Calculus 221 Exam, Friday October 8, 1999

(In class: 55 Minutes)

I. (30 points.) Find the limit. Distinguish between an infinite limit and one
which does not exist even if the values oo are allowed. (If the limit does not
exist, write DNE.)
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IT. (30 points.) Find the indicated derivative:
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III. (30 points.) State and prove the chain rule for the derivative (f o g)’(a) of the
composition fog of the differentiable functions f and g. You may assume that g'(a) #
0. Justify each step with one or more of the following: HSA (High School Algebra),
LL (Limit Law), DC (A differentiable function is continuous), DEF (Definition), DV
(change of dummy variable).

Answer: The chain rule says that the limit
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In step (V) the high school algebra is justified by the fact that g(z) # g(a) for z ~ a
but z # a (since g'(a) # 0).

IV. (30 points.) A cyclist moves along side AB of ¢ B
a square ABCD from A toward B. The square is 90
meters on a side and the speed of the cyclist is 24
meters per second.
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(a) How fast is the distance from the cyclist to the corner C' changing when the cyclist
is 30 meters from A?

Answer: Let b =90, v =24, a = 30, ¢t be the time, z be the distance from the
cyclist to A, y be the distance from the cyclist to C, and z be the distance from the
cyclist to D. Then b is the distance from B to C, b is the distance from D to A, b— =z
is the distance from the cyclist to B, and
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When z = a, we have y = /(b — a)? + b? and z = vb? + a?. Hence
_ (b=a)
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(The fact that the answer is negative indicates that the cyclist is getting nearer to C.)
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(b) How fast is the distance from the cyclist to the corner D changing when the cyclist
is 30 meters from A?

Answer: As above
dz av
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V. (30 points.) The graph of the equation xy 44 = x +y? is a curve that crosses the
y-axis at two points, P and @. Find the point where the tangent lines to the curve at
P and at @ cross.

Answer: The two points are P(0,2) and Q(0,—2). By implicit differentiation
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The equation for the tangent line at P is
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The equation for the tangent line at @ is
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The two lines intersect at (z,y) = (8,4).



