Chapter 17 Information Science

Solutions

Exercises:

1. For 0101:

The code word given by regions I, II, III, IV, V, VI, VII is 0101110. For 1011:

The code word given by regions I, II, III, IV, V, VI, VII is 1011010. For 1111:

The code word given by regions I, II, III, IV, V, VI, VII is 1111111.

- 3. (a) When you compare 11011011 and 10100110, they differ by 6 digits. Thus, the distance is 6.
 - (b) When you compare 01110100 and 11101100, they differ by 3 digits. Thus, the distance is 3.

5. There would be no change to 1001101 since the total number of 1's in each circle is even.

7. Consider the following table.

	$a_2 + a_3$	C_1	$a_1 + a_3$	c_2	$a_1 + a_2$	<i>C</i> ₃	Code word
000	0	0	0	0	0	0	000000
100	0	0	1	1	1	1	100011
010	1	1	0	0	1	1	010101
001	1	1	1	1	0	0	001110
110	1	1	1	1	2	0	110110
101	1	1	2	0	1	1	101101
011	2	0	1	1	1	1	011011
111	2	0	2	0	2	0	111000

Thus, the binary linear code is 000000, 100011, 010101, 001110, 110110, 101101, 011011, 111000.

9. Consider the following table.

	$a_2 + a_3 + a_4$	C_1	$a_{2} + a_{4}$	c_2	$a_1 + a_2 + a_3$	<i>C</i> ₃	Code word
0000	0	0	0	0	0	0	0000000
1000	0	0	0	0	1	1	1000001
0100	1	1	1	1	1	1	0100111
0010	1	1	0	0	1	1	0010101
0001	1	1	1	1	0	0	0001110
1100	1	1	1	1	2	0	1100110
1010	1	1	0	0	2	0	1010100
1001	1	1	1	1	1	1	1001111
0110	2	0	1	1	2	0	0110010
0101	2	0	2	0	1	1	0101001
0011	2	0	1	1	1	1	0011011
1110	2	0	1	1	3	1	1110011
1101	2	0	2	0	2	0	1101000
1011	2	0	1	1	2	0	1011010
0111	3	1	2	0	2	0	0111100
1111	3	1	2	0	3	1	1111101

Thus, the binary linear code is 0000000, 1000001, 0100111, 0010101, 0001110, 1100110, 1010100, 1001111, 0110010, 0101001, 0011011, 1110011, 1101000, 1011010, 0111100, 1111101. No, since 1000001 has weight 2.

11. Consider the following table.

	$a_1 + a_2$	c_1	$a_2 + a_3$	C_2	$a_1 + a_3$	c_3	Code word
000	0	0	0	0	0	0	000000
100	1	1	0	0	1	1	100101
010	1	1	1	1	0	0	010110
001	0	0	1	1	1	1	001011
110	2	0	1	1	1	1	110011
101	1	1	1	1	2	0	101110
011	1	1	2	0	1	1	011101
111	2	0	2	0	2	0	111000

Thus, the binary linear code is 000000, 100101, 010110, 001011, 110011, 101110, 011101, 111000. 001001 is decoded as 001011; 011000 is decoded as 111000; 000110 is decoded as 010110; 100001 is decoded as 100101.

13. Consider the following table.

	Weight	Append	Code word
0000000	0	0	0000000
0001011	3	1	00010111
0010111	4	0	00101110
0100101	3	1	01001011
1000110	3	1	10001101
1100011	4	0	11000110
1010001	3	1	10100011
1001101	4	0	10011010
0110010	3	1	01100101
0101110	4	0	01011100
0011100	3	1	00111001
1110100	4	0	11101000
1101000	3	1	11010001
1011010	4	0	10110100
0111001	4	0	01110010
1111111	7	1	11111111

15. There are $2^5 = 32$ possible messages of length 5. There are $2^8 = 256$ possible received words.

17. Consider the following table.

	$a_1 + a_2$	$c_1 = \left(a_1 + a_2\right) \operatorname{mod} 3$	$2a_1 + a_2$	$c_2 = \left(2a_1 + a_2\right) \mod 3$	Code word
00	0	0	0	0	0000
10	1	1	2	2	1012
20	2	2	4	1	2021
01	1	1	1	1	0111
02	2	2	2	2	0222
11	2	2	3	0	1120
22	4	1	6	0	2210
21	3	0	5	2	2102
12	3	0	4	1	1201

Thus, the ternary code is 0000, 1012, 2021, 0111, 0222, 1120, 2210, 2102, 1201.

- **19.** There are $3^4 = 81$ possible messages of length 5. There are $3^6 = 729$ possible received words.
- **21.** 001100001111000 can be written as 0, 0, 110, 0, 0, 0, 111, 10, 0, 0. Thus we have, AATAAAGCAA.
- **25.** t, n, and r would be the most frequently occurring consonants. e would be the most frequently occurring vowel.
- 27. In the Morse code, a space is needed to determine where each code word ends. In a fixed-length code of length k, a word ends after each k digits.
- **29.** Given the following:

2015	2015
2057 - 2015	42
2079-2057	22
2060-2079	-19
2050 - 2060	-10
2053-2050	3
2065-2053	12
2030-2065	-35
2025-2030	-5
2002-2025	-23

the compressed numbers are 2015 42 22 -19 -10 3 12 -35 -5 -23; We go from 49 characters to 34 characters, a reduction of $\frac{49-34}{49} = \frac{15}{49} \approx 30.6\%$.

- **33.** *B* is the least likely letter, *J* is the second least likely, and *G* is the third least likely letter.

- **35.** RETREAT would be encrypted as UHWUHDW. DGYDQFH would be decoded as ADVANCE.
- 37. One can take a position, such as 0 and determine that it takes 13 iterations to arrive at 0 again.

 $(0+8) \mod 26 = 8 \mod 26 = 8$ $(8+8) \mod 26 = 16 \mod 26 = 16$ $(16+8) \mod 26 = 24 \mod 26 = 24$ $(24+8) \mod 26 = 32 \mod 26 = 6$ $(6+8) \mod 26 = 14 \mod 26 = 14$ $(14+8) \mod 26 = 22 \mod 26 = 22$ $(22+8) \mod 26 = 30 \mod 26 = 22$ $(22+8) \mod 26 = 12 \mod 26 = 12$ $(12+8) \mod 26 = 20 \mod 26 = 20$ $(20+8) \mod 26 = 28 \mod 26 = 2$ $(2+8) \mod 26 = 10 \mod 26 = 10$ $(10+8) \mod 26 = 18 \mod 26 = 18$ $(18+8) \mod 26 = 26 \mod 26 = 0$

39. Given the key word BEATLES, we note that B is in the position 1; E is in position 4; A is in position 0; T is in position 19; L is in position 11; S is in position 18.

Encrypted	Location				Decrypted
S	18	1	$18 = 18 \mod 26 = (17 + 1) \mod 26$	17	R
S	18	4	$18 = 18 \mod 26 = (14 + 4) \mod 26$	14	0
L	11	0	$11 = 11 \mod 26 = (11+0) \mod 26$	11	L
Е	4	19	$4 = 30 \mod 26 = (11 + 19) \mod 26$	11	L
Т	19	11	$19 = 19 \mod 26 = (8+11) \mod 26$	8	Ι
R	17	4	$17 = 17 \mod 26 = (13 + 4) \mod 26$	13	Ν
Y	24	18	$24 = 24 \mod 26 = (6+18) \mod 26$	6	G
Т	19	1	$19 = 19 \mod 26 = (18 + 1) \mod 26$	18	S
Х	23	4	$23 = 23 \mod 26 = (19 + 4) \mod 26$	19	Т
0	14	0	$14 = 14 \mod 26 = (14 + 0) \mod 26$	14	0
G	6	19	$6 = 32 \mod 26 = (13 + 19) \mod 26$	13	Ν
Р	15	11	$15 = 15 \mod 26 = (4+11) \mod 26$	4	E
W	22	4	$22 = 22 \mod 26 = (18 + 4) \mod 26$	18	S

The original message was ROLLING STONES.

- **41.** I'll.
- 43. To start, X would be an encrypted A or I. Similarly, G would be an encrypted A or I. The original statement is "I am a man."
- 45. could've or would've.
- 47. and

4

- 49. Oh, I love your magazine. Especially the "Enrich Your Word Power" section. I think it's really, really, really good.
- 10111011 **51.** (a) (b) 11101000 + 01111011+0111000111000000 10011001

53. 1. VIP converts to 220916.

- 2. We will send 22, 09, and 16 individually.
- 3. Since p = 5 and q = 17, $n = pq = 5 \cdot 17 = 85$. Since GCF(22,85) = 1, GCF(9,85) = 1, and GCF(16,85) = 1, we can proceed. (GCF stands for greatest common factor.) Thus, $M_1 = 22$, $M_2 = 09$, and $M_3 = 16$.

4. Since
$$R_i = M_i^r \mod n$$
 and $r = 3$, we have the following.

$$R_{1} = 22^{\circ} \mod 85 = (2^{\circ} \cdot 11) \mod 85 = \lfloor (2^{\circ} \cdot 11) \cdot 11^{\circ} \rfloor \mod 85$$
$$= \left[\left[(2^{3} \cdot 11) \mod 85 \right] \left[11^{2} \mod 85 \right] \right] \mod 85$$
$$= \left[(88 \mod 85)(121 \mod 85) \right] \mod 85 = (3 \cdot 36) \mod 85 = 108 \mod 85 = 23$$
$$R_{2} = 9^{3} \mod 85 = (3^{2})^{3} \mod 85 = 3^{6} \mod 85 = \left[(3^{5} \mod 85)(3 \mod 85) \right] \mod 85$$
$$= \left[(243 \mod 85)(3 \mod 85) \right] \mod 85 = (73 \cdot 3) \mod 85 = 219 \mod 85 = 49$$
$$R_{3} = 16^{3} \mod 85 = (2^{4})^{3} \mod 85 = 2^{12} \mod 85 = \left[(2^{7} \mod 85)(2^{5} \mod 85) \right] \mod 85$$
$$= \left[(128 \mod 85)(32 \mod 85) \right] \mod 85 = (43 \cdot 32) \mod 85 = (43 \cdot 2 \cdot 16) \mod 85$$
$$= \left[(43 \cdot 2) \cdot 16 \right] \mod 85 = \left[(86 \mod 85)(16 \mod 85) \right] \mod 85$$
$$= \left[1 \cdot (16 \mod 85) \right] \mod 85 = (16 \mod 85) = 16$$

Thus, the numbers sent are 23, 49, 16.

- **55.** 1. Since p = 5 and q = 17, $n = pq = 5 \cdot 17 = 85$.
 - 2. Since p-1=5-1=4 and q-1=17-1=16, m will be the least common multiple of 4 and 16, namely 16.
 - 3. We need to choose r such that it has no common divisors with 16. Thus, r can be 5. This confirms that r = 5 is a valid choice.
 - 4. We need to find s such that $rs = 1 \mod m$.

$$r^{2} \mod m = 5^{2} \mod 16 = 25 \mod 16 = 9$$

 $r^{3} \mod m = 5^{3} \mod 16 = 125 \mod 16 = 13$
 $r^{4} \mod m = 5^{4} \mod 16 = 625 \mod 16 = 1$

Thus t = 4.

Since $s = r^{t-1} \mod m$, where r = 5 and t = 4, we have the following. $s = 5^{4-1} \mod 16 = 5^3 \mod 16 = 125 \mod 16 = 13$

- **57.** N converts to 14 and O converts to 15, but 14 and 77 have a greatest common divisor of 7. On the other hand, using blocks of length 4, NO converts to 1415 and the greatest common divisor of 77 and 1415 is 1.
- **59.** As the following shows, since the entries in the column for the variable P are exactly the same as the entries in the column for $P \lor (P \land Q)$, the two expressions are logically equivalent.

Р	Q	$P \wedge Q$	$P \vee (P \wedge Q)$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	F
F	F	F	F

61. First we construct the truth table for $\neg (P \land Q)$.

P Q	$P \wedge Q$	$\neg (P \land Q)$
ТТ	Т	F
ΤF	F	Т
FΤ	F	Т
F F	F	Т

Next we construct the truth table for $\neg P \lor \neg Q$

Р	Q	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

Since the last columns of the two truth tables are identical, we have shown that $\neg (P \land Q)$ is logically equivalent to $\neg P \lor \neg Q$.

63. First we construct the truth table for $P \land (Q \lor R)$.

			•	,
Р	Q	R	$Q \lor R$	$P \wedge (Q \vee R)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	F
F	Т	F	Т	F
F	F	Т	Т	F
F	F	F	F	F

Continued on next page

63. continued

Next we construct the truth table for $(P \land Q) \lor (P \land R)$.

PQR	$P \wedge Q$	$P \wedge R$	$(P \land Q) \lor (P \land R)$
ТТТ	Т	Т	Т
ТТГ	Т	F	Т
ТГТ	F	Т	Т
TFF	F	F	F
F T T	F	F	F
FTF	F	F	F
FFT	F	F	F
FFF	F	F	F

Since the last columns of the two truth tables are identical, the expression $P \land (Q \lor R)$ is logically equivalent to $(P \land Q) \lor (P \land R)$.

65. The truth table for $\neg P \lor Q$ is as follows.

Р	Q	$\neg P$	$\neg P \lor Q$
Т	Т	F	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Because the last column of this truth table is identical for the one for $P \rightarrow Q$, we conclude that the two expressions are logically equivalent.

67. Let *P* denote "it snows" and let *Q* denote "there is school." Then the statement "If it snows, there will be no school" can be expressed as $P \to \neg Q$. Similarly, the statement "it is not the case that it snows and there is school" can be expressed as $\neg (P \land Q)$. We now construct the truth tables for each of these expressions. A truth table for $P \to \neg Q$ is as follows.

P Q	$\neg Q$	$P \rightarrow \neg Q$
ТТ	F	F
ΤF	Т	Т
FΤ	F	Т
F F	Т	Т

A truth table for $\neg (P \land Q)$ is as follows.

P Q	$P \wedge Q$	$\neg (P \land Q)$
ТТ	Т	F
ΤF	F	Т
FΤ	F	Т
F F	F	Т

Because the two tables have identical last columns, the two expressions are logically equivalent.