Math 221, Quiz V, November 8, 2000 Answers

I (10 points) (i)
$$\int (x^2 + 2x^3 + 8x + 10) dx$$

Answer: $\int (x^2 + 2x^3 + 8x + 10) dx = \frac{x^3}{3} + \frac{x^4}{2} + 4x^2 + 10x + C$

(ii) $\int \frac{\tan 4x}{\cos 4x} \, dx$

Answer: First rewrite all in terms of $\sin 4x$ and $\cos 4x$ and then use the substitution $u = \cos 4x$, $du = -4 \sin 4x \, dx$:

$$\int \frac{\tan 4x}{\cos 4x} \, dx = \int \frac{\sin 4x}{\cos^2 4x} \, dx = \frac{-1}{4} \int \frac{1}{u^2} \, dx = \frac{1}{4u} + C = \frac{1}{4\cos 4x} + C$$

(iii)
$$\int \frac{z+1}{\sqrt[3]{\frac{3}{2}z^2+3z+3}} dz$$

Answer: Make the substitution $u = \frac{3}{2}z^2 + 3z + 3$, du = 3z + 3 dz, so that $(z+1) dz = \frac{1}{3} du$:

$$\frac{1}{3} \int \frac{1}{\sqrt[3]{u}} dx = \frac{1}{2} u^{2/3} = \frac{1}{2} \left(\frac{3}{2}z^2 + 3z + 3\right)^{2/3} + C$$

II (10 points) Approximate the area under the curve $y = 3x^2$ and bounded by the lines x = 0 and x = 2 using 4 circumscribed rectangles of equal base length (i.e. width). Note that *circumscribed* means the area of the rectangles should be too big.

Answer: The rectangles each have width $\Delta x = \frac{1}{2}$, and the sum of the areas of the four rectangles is:

$$[f(1/2)\Delta x + f(1)\Delta x + f(3/2)\Delta x + f(2)\Delta x] =$$

= $\frac{1}{2}[3(1/2)^2 + 3(1)^2 + 3(3/2)^2 + 3(2)^2] = \frac{45}{4}$

_____ Mon Nov 13 08:38:34 2000

There	are	179 scores	
range		count	percent
18	20	77	43.0%
16	17	43	24.0%
14	15	25	14.0%
12	13	11	6.1%
10	11	5	2.8%
8	9	7	3.9%
0	7	11	6.1%
Mean score = 16.0.			

--