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Chapter 21  
Savings Models 
 
 
 

Solutions 

Exercises: 

1. (a) By the pattern shown, there is an increase by a factor if 2n  every 3n  days.  By doing some 

calculations, we can see that 232 692 6.9 10≈ ×  and 233 702 1.4 10 .≈ ×   So n is between 232 and 

233.  Thus, 3n  is between 696 and 699.  Calculating 697 / 32  and 698 / 32 ,  we see that the better 
choice is 698 days.  

 (b) We have 31000 10 .=   Since ( )233 6910 10=  and ( )243 7210 10 ,=  an appropriate answer would 

be after 24 months. 

3.  (a) Since ( )1 ,A P rt= +  we have ( ) ( )$1000 1 0.03 1 $1000 1.03A = + × = = $1030.00.  The 

annual yield is 3% since we have simple interest.  

 (b) Since ( ) 0.03
11 , 1,  and 0.03,

n
A P i n i= + = = =  we have the following.  

( ) ( )$1000 1 0.03 $1000 1.03A = + = = $1030.00 

The annual yield is 3% since we are dealing with simple interest because the money is 
compounded once during the period of one year. 

 (c) Since ( ) 0.03
41 , 4,  and ,

n
A P i n i= + = =  we have the following.  

( ) ( )4 40.03
4$1000 1 $1000 1.0075 = $1030.34× + =  

  Since 1 1,
n

r
APY

n
 = + − 
 

 we have 
4

0.03
1 1 3.034%.

4
APY

 = + − ≈ 
 

 

 (d) ( ) ( )365 3650.03
365$1000 1 $1000 1.000082192 = $1030.45,× + =  with the same result for a 360-

day or 366-day year. 

  Since 1 1,
n

r
APY

n
 = + − 
 

 we have 
365

0.03
1 1 3.045%,

365
APY

 = + − ≈ 
 

 with the same result 

for a 360-day or 366-day year. 

5.  Using 365-day years:  The daily interest rate 0.03
365i =  is in effect for 8 365 2920n = × =  days.  

We have in the compound interest formula ( )$10,000 1 ,
n

A P i= = +  so we get 
$10,000

1.2712366  $7866.36.P = =   (Fine point: In fact, the 8 years must contain two Feb. 29 days. 

Calculating interest for 6 365 2190n = × =  days at 0.03
365i =  and for 2 366 732n = × =  days at 

0.03
366i =  gives a result that differs by less than one one-hundredth of a cent.) 
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7.  The interest is $26.14 on a principal of $7744.70, or $26.14
$7744.70 ×100% = 0.3375211435%  over 34  

days.  The daily interest rate is ( )1/ 341.003375211435  1 100%  0.0099109%. − × =   The annual 

rate is then ( )3651.000099109 1 ×100% = 3.68%.−  

9.  (a) 3%: Predicted doubling time is 
72 72

24.
100 0.03 3

= =
×

   

  Since ( ) 0.03
11 , 24,  and 0.03,

n
A P i n i= + = = =  we have the following.  

( ) ( )24 24
$1000 1 0.03 $1000 1.03 $2032.79A = + = =  

  4%: Predicted doubling time is 
72 72

18.
100 0.04 4

= =
×

   

  Since ( ) 0.04
11 , 18,  and 0.04,

n
A P i n i= + = = =  we have the following.  

( ) ( )18 18
$1000 1 0.04 $1000 1.04 $2025.82A = + = =  

  6%: Predicted doubling time is 
72 72

12.
100 0.06 6

= =
×

   

  Since ( ) 0.06
11 , 12,  and 0.06,

n
A P i n i= + = = =  we have the following.  

( ) ( )12 12
$1000 1 0.06 $1000 1.06 $2012.20A = + = =  

 (b) 8%: Predicted doubling time is 
72 72

9.
100 0.08 8

= =
×

   

  Since ( ) 0.08
11 , 9,  and 0.08,

n
A P i n i= + = = =  we have the following.  

( ) ( )9 9
$1000 1 0.08 $1000 1.08 $1999.00A = + = =  

  9%: Predicted doubling time is 
72 72

8.
100 0.09 9

= =
×

   

  Since ( ) 0.09
11 , 8,  and 0.09,

n
A P i n i= + = = =  we have the following.  

( ) ( )8 8
$1000 1 0.09 $1000 1.09 $1992.56A = + = =  

 (c) 12%: Predicted doubling time is 
72 72

6.
100 0.12 12

= =
×

   

  Since ( ) 0.12
11 , 6,  and 0.12,

n
A P i n i= + = = =  we have the following.  

( ) ( )6 6
$1000 1 0.12 $1000 1.12 $1973.82A = + = =  

  24%: Predicted doubling time is 
72 72

3.
100 0.24 24

= =
×

   

  Since ( ) 0.24
11 , 3,  and 0.24,

n
A P i n i= + = = =  we have the following.  

( ) ( )3 3
$1000 1 0.24 $1000 1.24 $1906.62A = + = =  

  36%: Predicted doubling time is 
72 72

2.
100 0.36 36

= =
×

   

  Since ( ) 0.36
11 , 2,  and 0.36,

n
A P i n i= + = = =  we have the following.  

( ) ( )2 2
$1000 1 0.36 $1000 1.36 $1849.60A = + = =  

 (d) For small and intermediate interest rates, the rule of 72 gives good approximations to the 
doubling time.  
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11.  (a) 2, 2.59, 2.705, 2.7169, 2.718280469 

 (b) 3, 6.19, 7.245, 7.3743, 7.389041321 

 (c) 22.718281828 . . . ;  7.389056098 . . . . e e= =  Your calculator may give slightly different 
answers, because of its limited precision. 

13.  (a) Since rtA Pe=  we have ( )( )0.03 1 0.03$1000 $1000 $1030.45.A e e= = =   Thus, the interest is 
$1030.45 $1000.00 $30.45.− =   

 (b) Since ( )360/ 360rA P e=  we have ( )3600.03/360$1000 $1030.45.A e= =   Thus, the interest is 

$1030.45 $1000.00 $30.45.− =  

 (c) Since ( )365/ 365rA P e=  we have ( )3650.03/365$1000 $1030.45.A e= =   Thus, the interest is 

$1030.45 $1000.00 $30.45.− =  

 In all cases, $30.45, not taking into account any rounding to the nearest cent of the daily posted 
interest. 

15.  (a) ( )0.04 1 100% 4.08108%. e − × =  

 (b) The approximation for effective rate is ( )221 1
2 20.05 0.05 0.05 0.00125 0.05125r r+ = + × = + =   

or 5.125%, very slightly less than the true effective rate. 

17.  Use the savings formula 
( )1 1

,
n

i
A d

i

 + −
 =
  

 with A = $2000, 0.05
12 ,i =  and n = 24. 

( )240.05
12

0.05
12

1 1
$2000 25.18592053d d

 + −
 = ≈
  

 

$2000
$79.41

25.18592053
d = =  

19.  Use the savings formula 
( )1 1

,
n

i
A d

i

 + −
 =
  

 with d = $400, 0.055
12 ,i =  and n = 144. 

( ) ( )1440.055
12

0.055
12

1 11 1
$400 $81,327.45

n
i

A d
i

   + −+ −
  = = =
     

 

21.  Use the savings formula 
( )1 1

,
n

i
A d

i

 + −
 =
  

with A = $1,000,000, 0.05
12 ,i = and n = 35×12 = 420. 

( )4200.05
12

0.05
12

1 1
$1,000,000 1136.092425d d

 + −
 = ≈
  

 

$1,000,000
$880.21

1136.092425
d = =  
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23.  (a) 
$100

$147.06
1 0.32

=
−

 

 (b) Use the savings formula 
( )1 1

,
n

i
A d

i

 + −
 =
  

 with d = $147.06, 0.075
12 ,i =  and                        

n = 40×12 = 480 to calculate 
( )4800.075

12

0.075
12

1 1
$147.06 $444,683.29.A

 + −
 = =
  

  

 (c) 0.68×$444, 683.29 = $302,384.64 

25.  (a) Write the series as 
( )51

21 1
2 21 2 3 4 1

2

11 1 1 1 31
1 .

2 2 2 2 1 32

− + + + + = × =  − 
 

 (b) 
2 1

2

n

n

−
 

 (c) 1 

27.  (a) ( )( )( )1.15 1.07 0.80 0.98440 ,A P P= =  so ( )1/3
0.98440 1 0.00523 0.523%.r = − = − = −   

 (b) It is the effective rate. 

29.  (a) ( )3
$ 1.04 $1.12=  

 (b) $1/1.12 = $0.89 

31.  ( )
6

6 1
$10,000 1 0.12 $3900

1 0.03
 × − × ≈ + 

 

33.  (a) Since 
cost in 2006 CPI for 2006 200.5

= 6.4898673139,
$10.75 CPI for 1962 30.9

= ≈  we have the following. 

( )cost in 2006= $10.75 6.4898673139 = $69.75 $70≈  

( )$10.75 × 6.4898673 = $69.75 $70≈  

  Additional answers will vary.  

 (b) Since 
cost in 2006 CPI for 2006 200.5

= 5.167525773,
$0.25 CPI for 1970 38.8

= ≈  we have the following. 

( )cost in 2006= $0.25 5.167525773 $1.29=  

  Since 
cost in 2006 CPI for 2006 200.5

= 4.06693712,
$0.25 CPI for 1974 49.3

= ≈  we have the following. 

( )cost in 2006= $0.70 4.06693712 $2.85=  

35.  Let the purchasing power of the original salary be P.  Then the purchasing power of the new 

salary is 
1

×1.10 × 0.917 ,
1+0.20

P P≈  an 8.3% loss. 
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37.  Nowhere close  
 (a) As she ends her 35th year of service, her salary will be $166,973.02, which we multiply by 

35
1

1.03
 to get the equivalent in today’s dollars: $59,339.44.  (We do not take into account that 

annual salaries are normally rounded to the nearest dollar or hundred dollars.)  The result is 
easily obtained by use of a spreadsheet, proceeding through her salary year by year and then 
adjusting at the end for inflation.  Here is the corresponding formula, using Fisher’s effect 
with r = 0.04 and a = 0.03. 

7 7 7 14

20

0.01 1 0.01 1
$42,000 1 $1500 1 $1500

1.03 1.03 1.03 1.03

0.01 1
1

1.03 1.03

          + + + +         
           

     × +    
     

 

  The last factor is for inflation during her 35th year of service. 

 (b) $57,394.20. 

39.  ( )19$2,000,000 × 1 ... ,x x+ + +  with 1 1
1 1.03 ,ax += =  giving $29.8 million.  If you can expect to 

earn interest rate r on funds once you receive them, through the last payment, then the present 
value of your stream of income of annual lottery payments P plus interest (with inflation rate a) 
is as follows. 

( )
( )

19 18 1 17 2

201 18 19

19

1 1 1 1 1
1 ...

1 1 1 1 1

1 11 1 1 1
... 1

1 1 1 1

r r r
P

a a a a a

rr
P

a a a ra

 + + +         ⋅ + + +         + + + + +         
  + −+       + + ⋅ =     + + +       +  

 

For P = $2 million, r = 4%, and a = 3%, we get $33.4 million.  If you can earn 4% forever but 
inflation stays at 3%, the present value is infinite! 

41.  (a) Use the savings formula with A = $100,000, n = 35 × 4 = 140 quarters, and 0.072
4i =  per 

quarter.  You find d = $161.39.  

 (b). 
( )35

$100,000
$25,341.55

1.04
=  

 (c) 
( )65

$100,000
$7813.27

1.04  
=  

43.  (a) 1.0453
1.031 1 = 0.01387 = 1.39%.−  

 (b) ( )1 - 0.30 × 1.39% = 0.97%  (however, some states and cities do not tax interest earned on 

U.S. government securities). 

45.  The price before should have been about 
( )1.03

8.583 ,
0.15 0.03

D
D=

−
 the price after should have been 

( )1.03
8.766 ,

0.1475 0.03

D
D=

−
 so the percentage change expected was 

8.766 8.583
2.13%,

8.583

D D

D

− =  

which applied to the Dow Jones should have produced a rise of 188 pts.  The answer does not 
depend on the value of D. 
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47.  Programming the savings formula into the spreadsheet and varying the value of i until you find 
$5000,A ≥  using the Solver command in Excel, or otherwise: i = 1.60% per month, or an annual 

rate of 12 × 1.60% = 19.2%. 

49.  4.97%. It is the effective rate. 


