The Population Paradox in Hamilton's Apportionment Method
The following table should help you do Problem 10 on page 535
of the Comap Text.
state old census old quota new census new quota
A 5525381 42.305 5657564 42.693
B 3470152 26.569 3507464 26.468
C 3864226 29.586 3885693 29.322
D 201203 1.540 201049 1.517
Here is the computer program which made the table.
#! /usr/bin/python
Aold = 5525381
Bold = 3470152
Cold = 3864226
Dold = 201203
OldStandardDivisor = (Aold+Bold+Cold+Dold)/100.0
AoldQuota=Aold/OldStandardDivisor
BoldQuota=Bold/OldStandardDivisor
ColdQuota=Cold/OldStandardDivisor
DoldQuota=Dold/OldStandardDivisor
Anew = 5657564
Bnew = 3507464
Cnew = 3885693
Dnew = 201049
NewStandardDivisor = (Anew+Bnew+Cnew+Dnew)/100.0
AnewQuota=Anew/NewStandardDivisor
BnewQuota=Bnew/NewStandardDivisor
CnewQuota=Cnew/NewStandardDivisor
DnewQuota=Dnew/NewStandardDivisor
print "state old census old quota new census new quota"
print "A ", str(Aold).rjust(15), ("%5.3f"%AoldQuota).rjust(8), str(Anew).rjust(15), ("%5.3f"%AnewQuota).rjust(8)
print "B ", str(Bold).rjust(15), ("%5.3f"%BoldQuota).rjust(8), str(Bnew).rjust(15), ("%5.3f"%BnewQuota).rjust(8)
print "C ", str(Cold).rjust(15), ("%5.3f"%ColdQuota).rjust(8), str(Cnew).rjust(15), ("%5.3f"%CnewQuota).rjust(8)
print "D ", str(Dold).rjust(15), ("%5.3f"%DoldQuota).rjust(8), str(Dnew).rjust(15), ("%5.3f"%DnewQuota).rjust(8)