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Chapter 3  
Planning and Scheduling 
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Chapter Summary 
 
 When scheduling tasks for processors (which can be either machines or people), we can 
consider two types of problems.  In the first type, we have a fixed number of processors, 
each with unlimited time. In the second, we have an unlimited number of processors, each 
with the same fixed time to work. 

The list-processing algorithm is an approach to solving the first type of problem.  We 
assume we are given an order-requirement digraph for the tasks and a priority list for the 
tasks that can be independent of the order requirements.  Additionally, we need two 
assumptions on the processors: (1) a processor works on an assigned task without 
interruption until the task is completed; and (2) no processor is ever voluntarily idle.  
Simply stated, the algorithm assigns the highest priority task currently ready to the lowest 
numbered processor currently idle.  The schedule obtained by this algorithm will be optimal 
if its overall completion time equals the length of the critical path in the order-requirement 
digraph.  The list-processing algorithm does not always produce an optimum schedule.  
Moreover, it is subject to several paradoxical quirks, which can occur when attempts are 
made to shorten the overall completion time. 

Other scheduling methods can be used.  Critical-path scheduling works first on those 
tasks that occur early in long paths of the order-requirement digraph.  If the tasks being 
scheduled are independent (can be done in any order), the decreasing-list algorithm can be 
employed (schedule longer tasks first).  Unfortunately, the scheduling problem is of the 
same character as the TSP.  No computationally efficient method is known that will always 
produce an optimal schedule. 

The second type of problem is a particular instance of the bin-packing problem: What is 
the least number of containers (of the same fixed capacity) needed to pack a given list of 
items (of various sizes, each less than the capacity of the bins).  For this problem, we must 
again employ heuristic methods. Next-fit places items in a container until the next one won’t 
fit and then moves on to a new container.  First-fit keeps an ordered list of containers and 
places the next item in the first container in which it fits.  Worst-fit is similar to first-fit, but 
places the next item in the container with the most leftover space.   
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There are many situations in which a schedule or a configuration must be produced that 
avoids conflicts.  Examples include legislative bodies, in which representatives serve on 
several committees. If one or more members serve on two particular committees, then 
meetings of those committees must be scheduled at different times.  Similarly, final 
examinations in a university are best arranged in a way that no student has a conflict 
between two exams scheduled at the same time.  Since the number of slots for examinations 
is limited, this requirement produces a difficult scheduling problem.  What is the minimum 
number of slots required to accommodate all of the examinations without conflicts? 

Graph theory—in particular, vertex coloring—can be of use in solving such problems.  
Construct a graph in which vertices are joined by an edge if they are incompatible; e.g., two 
courses would be joined if there is at least one student in both of the classes.  We then color 
the vertices in such a way that adjacent vertices (those joined by an edge) have different 
colors.  The minimum number of colors required to accomplish this is called the chromatic 
number of the graph, and it yields the solution to the problem.  Unfortunately, no algorithm 
for finding the chromatic number of graphs consisting of a large number of vertices is 
currently known. 

Skill Objectives 
1.  State the assumptions for the scheduling model. 

2.  Compute the lower bound on the completion time for a list of independent tasks on a given 
number of processors. 

3.  Describe the list-processing algorithm. 

4.  Apply the list-processing algorithm to schedule independent tasks on identical processors. 

5.  For a given list of independent tasks, compare the total task time using the list-processing 
algorithm for both the non-sorted list and also a decreasing-time list. 

6.  When given an order-requirement digraph, apply the list-processing algorithm to schedule a list 
of tasks subject to the digraph. 

7.  Explain how a bin-packing problem differs from a scheduling problem. 

8.  Given an application, determine whether its solution is found by the list-processing algorithm or 
by one of the bin-packing algorithms. 

9.  Discuss advantages and disadvantages of the next-fit, bin-packing algorithm. 

10.  Solve a bin-packing problem by the non-sorted, next-fit algorithm. 

11.  Solve a bin-packing problem by the decreasing-time, next-fit algorithm. 

12.  Discuss advantages and disadvantages of the first-fit, bin-packing algorithm. 

13.  Apply the non-sorted, first-fit algorithm to a bin-packing problem. 

14.  Apply the decreasing-time, first-fit algorithm to a bin-packing problem. 

15.  Discuss advantages and disadvantages of the worst-fit, bin-packing algorithm. 

16.  Find the solution to a bin-packing problem by the non-sorted, best-fit algorithm. 

17.  Find the solution to a bin-packing problem by the decreasing-time, worst-fit algorithm. 

18.  List two examples of bin-packing problems. 

19.  Color the vertices of a graph so that adjacent vertices have different colors. 

20.  Determine the chromatic number of a graph. 

21.  Apply vertex coloring to produce schedules that avoid conflicts. 
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Teaching Tips 

1.  When applying the list-processing algorithm, some students find it helpful to construct a grid 
both above and below the rectangular diagram of processors so that task times can be 
diagrammed more accurately. 

2.  An emphasis on the fact that the list-processing algorithm requires a task to be placed on the 
lowest-numbered available processor at a given time can avoid a decision making problem some 
students face when more than one processor is available at the same time. 

3.  Working with an order-requirement digraph in conjunction with the list-processing algorithm 
poses a difficult process for some students.  It may require a great deal of time and several 
examples. It’s often helpful to work with students through at least one homework problem of this 
type. In addition, listing the task numbers in the rectangles on the scheduling diagram sometimes 
aids students in keeping on track. 

4.  Although the three bin-packing algorithms appear to be stated quite simply, many students have 
difficulty following their instructions.  Careful and thorough explanation of these directions can 
be of help to students.  Working through one example using all six versions of the bin-packing 
algorithms can pay learning dividends. 

5.  Students often question the need for the next-fit algorithm, since it often leaves bins only   
partially filled.  This is most suitable when processors cannot be kept waiting, even if they are 
only partially full, as, for example, with delivery trucks being filled with perishable items.  

6. It may be helpful to introduce the concept of bin-packing as simply a variant of the scheduling 
problem in which the processors are of fixed capacity with the number of processors variant.  
This offers the advantage of looking at the problem from a different perspective. 

7.  The problem of whether or not to introduce idle time on a processor when tasks are ordered 
according to a digraph creates difficulty for some students.  It can be helpful to have them keep a 
list of tasks that are being put on hold temporarily because their predecessors have not yet been 
completed.  Then, as a processor becomes ready for a task, the students should check the list 
before going on to new tasks, to see if any waiting task can now be scheduled.  The only 
situation in which idle time can appear on the schedule before all of the tasks have been assigned 
is when no tasks were on hold and no new tasks can be scheduled. 

Research Paper 

Have students research the “knapsack problem”.  In this scenario you are given a set of items, each 
with a cost and a value.  The task is to determine the number of each item to include in the knapsack 
so that the total cost is less than some given cost and one has the total value as large as possible.  
Students should compare this problem and its applications to the ones presented in this chapter. 

Have students research the contributions of R. L. Brooks and what is known as Brooks’ Theorem.  
This theorem pertains to an upper bound on the chromatic number of a graph. 
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Collaborative Learning 
 
Scheduling 

Two people are camping out and wish to cook a simple supper consisting of soup and hamburgers. 
In order to prepare the supper, several tasks must be performed. 

T1: Go to the store to buy matches – 10 minutes 

T2: Collect firewood– 8 minutes 

T3: Light the fire– 6 minutes 

T4: Get water from a well– 12 minutes 

T5: Cook soup (requires constant stirring)– 15 minutes 

T6: Make hamburger patties – 9 minutes 

T7: Cook hamburgers– 7 minutes 

Each task requires only one of the campers and once a task is begun it cannot be interrupted. 

Some of the tasks can be done simultaneously, but some cannot be done until others are completed. 
What is the shortest amount of time it will take for all of the tasks to be completed? 

How should the work be divided between the two campers? 
 
Vertex Coloring 

Color the vertices of the following graphs in such a way that adjacent vertices have different 
colors. What is the minimum number of colors required for each graph? 

 

Conflict Resolution 

A man wants to set up an aquarium in his home to contain five different types of fish—A, B, C, D, 
and E.  However, some of these fish will eat other ones and thus cannot share a tank.  The chart 
below displays the incompatibilities. (An X indicates that the two species cannot share a tank.) 

What is the minimum number of tanks required, and which fish go into which tank? 
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Solutions 
 
Skills Check: 

1. c 2. c 3. b 4. b 5. c 6. b 7. c 8. b 9. b 10. c 

11. b 12. b 13. c 14. a 15. b 16. a 17. c 18. a 19. a 20. c 

Cooperative Learning: 
Conflict Resolution: 
Set up the graph corresponding to the conflict matrix: 

 

Exercises: 

1.  (a)  Scheduling final examinations, the times for course being offered, cleaning of classrooms, 
etc. 

 (b)  Scheduling the buses, the selling of tickets, cleaning, etc. 

 (c)  Scheduling regular staff and supervisory staff, deliveries of items for sale, etc. 

 (d)  Scheduling meal times, shopping, etc. 

 (e)  Scheduling staff, maintenance of backup equipment, etc. 

 (f )  Scheduling nurses, doctors, operating rooms, medical imaging, etc. 

 (g)  Scheduling maintenance and repair of hoses and equipment, personnel to respond to alarms. 

 (h)  Scheduling store personnel, inventory work, shelving new books, and restoring books to 
proper order on the shelves. 

 (i)  Scheduling ground and squad car patrols around the clock, officers on surveillance 
assignments, general work involving nonemergency interaction with the public; 
arrangements must be made regarding who is on call for emergency duty. 

2.  Tasks include purchasing food, preparing the food for cooking, cooking the food, setting the 
table, cleaning the house, etc.  The processors involved include the parents and three children, 
the stove (which cooks the turkey), etc. Since the human processors can work in parallel, some 
of these tasks can be done simultaneously.  Some of the human processors can also work 
simultaneously with the stove. 

3.  Jocelyn must perhaps launder her clothes, arrange care for her cat, pack, arrange for a taxi to the 
airport, and get to the airport.  Unless she can get a friend to help her with some of these tasks, 
she must do all the tasks herself.  She can launder her clothes during the time she arranges for a 
taxi, but most of the tasks cannot be done simultaneously. 
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4.  (a)  The critical path has length 32. 

 (b)  (1)  Processor 1: 1,T  3 ,T  5 ,T  idle 30 to 44. 

   Processor 2: 2 ,T  4 ,T  6 ,T  7 ,T  idle 36 to 38. 

  (2)  Processor 1: 2 ,T  5 ,T  6 ,T  7 .T  

   Processor 2: 1,T  3 ,T  4 ,T  idle 33 to 41. 

 (c)  No. 

 (d)  The sum of the task time divided by 2 is 37.  Hence, no schedule can finish earlier than time 
37. 

5.  (a) i.  Processor 1: 1T  from 0 to 13, 3T  from 13 to 25, 6T  from 25 to 45. 

  Processor 2: 2T  from 0 to 18, 4T  from 18 to 27, 5T  from 27 to 35, idle from 35 to 45. 

  ii. Processor 1: 1T  from 0 to 13, 3T  from 13 to 25, 4T  from 25 to 34, 5T  from 34 to 42. 

  Processor 2: 2T  from 0 to 18, 6T  from 18 to 38, idle from 38 to 42. 

(b)  The schedule produced in (ii) is optimal, because the sum of the task times is 80 and no set 
of tasks can be arranged that will feasibly sum to 40 on each processor. 

 (c)  The critical path is 2T , 6 ,T  and it has length 38.  No schedule can be completed by time 38 

on two processors because the sum of the task times divided by 2 is 40. 

6. (a) i. Processor 1: 1,T  3 ,T  6 .T   Processor 2: 2 ,T  4 ,T  5 ,T  idle 37 to 43. 

  ii. Processor 1: 1,T  3 ,T  4 ,T  5.T   Processor 2: 2 ,T  6 ,T  idle 38 to 42.  The second is optimal. 

The critical path is 2T , 6T  and has length 38.  No schedule on two machines finishes by 

38 because the total time for all the tasks is 80.  Thus, on two machines no earlier time 
than 80

2 40=  is possible. 

 (b)  The optimum completion time before and after the two task times are switched is the same. 

7.  (a)  Processor 1: 1,T  2 ,T  3 ,T  5 ,T  7 .T  

  Processor 2: Idle 0 to 2, 4 ,T  6 ,T  idle 4 to 5. 

 (b)  Processor 1: 1,T  2 ,T  3 ,T  6 ,T  7 .T  

  Processor 2: Idle 0 to 2, 4 ,T  5 ,T  idle 4 to 5. 

 (c)  Yes. 

 (d)  No. 

 (e)  3T  and 5.T  

8.  Hospital emergency room activities and police officer activities may have to be interrupted to 
start new tasks. For manufacturing machines in standard production runs, the assumption is 
reasonable. 

9. (a)  Processor 1: 1,T  6 ,T  idle 15 to 21, 7 ,T  idle 27 to 31. 

  Processor 2: 2 ,T  5 ,T  8 .T  

  Processor 3: 3 ,T  4 ,T  idle from 13 to 31. 

 (b)  Processor 1: 1,T  6 ,T  idle 15 to 21, 7 ,T  idle 27 to 31. 

  Processor 2: 3 ,T  4 ,T  idle from 13 to 21, 8 .T  

  Processor 3: 2 ,T  5 ,T  idle from 21 to 31. 

 (c)  Processor 1: 4 ,T  idle 10 to 11, 6 ,T  idle 18 to 21, 8 .T  

  Processor 2: 2 ,T  5 ,T  7 ,T  idle 27 to 31. 

  Processor 3: 1,T  3 ,T  idle 11 to 31. 
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10. (a) The order-requirement diagraph has only one task 4T  ready at time 0.  Thus, no matter what 

list one starts with, one will skip over any tasks that are prior to 4T  in the list until one 

reaches 4T  because any other task would not be ready at time 0.  Of course those lists that 

start with 4T  would assign 4T  to Machine 1 at time 0 because it is ready at this time. 

 

 (b) So by part (a) we always assign 4T  to Machine 1 at time 0, which keeps that machine busy 

until time 3.  Now, can we assign any task to machine 2 at any time between 0 and 3?  No, 
because all of those tasks must wait until 4T  is done before they can begin.  So Machine 2 

stays idle from time 0 to time 3.  Thus the same order-requirement digraph used for (a) 
works here. 

11.  Examples include inserting identical mirror systems on different models of cars and vaccinating 
different children against polio. 

12.  (a)  Processor 1: 1,T  2 ,T  4 ,T  6 ,T  7 .T  

  Processor 2: idle 0 to 1, 3 ,T  5 ,T  idle 3 to 5. 

 (b)  Processor 1: 1,T  2 ,T  4 ,T  5.T  

  Processor 2: idle 0 to 1, 3 ,T  6 ,T  7 .T   

 (c)  The schedule in (b) is optimal. 

13.  1,T  2 ,T  3 ,T  4 ,T  8 ,T  9 ,T  10 ,T  11,T  5 ,T  6 ,T  7 ,T  12 .T  

14.  (a)  The critical path, which has length 17, is 1,T 2 ,T 3.T  

 (b)  1,T  4 ,T  5 ,T  2 ,T  6 ,T  7 ,T  3T  is the list to be used.  The one processor would have the tasks 

scheduled on it: 1,T  4 ,T  5 ,T  2 ,T  6 ,T  7 ,T  3.T  

 (c)  6 ,T  1,T  7 ,T  2 ,T  4 ,T  3 ,T  5T  would be the list.  The resulting schedule on one processor 

would be: 1,T  7 ,T 4 ,T  2 ,T  5 ,T  6 ,T  3.T   

 (d)  No idle time.  Their completion times are the same. 

 (e)  Earlier completion of tasks giving rise to cash payments. 

 (f )  The required schedule is Processor 1: 1,T  6 ,T 3T ; Processor 2: 4 ,T  5 ,T  2 ,T  7 .T  

(g)  The completion time does halve ( )40 20→ .  As the number of processors goes up, the 

completion time may decrease, but at some point the length of the critical path will govern 
the completion time rather than the number of processors. 

 (h)  (i)  Completion time goes down by 7. 
   (ii)  Completion time is 19 for two processors using the decreasing time list. 
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15.  (a)  No. Consider the tasks that begin after the stretch where all machines are idle.  Pick one of 
these tasks T and say machine 1 was the machine that it was given to.  This task was ready 
for machine 1 just prior to when it began T because no task was just being completed on any 
other machine at this time because they were all idle.  Thus, T should have begun earlier on 
machine 1. 

 (b)  This schedule cannot arise using the list-processing algorithm, because 2T  should have been 

scheduled at time 0. 

 (c)  Use the digraph with no edges and the list: 2 ,T  1,T  3 ,T  4 ,T  5.T  

16.  (a)  55 minutes. 

 (b)  Mike: 1,T  2 ,T  3 ,T  8 ,T  9 .T   

  Mary: 4 ,T  7 ,T 5 ,T  6 ,T  idle 22–33. 

 (c)  Mike: 1,T  2 ,T  3 ,T  idle 20–21. 

  Mary: 4 ,T  5 ,T  6 .T  

  Jack: 7 ,T  8 ,T  9 ,T  idle 14–21. 

(d)  Tasks that, when completed, result in hot food for eating should be completed as close to the 
end as possible. 

17.  (a)  1,T  2 ,T  3 ,T  and 6T  are ready at time 0. 

 (b)  No tasks require that 1T  and 6T  be done before these other tasks can begin. 

 (c)  The critical path consists only of 6T  and has length 20. 

 (d)  Processor 1: 1,T  6T : Processor 2: 2 ,T  4 ,T  idle from 18 to 30: Processor 3: 3 ,T  5 ,T  idle from 

12 to 30. 

 (e)  No. 

 (f )  Processor 1: 6 ,T  idle from 20 to 22: Processor 2: 3 ,T  5 ,T  1T : Processor 3: 2 ,T  4 ,T  idle from 

18 to 22. 

 (g)  Yes. 

 (h)  Another list leading to the same optimal schedule is 6 ,T  3 ,T  2 ,T  4 ,T  5 ,T  1.T  

18.  (a)  6 ,T  2 ,T  4 ,T  3 ,T  1,T  5.T   

 (b)  Processor 1: 6 ,T  idle 20–22;  

  Processor 2: 2 ,T 4 ,T  5;T   

  Processor 3: 3 ,T  1,T  idle 18–22. 

  This schedule is optimal for 3 processors. 

 (c)  It is no better than the best schedule found there. 

19.  (a)  5! = 120 

 (b)  No. Whatever list is used, 1T  must be assigned to the first machine at time 0 because it is the 

only task ready at time 0. 

 (c)  No. First, while Processor 1 works on 1.T   Processor 2 must be idle. Second, the task times 

are integers with sum 31.  If there are two processors, one of the processors must have idle 
time since when 2 divides 31, there is a remainder of 1. 

 (d)  No. 
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20.  (a) 120 24 96.− =  

 (b)  No, because Task 1 is a predecessor of all the other tasks. 

 (c)  Answers will vary. 

 (d)  Answers will vary. 

 (e)  The list 1,T  3 ,T  2 ,T  5 ,T  4T  will yield an optimal schedule. 

21.  Using the order-requirement digraph shown and any list with one or more processors yields the 
same schedule: 

 

22.  If one uses the digraph with no edges and schedules three tasks whose completion times are 6, 8, 
and 14 on one machine, each of the 6 possible scheduling lists will yield a different schedule. 

23.  (a)  One reasonable possibility is (time in min): 

 
  The earliest completion time is 15. 

 (b)  The decreasing-time list is 3 ,T  4 ,T  2 ,T  8 ,T  1,T  5 ,T  6 ,T  7 ,T  9 .T   The schedule is Processor 

1: 1,T  4 ,T  6 ,T  idle 7 to 10, 8 ,T  5 ,T  9 ;T  Processor 2: idle 0 to 2, 2 ,T 3 ,T  idle 10 to 13, 7 ,T  

idle 14 to 15. 

24.  Not if the number of processors is the same.  If the number of processors is different, two 
schedules can end at the same time and have different amounts of idle time. 

25.  No.  At time 11, 4T  should been assigned to Machine 1 because Machine 1 was free at this time 

and 4T  was ready. 

26.  No.  If 3T  could be scheduled at time 12 on Robot 1, the order requirement digraph could not 

have required that this task await the completion of 2.T   In this case, this task could have been 

started at time 8 on Robot 1. 

27.  (a)  Task times: 1 3,T =  2 3,T =  3 2,T =  4 3,T =  5 3,T =  6 4,T =  7 5,T =  8 3,T =  9 2,T =  10 1,T =  

11 1,T =  and 12 3.T =   This schedule would be produced from the list: 1,T  3 ,T  2 ,T  5 ,T  4 ,T  

6 ,T  7 ,T  8 ,T  11,T  12 ,T  9 ,T  10 .T  

 (b)  Task times: 1 3,T =  2 3,T =  3 3,T =  4 2,T =  5 2,T =  6 4,T =  7 3,T =  8 5,T =  9 8,T =  10 4,T =  

11 7,T =  12 9,T =  and 13 3.T =   This schedule would be produced from the list: 1,T  5 ,T  7 ,T  

4 ,T  3 ,T  6 ,T  11,T  8 ,T  12 ,T  9 ,T  2 ,T 10 ,T 13.T  

28.  Tasks could be rearranged in order of increasing time on each machine; tasks could be reordered 
so those that, when completed, resulted in a cash payment were completed as early as possible. 
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29.  (a)  (i)  Processor 1: 1,T  3 ,T  5 ,T  7 ,T  idle from 16 to 20; Processor 2: 2 ,T  4 ,T  6 ,T  8 .T  

  (ii)  Processor 1: 8 ,T  5 ,T  4 ,T  1;T  Processor 2: 7 ,T  6 ,T  3 ,T  2 .T  

 (b)  The schedule in (ii) is optimal. 

30.  (a) (i) Processor 1: 1,T  4 ,T  7 ,T  idle 12–15;  Processor 2: 2 ,T  5 ,T  8T ;  

   Processor 3: 3 ,T  6 ,T  idle 9–15. 

  (ii) Processor 1: 8 ,T  3 ,T  2 ;T  Processor 2: 7 ,T  4 ,T  1,T  idle 12–13;  

   Processor 3: 6 ,T  5 ,T  idle 11–13. 

 (b)  Neither of these schedules are optimal.  An optimal schedule is achieved when the list 8 ,T  

7 ,T  2 ,T  3 ,T  6 ,T  5 ,T  4T  is used.  The idea for finding an optimal schedule is based on the 

fact that the total task time is 36. 

31. Such criteria include decreasing length of the times of the tasks, order of size of financial gains 
when each task is finished, and increasing length of the times of the tasks. 

32.  Examples of scheduling projects with due dates include construction projects, military 
procurement projects, and plane departures from the gates at an airport.  An example of a 
situation where there might be release times would be for planes to enter a runway holding area 
or for a construction project where materials are delivered to a site but cannot arrive too early 
lest this get in the way of current activities because there is little storage space at the site. 

33.  (a)  Machine 1: 1,T  6 ,T  10 ,T  idle from 8 to 9; Machine 2: 3 ,T  4 ,T  11,T  12 ;T  Machine 3: 2 ,T  7 ,T  

idle from 8 to 9; Machine 4: 5 ,T  8 ,T  9 ,T  idle from 8 to 9. 

 (b)  Machine 1: 1,T  8 ,T  10 ;T  Machine 2: 5 ,T  6 ,T  2 ,T  13;T  Machine 3: 7 ,T  12 ;T  Machine 4: 4 ,T  

11,T  idle from 9 to 12; Machine 5: 3 ,T  9 ,T  idle from 11 to 12.   

 The schedule in part (a) had to have idle time because the total task time was 33, and 33 is not 
exactly divisible by 4.  The schedule in part (b) had to have idle time because the total task time 
was 56, and 56 is not exactly divisible by 5. 

34.  (a) (i)  Processor 1: 1,T  2 ,T  5 ,T  6 .T   

   Processor 2: 3 ,T  7 ,T  4 ,T  idle 30–56. 

  (ii)  Processor 1: 1,T  4 ,T  7 ,T  6 .T   

   Processor 2: 3 ,T  2 ,T  5 ,T  idle 31–55. 

  The decreasing time list is: 6 ,T  5 ,T  4 ,T  1,T  7 ,T  2 ,T  3 ,T  yielding the schedule: 

Processor 1: 1,T  4 ,T  7 ,T  6 .T  

Processor 2: 2 ,T  3 ,T  5 ,T idle 31–55.  

 (b)  These schedules are not optimal since the list 3 ,T  2 ,T  1,T  7 ,T  5 ,T  4 ,T  6 ,T  yields the 

schedule: 
  Processor 1: 3 ,T  1,T  5 ,T  6 .T  

  Processor 2: 2 ,T  7 ,T  4 ,T  idle 32–54. 

  The completion time is 54. 

 (c)  The critical path method gives rise to the list: 1,T  2 ,T  3 ,T  5 ,T  4 ,T  7 ,T  6 .T   This list gives 

rise to the schedule: 
  Processor 1: 1,T  4 ,T  7 ,T  6 .T  

  Processor 2: 2 ,T  3 ,T  5 ,T  idle 31–55. 
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35.  (a)  List for (i) yields (with items coded by task time): Machine 1: 12, 9, 15, idle from 36 to 50; 
Machine 2: 7, 10, 13, 20.  List for (ii) yields: Machine 1: 12, 13, 20; Machine 2: 7, 9, 15, 10, 
idle from 41 to 45. List for (iii) yields: Machine 1: 20, 12, 9, idle from 41 to 45; Machine 2: 
15, 13, 10, 7. 

 (b)  These schedules complete earlier than those where precedence constraints hold.  An optimal 
schedule is possible, however: Machine 1: 20, 10, 13; Machine 2: 12, 15, 9, 7.  The 
associated list is: 6 ,T  1,T  5 ,T  7 ,T  2 ,T  4 ,T  3.T  

 (c)  The critical path list is 6 ,T  5 ,T  4 ,T  1,T  7 ,T  2 ,T  3T  using the first processor.  It finishes at 

time 41 and is idle until 45, when processor 2 finishes. 

36.  (a)  With this list the order of the tasks on the processors is: Machine 1: 8, 17, 16, 5, 3, 7, 2, 1, 
idle 59 to 61; Machine 2: 11, 14, 9, 2, 1, 18, 6.  The completion time is 61.  

(b)  The list is: 18, 17, 16, 14, 11, 9, 8, 7, 6, 5, 3, 2, 2, 1, 1.  On two processors we get the 
schedule: Machine 1: 18, 14, 11, 7, 6, 2, 2; Machine 2: 17, 16, 9, 8, 5, 3, 1, 1.  The 
completion time is 60 on both machines. 

 (c)  The answer in (b) is one optimal schedule 

 (d)  Using the original list we get the schedule: Machine 1: 19, 20, 1, 2, 3, 5, 11, 17, 18, 2, 16; 
Machine 2: 19, 20, 1, 2, 3, 5, 11, 18, 17, 16, 2.  Both machines finish at time 114.  The 
decreasing list is: 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 11, 11, 5, 5, 3, 3, 2, 2, 2, 2, 1, 1. 
Machine 1: 20, 19, 18, 17, 16, 11, 5, 3, 2, 2, 1; Machine 2: 20, 19, 18, 17, 16, 11, 5, 3, 2, 2, 
1.  Both machines finish at time 114.  Both lists lead to optimal schedules.  

37.  (a)  The tasks are scheduled on the machines as follows: Processor 1: 12, 13, 45, 34, 63, 43, 16, 
idle 226 to 298; Processor 2: 23, 24, 23, 53, 25, 74, 76; Processor 3: 32, 23, 14, 21, 18, 47, 
23, 43, 16, idle 237 to 298. 

 (b)  The tasks are scheduled on the machines as follows: Processor 1: 12, 24, 14, 34, 25, 23, 16, 
16, 76; Processor 2: 23, 23, 21, 63, 43, idle 173 to 240; Processor 3: 32, 23, 53, 74, idle 182 
to 240; Processor 4: 13, 45, 18, 47, 43, idle 166 to 240. 

 (c)  The decreasing-time list is 76, 74, 63, 53, 47, 45, 43, 43, 34, 32, 25, 24, 23, 23, 23, 23, 21, 
18, 16, 16, 14, 13, 12.  The tasks are scheduled on three machines as follows: Processor 1: 
76, 45, 43, 24, 23, 18, 16, 13; Processor 2: 74, 47, 34, 32, 23, 21, 14, 12, idle 257 to 258; 
Processor 3: 63, 53, 43, 25, 23, 23, 16, idle 246 to 248.  The tasks are scheduled on four 
machines as follows: Processor 1: 76, 43, 24, 23, 16, idle 182 to 194; Processor 2: 74, 43, 
25, 23, 16, 13; Processor 3: 63, 45, 32, 23, 18, 12, idle 193 to 194; Processor 4: 53, 47, 34, 
23, 21, 14, idle 192 to 194. 

(d)  The new decreasing time list is 84, 82, 71, 61, 55, 45, 43, 43, 34, 32, 25, 24, 23, 23, 23, 23, 
21, 18, 16, 16, 14, 13, 12.  The tasks are scheduled as follows: Processor 1: 84, 45, 43, 25, 
23, 23, 16, 12; Processor 2: 82, 55, 34, 32, 23, 18, 14, 13; Processor 3: 71, 61, 43, 24, 23, 21, 
16, idle 259 to 271. 

38. 2 ,T  3 ,T  1,T  4 ,T 5;T  decreasing time list is 4 ,T 5 ,T 3 ,T 2 ,T 1.T  Machine 1: 4 ,T 2 ,T 1;T  Machine 2: 

5 ,T  3 ,T  idle 28 – 32.  The completion time is 32. 

39.  Examples include jobs in a videotape copying shop, data entry tasks in a computer system, and 
scheduling nonemergency operations in an operating room.  These situations may have tasks 
with different priorities, but there is no physical reason for the tasks not to be independent, as 
would be the case with putting on a roof before a house had walls erected. 

40.  An algorithm that will give an optimal answer every time is the list-processing algorithm using 
any list.  The total time to complete all the tasks will be nk. When the number of machines is 
smaller than the number of tasks, the completion time will depend on whether the number of 
processors exactly divides n.  An example where all the tasks times might be equal would be to 
fill a collection of identical boxes with identical objects. 
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41.  Each task heads a path of length equal to the time to do that task. 

42.  Case I:  Using 10-foot horizontal shelves and 6-foot vertical boards, the list of decreasing board 
lengths is 10, 10, 10, 10, 6, 6, 2, 2, 2, 2. 

First-fit-decreasing: 
BIN 1:  10; 
BIN 2:  10; 
BIN 3:  10; 
BIN 4:  10; 
BIN 5:  6, 2, 2; 
BIN 6:  6, 2, 2. 

Next-fit-decreasing: 
BIN 1:  10; 
BIN 2:  10; 
BIN 3:  10; 
BIN 4:  10; 
BIN 5:  6; 
BIN 6:  6; 
BIN 7:  2, 2, 2, 2. 

Worst-fit-decreasing: 
BIN 1:  10; 
BIN 2:  10; 
BIN 3:  10; 
BIN 4:  10; 
BIN 5:  6, 2, 2; 
BIN 6:  6, 2, 2. 

Case II:  Using boards that add up to 10- and 6-foot lengths, the list of decreasing board lengths 
is 7, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2.  

First-fit-decreasing: 
BIN 1:  7, 3; 
BIN 2:  5, 5; 
BIN 3:  4, 4, 2; 
BIN 4:  3, 3, 3; 
BIN 5:  3, 2, 2, 2; 
BIN 6:  2, 2, 2, 2, 2; 
BIN 7:  2. 

Next-fit-decreasing: 
BIN 1:  7; 
BIN 2:  5, 5; 
BIN 3:  4, 4; 
BIN 4:  3, 3, 3; 
BIN 5:  3, 3, 2, 2; 
BIN 6:  2, 2, 2, 2, 2; 
BIN 7:  2, 2, 2. 

Worst-fit-decreasing: 
BIN 1:  7, 3; 
BIN 2:  5, 5; 
BIN 3:  4, 4, 2; 
BIN 4:  3, 3, 3; 
BIN 5:  3, 2, 2, 2; 
BIN 6:  2, 2, 2, 2, 2; 
BIN 7:  2. 

By using the 10- and 6-foot boards, you need to buy 1 less board.  Also, the system will be easier 
to make structurally sound with single pieces of wood.  You are encouraged to try other 
combinations of board lengths. 

43.  The times to photocopy the manuscripts, in decreasing order, are 120, 96, 96, 88, 80, 76, 64, 64, 
60, 60, 56, 48, 40, 32. Packing these in bins of size 120 yields Bin 1: 120; Bin 2: 96; Bin 3: 96; 
Bin 4: 88, 32; Bin 5: 80, 40; Bin 6: 76; Bin 7: 64, 56; Bin 8: 64, 48; Bin 9: 60, 60.  Nine 
photocopy machines are needed to finish within 2 minutes using FFD.  The number of bins 
would not change, but the placement of the items in the bins would differ for worst-fit 
decreasing. 
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44.  The bins have capacity 135. 
 First-fit uses 5 bins. 

Bin 1: 80, 50; 
Bin 2: 90, 20; 
Bin 3: 130; 
Bin 4: 60, 30, 30; 
Bin 5: 90, 40. 

 The decreasing list is: 130, 90, 90, 80, 60, 50, 40, 30, 30, 20.  
 First-fit decreasing uses 5 bins. 

Bin 1: 130; 
Bin 2: 90, 40; 
Bin 3: 90, 30; 
Bin 4: 80, 50; 
Bin 5: 60, 30, 20. 

 Either of these packings is optimal. 

 Using first-fit on the list: 60, 50, 40, 40, 60, 90, 90, 50, 20, 30, 30, 50 yields (bin capacity 135): 
Bin 1: 60, 50, 20; 
Bin 2: 40, 40, 50; 
Bin 3: 60, 30, 30; 
Bin 4: 90; 
Bin 5: 90; 

  Bin 6: 50.  
 The decreasing list is: 90, 90, 60, 60, 50, 50, 50, 40, 40, 30, 30, 20.  
 Using first-fit on this list yields: 

Bin 1: 90, 40; 
Bin 2: 90, 40; 
Bin 3: 60, 60; 
Bin 4: 50, 50, 30; 
Bin 5: 50, 30, 20. 

 The decreasing time solution is optimal and uses one fewer bin than first-fit applied to the 
original list. 

45.  (a)  Using the next-fit algorithm, the bins are filled as follows: Bin 1: 12, 15; Bin 2: 16, 12; Bin 
3: 9, 11, 15; Bin 4: 17, 12; Bin 5: 14, 17; Bin 6: 18; Bin 7: 19; Bin 8: 21; Bin 9: 31; Bin 10: 
7, 21; Bin 11: 9, 23; Bin 12: 24; Bin 13: 15, 16; Bin 14: 12, 9, 8; Bin 15: 27; Bin 16: 22; Bin 
17: 18. 

 (b)  The decreasing list is 31, 27, 24, 23, 22, 21, 21, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 12, 
12, 12, 12, 11, 9, 9, 9, 8, 7.  The next-fit decreasing schedule is Bin 1: 31; Bin 2: 27; Bin 3: 
24; Bin 4: 23; Bin 5: 22; Bin 6: 21; Bin 7: 21; Bin 8: 19; Bin 9: 18, 18; Bin 10: 17, 17; Bin 
11: 16, 16; Bin 12: 15, 15; Bin 13: 15, 14; Bin 14: 12, 12, 12; Bin 15: 12, 11, 9; Bin 16: 9, 9, 
8, 7. 

(c)  The worst-fit schedule using the original list is Bin 1: 12, 15, 9; Bin 2: 16, 12; Bin 3: 11, 15; 
Bin 4: 17, 12; Bin 5: 14, 17; Bin 6: 18, 7; Bin 7: 19, 9; Bin 8: 21, 15; Bin 9: 31; Bin 10: 21, 
9; Bin 11: 23, 8; Bin 12: 24; Bin 13: 16, 12; Bin 14: 27; Bin 15: 22; Bin 16: 18. 

(d)  The worst-fit decreasing schedule would be Bin 1: 31; Bin 2: 27, 9; Bin 3: 24, 12; Bin 4: 23, 
12; Bin 5: 22, 14; Bin 6: 21, 15; Bin 7: 21, 15; Bin 8: 19, 17; Bin 9: 18, 18; Bin 10: 17, 16; 
Bin 11: 16, 15; Bin 12: 12, 12, 11; Bin 13: 9, 9, 8, 7. 
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46.  (a)  (Next-fit): 
  Bin 1: 100, 120, 60, 90, 110; 
  Bin 2: 45, 30, 70, 60, 50, 40, 25, 65, 25, 55; 
  Bin 3: 35, 45, 60, 75, 30, 120, 100; 
  Bin 4: 60, 90 85. 

 (b)  The decreasing list is: 120, 120, 110, 100, 100, 90, 90, 85, 75, 70, 65, 60, 60, 60, 60, 55, 50, 
45, 45, 40, 35, 30, 30, 25, 25. 

  (Next-fit decreasing): 
Bin 1: 120, 120, 110, 100; 
Bin 2: 100, 90, 90, 85, 75; 
Bin 3: 70, 65, 60, 60, 60, 60, 55, 50; 
Bin 4: 45, 45, 40, 35, 30, 30, 25, 25. 

 (c)  (First-fit): same solution as next-fit. 

 (d)  (First-fit decreasing): 
Bin 1: 120, 120, 110, 100, 30; 
Bin 2: 100, 90, 90, 85, 75, 40; 
Bin 3: 70, 65, 60, 60, 60, 60, 55, 50; 
Bin 4: 45, 45, 35, 30, 25, 25. 

47.  The bins have a capacity of 120. (First fit): Bin 1: 63, 32, 11; Bin 2: 19, 24, 64; Bin 3: 87, 27; 
Bin 4: 36, 42; Bin 5: 63.  This schedule would take five station breaks; however, the total time 
for the breaks is under 8 minutes.  The decreasing list is 87, 64, 63, 63, 42, 36, 32, 27, 24, 19, 11. 
(First-fit decreasing): Bin 1: 87, 32; Bin 2: 64, 42, 11; Bin 3: 63, 36, 19; Bin 4: 63, 27, 24.  This 
solution uses only four station breaks. 

48. Bin 1: 8, 1; 
Bin 2: 7, 2; 
Bin 3: 9; 
Bin 4: 5; 
Bin 5: 7, 3; 
Bin 6: 6, 4. 

49.  (a)  There are theoretical results that show that best fit “usually” performs better than worst fit. 

 (b)  Try 8, 7, 5, 3, 3, 2 in bins of capacity 14. 

50. Bin 1: 6, 3, 1; 
Bin 2: 9, 1; 
Bin 3: 5, 2, 2, 1; 
Bin 4: 8, 2; 
Bin 5: 9; 
Bin 6: 7, 3; 
Bin 7: 5, 4; 
Bin 8: 7, 2; 
Bin 9: 6, 3; 
Bin 10: 8, 2; 
Bin 11: 7, 3; 
Bin 12: 6, 4; 
Bin 13: 5, 5; 
Bin 14: 7, 2; 
Bin 15: 2, 3, 5; 
Bin 16: 6, 2, 2; 
Bin 17: 7, 3; 
Bin 18: 4, 6. 

Continued on next page 
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50. continued 
 The decreasing list is: 9, 9, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 

2, 2, 2, 2, 2, 2, 2, 1, 1, 1. 
Bin 1: 9, 1; 
Bin 2: 9, 1; 
Bin 3: 8, 2; 
Bin 4: 8, 2; 
Bin 5: 7, 3; 
Bin 6: 7, 3; 
Bin 7: 7, 3; 
Bin 8: 7, 3; 
Bin 9: 7, 3; 
Bin 10: 6, 4; 
Bin 11: 6, 4; 
Bin 12: 6, 4; 
Bin 13: 6, 3, 1; 
Bin 14: 6, 2, 2; 
Bin 15: 5, 5; 
Bin 16: 5, 5; 
Bin 17: 5, 2, 2; 
Bin 18: 2, 2, 2. 

51.  The total performance time exceeds what will fit on four disks.  Using FFD, one can fit the 
music on five disks. 

52.  Consider the list 8, 8, 5, 3, 5, 5, 5 to be packed in bins of capacity 11.  Using first-fit, we get: 
 Bin 1: 8, 3; 

Bin 2: 8; 
Bin 3: 5, 5; 
Bin 4: 5, 5. 

When worst-fit is used, we get: 
Bin 1: 8; 
Bin 2: 8; 
Bin 3: 5, 3; 
Bin 4: 5, 5; 
Bin 5: 5. 
The list 8, 8, 5, 3, 5, 5, 5, 8, 8, 5, 5, 2 yields 7 bins when first-fit is used, 8 bins when worst-fit is 
used, and 9 bins when next-fit is used. 

53.  For problems with few weights to be packed, small integer weights, and a small integer as bin 
capacity, this method can work well.  However, when these special conditions are not met, it is 
very time-consuming to carry out this method.  For example, imagine trying to use this method 
for 2000 random real numbers of the form .xyz, where x, y, and z are decimal digits and the bin 
capacity is 1. 

54.  The amount of time available to record on each side of a record can be thought of as a bin 
capacity. N records would mean that 2N bins would be available.  However, since the 
movements should be configured consecutively, the algorithms we have developed might not 
yield acceptable solutions.  Put somewhat differently, we are packing bins but with extra 
constraints on the packings.  Tapes present similar problems to records since they involve taping 
in two directions on the same tape. In this sense (they do not have “two sides”), compact disks 
are closer to the model we have been using. 
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55.  It makes sense to leave bins open as more items arrive to be packed if the cost of having many 
bins open at once is reasonable and there is room to have many partially-filled bins open without 
incurring great inconvenience or cost.  One such example might be a company that has room for 
many identical trucks to park as they are loaded with goods to be delivered.  There may be 
complex cost trade-offs between sending off fewer trucks because we wait to pack as much into 
each truck as possible and sending out more partially-filled trucks. 

56.  If one has to pack trucks of the same capacity using a single loading dock, it might be natural to 
send a truck on its way when the next item would not fit into the space left in the partially-filled 
truck. Any situation where keeping many bins up simultaneously is costly or storing an item 
temporarily is costly will encourage using an approach where when the next item will not fit into 
the currently open bin that bin is closed. 

57.  (a)  The schedule with four secretaries is as follows: Processor 1: 25, 36, 15, 15, 19, 15, 27; 
Processor 2: 18, 32, 18, 31, 30, 18; Processor 3: 13, 30, 17, 12, 18, 16, 16, 16, 14;  

  Processor 4: 19, 12, 25, 26, 18, 12, 24, 9.  

  The schedule with five secretaries is as follows: Processor 1: 25, 25, 31, 12, 16, 14; 
Processor 2: 18, 12, 17, 12, 15, 30, 9; Processor 3: 13, 32, 26, 16, 15, 18; Processor 4: 19, 
36, 18, 19, 24; Processor 5: 30, 18, 15, 18, 16, 27. 

(b)  The decreasing time list is 36, 32, 31, 30, 30, 27, 26, 25, 25, 24, 19, 19, 18, 18, 18, 18, 18, 
17, 16, 16, 16, 15, 15, 15, 14, 13, 12, 12, 12, 9.   

The schedule using this list on four processors would be Processor 1: 36, 25, 19, 18, 17, 16, 
13, 9; Processor 2: 32, 26, 25, 18, 16, 15, 12; Processor 3: 31, 27, 24, 18, 16, 15, 12, 12; 
Processor 4: 30, 30, 19, 18, 18, 15, 14.   

The schedule using this list on five processors would be Processor 1: 36, 24, 18, 16, 14, 12; 
Processor 2: 32, 25, 18, 18, 15, 12; Processor 3: 31, 25, 19, 18, 15, 9; Processor 4: 30, 27, 
18, 17, 15, 13; Processor 5: 30, 26, 19, 16, 16, 12. 

(c)  The five-processor decreasing-time schedule is optimal (time 120), but the four-processor 
decreasing-time schedule is not.  One can see this, since when the task of length 17 
scheduled on processor 1 and the task of length 18 on processor 3 are interchanged, the 
completion time is reduced to 154 from 155 for the four-processor, decreasing-time 
schedule. 

(d)  As a bin-packing problem, each bin will have a capacity of 60.  Using the decreasing list, we 
obtain the following packings: (First-fit decreasing): Bin 1: 36, 24; Bin 2: 32, 27; Bin 3: 31, 
26; Bin 4: 30, 30; Bin 5: 25, 25, 9; Bin 6: 19, 19, 18; Bin 7: 18, 18, 18; Bin 8: 18, 17, 16; 
Bin 9: 16, 16, 15, 13; Bin 10: 15, 15, 14, 12; Bin 11: 12, 12. 

 (e)  NFD uses 13 bins. Bin 1: 36; Bin 2: 32; Bin 3: 31; Bin 4: 30, 30; Bin 5: 27, 26; Bin 6: 25, 
25; Bin 7: 24, 19; Bin 8: 19, 18, 18; Bin 9: 18, 18, 18; Bin 10: 17, 16, 16; Bin 11: 16, 15, 15; 
Bin 12: 15, 14, 13, 12; Bin 13: 12, 12, 9.  WFD uses 11 bins. Bin 1: 36, 24; Bin 2: 32, 26; 
Bin 3: 31, 27; Bin 4: 30, 30; Bin 5: 25, 25; Bin 6: 19, 19, 18; Bin 7: 18, 18, 18; Bin 8: 18, 
17, 16; Bin 9: 16, 16, 15, 13; Bin 10: 15, 15, 14, 12; Bin 11: 12, 12, 9. 

(f )  An optimal packing with 10 bins exists.  Bin 1: 36, 24; Bin 2: 32, 16, 12; Bin 3: 31, 17, 12; 
Bin 4: 30, 30; Bin 5: 27, 18, 15; Bin 6: 26, 18, 16; Bin 7: 25, 19, 16; Bin 8: 25, 19, 15;      
Bin 9: 18, 18, 12, 9; Bin 10: 18, 15, 14, 13. 
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58. First-fit 
 (a) First-fit, capacity 9: 

Bin 1: 8, 1; 
Bin 2: 5, 3, 1; 
Bin 3: 4, 3, 2; 
Bin 4: 7, 2; 
Bin 5: 8, 1; 
Bin 6: 8, 1; 
Bin 7: 6, 3; 
Bin 8: 5, 2, 2; 
Bin 9: 3, 5, 1; 
Bin 10: 4, 2, 3; 
Bin 11: 6, 2; 
Bin 12: 5, 4; 
Bin 13: 6, 2; 
Bin 14: 7; 
Bin 15: 7; 
Bin 16: 8; 
Bin 17: 6; 
Bin 18: 5, 4; 
Bin 19: 6; 
Bin 20: 4, 5; 
Bin 21: 7; 
Bin 22: 4. 

(b) First-fit, capacity 10 
Bin 1: 8, 2; 
Bin 2: 5, 3, 1, 1; 
Bin 3: 4, 3, 3; 
Bin 4: 7, 2, 1; 
Bin 5: 8, 2; 
Bin 6: 8, 2; 
Bin 7: 6, 3, 1; 
Bin 8: 5, 5; 
Bin 9: 4, 2, 3, 1; 
Bin 10: 6, 4; 
Bin 11: 5, 2, 2; 
Bin 12: 6, 4; 
Bin 13: 7; 
Bin 14: 7; 
Bin 15: 8; 
Bin 16: 6, 4; 
Bin 17: 5, 5; 
Bin 18: 6, 4; 
Bin 19: 7. 

(c) First-fit, capacity 11 
Bin 1: 8, 3; 
Bin 2: 5, 4, 2; 
Bin 3: 3, 6, 1, 1; 
Bin 4: 7, 3, 1; 
Bin 5: 8, 2, 1; 
Bin 6: 8, 2, 1; 
Bin 7: 5, 3, 2; 
Bin 8: 5, 4, 2; 
Bin 9: 6, 3, 2; 
Bin 10: 5, 4, 2; 
Bin 11: 6, 5; 
Bin 12: 7, 4; 
Bin 13: 7, 4; 
Bin 14: 8; 
Bin 15: 6, 5; 
Bin 16: 6, 4; 

 Bin 17: 7.  

(d) First-fit, capacity 12 
Bin 1: 8, 3, 1; 
Bin 2: 5, 4, 3; 
Bin 3: 7, 5; 
Bin 4: 8, 3, 1; 
Bin 5: 8, 2, 2; 
Bin 6: 6, 2, 1, 3; 
Bin 7: 5, 2, 4, 1; 
Bin 8: 2, 6, 3, 1; 
Bin 9: 5, 4, 2; 
Bin 10: 6, 6; 
Bin 11: 7, 5; 
Bin 12: 7, 4; 
Bin 13: 8, 4; 
Bin 14: 6, 5; 
Bin 15: 7, 2; 
Bin 16: 4. 

Continued on next page 
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58. continued 
 First-fit decreasing 

The decreasing list is: 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 
2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1. 

 (a) First-fit decreasing, capacity 9 
Bin 1: 8, 1; 
Bin 2: 8, 1; 
Bin 3: 8, 1: 
Bin 4: 8, 1; 
Bin 5: 7, 2; 
Bin 6: 7, 2; 
Bin 7: 7, 2; 
Bin 8: 7, 2; 
Bin 9: 6, 3; 
Bin 10: 6, 3; 
Bin 11: 6, 3; 
Bin 12: 6, 3; 
Bin 13: 6, 3; 
Bin 14: 5, 4; 
Bin 15: 5, 4; 
Bin 16: 5, 4; 
Bin 17: 5, 4; 
Bin 18: 5, 4; 
Bin 19: 5, 4; 
Bin 20: 2, 2, 2, 1. 

 (b) First-fit decreasing, capacity 10 
Bin 1: 8, 2; 
Bin 2: 8, 2; 
Bin 3: 8, 2; 
Bin 4: 8, 2; 
Bin 5: 7, 3; 
Bin 6: 7, 3; 
Bin 7: 7, 3; 
Bin 8: 7, 3; 
Bin 9: 6, 4; 
Bin 10: 6, 4; 
Bin 11: 6, 4; 
Bin 12: 6, 4; 
Bin 13: 6, 4; 
Bin 14: 5, 5; 
Bin 15: 5, 5; 
Bin 16: 5, 5; 
Bin 17: 4, 3, 2, 1; 
Bin 18: 2, 2, 1, 1, 1, 1. 

(c) First-fit decreasing, capacity 11 
Bin 1: 8, 3; 
Bin 2: 8, 3; 
Bin 3: 8, 3; 
Bin 4: 8, 3; 
Bin 5: 7, 4; 
Bin 6: 7, 4; 
Bin 7: 7, 4; 
Bin 8: 7, 4; 
Bin 9: 6, 5; 
Bin 10: 6, 5; 
Bin 11: 6, 5; 
Bin 12: 6, 5; 
Bin 13: 6, 5; 
Bin 14: 5, 4, 2; 
Bin 15: 4, 3, 2, 2; 
Bin 16: 2, 2, 2, 2, 1, 1, 1; 
Bin 17: 1, 1. 

 (d) First-fit decreasing, capacity 12 
Bin 1: 8, 4; 
Bin 2: 8, 4; 
Bin 3: 8, 4; 
Bin 4: 8, 4; 
Bin 5: 7, 5; 
Bin 6: 7, 5; 
Bin 7: 7, 5; 
Bin 8: 7, 5; 
Bin 9: 6, 6; 
Bin 10: 6, 6; 
Bin 11: 6, 5, 1; 
Bin 12: 5, 4, 3; 
Bin 13: 4, 3, 3, 2; 
Bin 14: 3, 3, 2, 2, 2; 
Bin 15: 2, 2, 2, 1, 1, 1, 1. 

All of the solutions using the decreasing list, with capacity 9–12 are optimal. 
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59.  (a)  Packing boxes of the same height into crates: packing want ads into a newspaper page. 

 (b)  We assume, without loss of generality, .p q≥   One heuristic, similar to first-fit, orders the 

rectangles p q×  as in a dictionary (i.e., p q×  listed prior to r s×  if p r>  or p r=  and 

q s≥ ).  It then puts the rectangles in place in layers in a first-fit manner; that is, do not put a 

rectangle into a second layer until all positions on the first layer are filled.  However, extra 
room in the first layer is “wasted.” 

 (c)  The problem of packing rectangles of width 1 in an 1m×  rectangle is a special case of the 
two-dimensional problem, equivalent to the bin-packing problem we have discussed. 

 (d)  Two 1 10×  rectangles cannot be packed into a 5 4×  rectangle, even though there would be 
an area of 20 in this rectangle. 

60. One example would be scheduling advertisements in station breaks, where the breaks can have 
two different lengths.  Variants of the algorithms for bins of one size can be developed; however, 
one must develop a way to address the fact that an item might fit in a bin of larger size, but not of 
smaller size. 

61.  There is an example of a bin-packing problem for which a given list takes a certain number of 
bins, and when an item is deleted from the list, more bins are required.  In this example, the 
deleted item is not first in the list. 

62.  The answer to Exercise 54 mentions one such “paradoxical” situation. Another possible paradox 
would be: a given set of weights requires a certain number of bins; when these weights are all 
decreased by, say, 1, more bins are required.  Still another possible paradox would be: a given set 
of weights requires, say, N bins of capacity W.  When the capacity is increased to, say, 1,W +  
more than N bins are required.  Problems such as these make nice research projects. 

63.  (a)  Graphs (a), (d), (e), and (f ) can be colored with three colors, but graphs (b) and (c) cannot. 

 (b)  Graphs (a), (b), (d), (e), and (f ) can be colored with four colors, but graph (c) cannot. 

 (c)  The chromatic number for graphs (a) through (f ) are, respectively, 3, 4, 5, 2, 3, and 2. 

64.  (a)  The only graphs shown whose vertices can be colored with two colors are (b), (c), and (e).  

 (b)  The only graphs shown whose vertices can be colored with three colors are (b), (c), (e), and 
(h). 

 (c)  The chromatic number is 4 for (a), 2 for (b), 2 for (c), 4 for (d), 2 for (e), 6 for (f), 5 for (g), 
and 3 for (h). 

65.  (a)  Construct the graph shown below: 

 
  The vertices of this graph can be colored with no fewer than four colors (1, 2, 3, 4 are used 

to denote the colors in the figure).  Hence, four tanks can be used to display the fish. 

 (b)  The coloring in (a) shows that one can display two types of fish in three of the tanks, and 
three types of fish in one tank.  Since 4 does not divide 9, one cannot do better. 
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66.  (a)  5 

 (b) Yes, because 5 divides 10. 

 (c)  Equalizing numbers in each enclosure may make observing this enclosure more interesting 
for the public.  If the enclosures are not equal in size, equalization may mean that a small 
enclosure gets too many animals. 

67.  (a)  The graph for this situation is shown below.  The vertices can be labeled with the colors 1, 2, 
3 as shown. 

 

 (b)  Since the vertices can be colored with three colors (and no fewer), the minimum number of 
time slots for scheduling the committees is three. 

(c)  The committees can be scheduled in three rooms during each time slot.  This might be 
significant if there were only three rooms that had microphone systems. 

68.  (a)  The chromatic number is 4. There is a coloring using each color twice and one color three 
times. There is also a coloring using one color 4 times, two colors 2 times, and one color 1 
time. 

 (b)  There is a coloring with 5 colors, where each color is used twice. 

 (c)  There is a coloring with 3 colors, where each color is used six times. 

 (d)  There is a coloring with 4 colors, but the colors cannot be used equally often. 

69.  (a)  Three time slots. To solve this problem, draw a graph by joining the vertices representing 
two committees if there is no x in the row and column of the table for these two committees. 

(b)  It is possible to three-color this graph so that each of the three colors is used three times.  
This means that one needs three rooms to arrange the scheduling of the nine committees. 

70. (a) Three frequencies. 

 (b)  Each frequency can be used twice. 

71. Start at any vertex of the tree and label this vertex with color 1; color any vertex attached by an 
edge to this vertex with color 2.  Continue to color the vertices in the tree in this manner, 
alternating the use of colors.  If some vertex were attached to both a vertex colored 1 and another 
vertex colored 2, at some stage this would imply the graph had a circuit (of odd length), which is 
not possible, since trees have no circuits of any length.  

72.  Yes. The graph with the n vertices each joined to the others requires n colors. 

73.  The edge-coloring numbers for graphs (a) through (f ) of Exercise 63 are, respectively, 6, 8, 6, 3, 
3, and 4.  The minimum edge-coloring number of any graph is either the maximal valence of any 
vertex in the graph or one more than the maximal valence.  (This fact was discovered by the 
Russian mathematician Vizing.) 
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74.  There are applications of edge colorings of graphs to designing timetables.  Also, because one 
can find out information about vertex colorings for certain graphs by studying edge colorings, 
one can extend the applicability of the edge-coloring concept. 

75.  (a)  Graph (a) four colors; graph (b) two colors; graph (c) four colors; graph (d) four colors; 
graph (e) two colors; graph (f ) three colors. 

 (b)  Coloring the maps of countries in an atlas would be one application of face colorings of 
graphs. 

76.  The minimum number of play groups is 3 because the chromatic number for this graph is 3. 
Since there are 7 children, the only number of play groups which could be set up which is 
conflict free would be if each child formed his/her own play group! With 3 play groups one can 
form two groups of size 2 and one group of size 3.  

77.  3 

78.  Removing a single edge will not change the chromatic number of this graph. 
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