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Chapter 23 
The Economics of Resources 
 
 
 

For All Practical Purposes: Effective Teaching 
Students should find the topics in this course stimulating and real-life applications a refreshing 
departure from other traditional mathematics courses.  Students should be seeing many, if not all, of 
these topics for the first time.  Because the mathematics course for which this text has been designed 
does not lead to a next level of mathematics, you have a freedom not often experienced in your field.  
Because of this, you may be able to vary your teaching style greatly and experiment with different 
ways to motivate this group of liberal arts student. 

Chapter Briefing 
 This chapter explores models for the decay or depletion of resources.  As individuals and as a 
society, we are faced with the need to find a balance between using resources and conserving them.  
Some of these resources replenish themselves but some are nonrenewable.   

 Being well prepared for class discussion with examples is essential.  In order to facilitate your 
preparation, the Chapter Topics to the Point has been broken down into Growth Models for 
Biological Populations, How Long Can a Nonrenewable Resource Last?, Sustaining Renewable 
Resources, The Economics of Harvesting Resources, and Dynamical Systems and Chaos.  The 
material in this chapter of the Teaching Guide is presented in the same order as the text.  Examples 
with solutions for these topics that do not appear in the text nor study guide are included in the 
Teaching Guide.  You should feel free to use these examples in class, if needed. 

The last section of this chapter of The Teaching Guide for the First-Time Instructor is Solutions 
to Student Study Guide  Questions.  These are the complete solutions to the two questions 

included in the Student Study Guide.  Students only have the answers to these questions, not the 

solutions. 
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Chapter Topics to the Point 

Growth Models for Biological Populations  

If we use a geometric growth model to describe and predict human (or other species) populations, the 
effective rate of growth is the difference between population increase caused by births and decrease 
caused by deaths. This difference is called the rate of natural increase. 

Example 
Predict the population of a country that has a current (2006) population of 37 million in the year 2016 
given r = 0.45%.  What would happen at this rate in 155 years? 

Solution 
With annual compounding, we can predict that the population 20 years later, in 2016 would be the 
following. 

( )20
Population in 2016 37 million 1 0.0045 40.5 million= × + ≈  

In 155 years the population would be as follows. 

( )155
37 million 1 0.0045 74.2 million× + ≈  

At this rate, the population would double in about 155 years. 

Small changes in the birth or death rate will affect the rate of natural increase, and this changes our 
prediction significantly. 

Teaching Tip 
Give students different rates of natural increase and through trial and error have them determine when 
a population would double.  You might find it interesting to plot these values on a graph.  Try it again 
with a population tripling.   

A population cannot keep growing without limit.  The resources available to the population limit the 
size of that population.  A population limit in a particular environment is called the carrying 
capacity. 

The closer a population gets to its carrying capacity, the more slowly the population will grow.  The 
logistics model for population growth takes carrying capacity into account by reducing the annual 
increase of rP  by a factor of how close the population size P is to the carrying capacity M.  It is 
given by the following. 

population size
growth rate 1 1

carrying capacity

P
P rP rP

M

   ′ = − = −   
  

 

Example 
A fishery has a carrying capacity of 85,000 fish.  The natural rate of increase for the population is 
2.4% per year.  What is the growth rate of the population if the population is at 43,000 fish? 

Solution 
( )43,000

85,000growth rate 0.024 1 0.0119,= − = 1.19% per year. 

Teaching Tip 
Redo the last example with several different present populations to make a generalization about what 
happens to the growth rate. 
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How Long Can a Nonrenewable Resource Last? 

A nonrenewable resource, such as a fossil fuel or a mineral ore deposit, is a natural resource that 
does not replenish itself. 

A growing population is likely to use a nonrenewable resource at an increasing rate.  The regular and 
increasing withdrawals from the resource pool are analogous to regular deposits in a sinking fund 
with interest, and the same formula applies to calculate the accumulated amount of the resource that 
has been used, and is thus gone forever.  The static reserve is the time the resource will last with 
constant use; the exponential reserve is the time it will last with use increasing geometrically with 
the population. 
The formula for the exponential reserve of a resource with supply S, initial annual use U, and usage 
growth rate r is as follows. 

( )
[ ]

ln 1

ln 1

S
U r

n
r

 + =
+

 

Here, ln is the natural logarithm function, available on your calculator. 

Teaching Tip 
Students may notice that there is also a common logarithm key on their calculator.  For the type of 
calculation described above, they can use either.  You may choose to have them explore this in order 
to lead to a brief discussion of the meaning of logarithms. 

Example 
Imagine that a certain iron ore deposit will last for 120 years at the current usage rate.  How long 
would that same deposit last if usage increases at the rate of 5% each year? 

Solution 

The static reserve, ,S
U  is 120 years, so we can substitute that value into the formula to solve for n, 

using the assumed 5% = 0.05 for r. We obtain 
( )

[ ]
ln 1 120 0.05 ln 7

40 years.
ln 1 0.05 ln1.05

n
 + = = ≈

+
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Sustaining Renewable Resources 

A renewable natural resource replenishes itself at a natural rate and can often be harvested at 
moderate levels for economic or social purposes without damaging its regrowth.  Since heavy 
harvesting may overwhelm and destroy the population, economics and conservation are crucial 
ingredients in formulating proper harvesting policies. 

We keep track of the population (measured in biomass) from one year to the next using a 
reproduction curve.  Under normal conditions, natural reproduction will produce a geometrically 
growing population, but too high a population level is likely to lead to overcrowding and to strain the 
available resources, thus resulting in a population decrease.  This model leads to a reproduction curve 
looking something like this: 

 

The dotted 45° diagonal line is the set of points where the population would be unchanged from year 
to year, and any point where it intersects the reproduction curve is an equilibrium population size. 

The marked population value x is the level which produces maximum natural increase or yield in a 
year, and the difference between x and ( )f x  (the population level a year later) is the maximum 

sustainable yield (or harvest) ( ) .f x x−   This amount is the maximum that may be harvested each 

year without damaging the population, and represents a good choice for a sustained-yield harvesting 
policy. 

The Economics of Harvesting Resources 

If our main concern is profit, we must take into account the economic value of our harvest and the 
cost of harvesting.  If we also include in our model economy of scale (denser populations are easier 
to harvest), then the sustainable harvest which yields a maximum profit may be smaller than the 
maximum sustainable yield.  

Finally, if we also take into account the economic value of capital and consider profit as our only 
motivation, it may be most profitable to harvest the entire population, effectively killing it, and invest 
the profits elsewhere.  The history of the lumbering and fishing industries demonstrates this 
unfortunate fact. 
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Dynamical Systems and Chaos 

In some populations, the state of the population depends only on its state at previous times.  This kind 
of system is called a dynamical system.  For example, a population’s size in a given year may 
depend entirely upon its size in the previous year. 

Behavior that is determined by preceding events but is unpredictable in the long run is called chaos. 

In some systems a small change in the initial conditions can make a huge difference later on.  This is 
the butterfly effect. 

The logistic population model can illustrate chaos in biological population.  Consider the current 
year’s population as a fraction x of the carrying capacity, and next year’s population as a fraction 

( ).f x   The amount by which the population is multiplied each year is 1 ,rλ = +  where r is the 

population’s annual growth rate. Then the logistic model can be written as ( ) ( )1 .f x x xλ= −  

Example 
A population grows according to a logistic growth model, with population parameter 1.2λ =  and 

0.60x =  for the first year. What is the next population fraction? 

Solution 
( )( )1.2 0.60 1 0.60 0.288− =  

The logistic model illustrates chaotic behavior when the population parameter λ  is equal to 4. In this 
case, for any starting population fraction, the population fraction changes year after year in no 
predictable pattern. 
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Solutions to Student Study Guide  Questions 

Question 1 
In 2005, the Acme corporation had non-renewable resources of 3479 million pounds of materials.  

The annual consumption was 98 million pounds.  The projected company consumption will increase 

2.3% per year, through 2020. 

a) What is the static reserve in 2005? 

b) What is the exponential reserve in 2005? 

Solution 

a) The static reserve will be 
3479

35.5
98

= years.  

b) The exponential reserve will be 
( )( )
[ ]

ln 1 35.5 0.023

ln 1 0.023

 +  ≈
+

26.25 years  

Question 2 
Let ( )f n =  the sum of the cubes of the digits of n.  Start with 371 and apply f repeatedly.  Start with 

234 and apply f repeatedly.  Start with 313 and apply f repeatedly.  Are the three behaviors the same? 

Solution 
If you start with 371, the sequence of outcomes is as follows. 

371, 371, 371, … 

If you start with 234, the sequence of outcomes is as follows. 
234, 99, 1458, 702, 351, 153, 153, 153,… 

If you start with 313, the sequence of outcomes is as follows. 

313, 55, 250, 133, 55, 250, 133, 55,… 
The behaviors are different.  In the first case, we have the same outcome as the initial value (fixed 

point).  In the second case, the sequence eventually stabilized on one value.  In the last case the 

sequence oscillates between four values. 


