^2 + a^2}$. Hence

$$
\left.\frac{dy}{dt}\right|_{x=a}=-\frac{(b-a)v}{\sqrt{(b-a)^2+b^2}}.
$$

(The fact that the answer is negative indicates that the cyclist is getting nearer to C .)

(b) How fast is the distance from the cyclist to the corner D changing when the cyclist is 30 meters from A?

Answer: As above

$$
\left. \frac{dz}{dt} \right|_{x=a} = \frac{av}{\sqrt{b^2 + a^2}}.
$$

V. (30 points.) The graph of the equation $xy + 4 = x + y^2$ is a curve that crosses the y-axis at two points, P and Q . Find the point where the tangent lines to the curve at P and at Q cross.

Answer: The two points are $P(0, 2)$ and $Q(0, -2)$. By implicit differentiation

$$
y + x\frac{dy}{dx} = 1 + 2y\frac{dy}{dx}
$$

so

$$
\frac{dy}{dx} = \frac{1-y}{x-2y}.
$$

The slope of the tangent line at P is

$$
m_P = \frac{dy}{dx}\Big|_{(x,y)=(0,2)} = \frac{1-2}{0-4} = \frac{1}{4}
$$

The slope of the tangent line at Q is

$$
m_Q = \frac{dy}{dx}\Big|_{(x,y)=(0,-2)} = \frac{1+2}{0+4} = \frac{3}{4}
$$

The equation for the tangent line at P is

$$
y = 2 + \frac{x}{4}.
$$

The equation for the tangent line at Q is

$$
y = -2 + \frac{3x}{4}.
$$

The two lines intersect at $(x, y) = (8, 4)$.