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1.1 Sequences

When we first introduced a function as a special type of relation in Section ??, we did not put any
restrictions on the domain of the function. All we said was that the set of x-coordinates of the
points in the function F is called the domain, and it turns out that any subset of the real numbers,
regardless of how weird that subset may be, can be the domain of a function. As our exploration
of functions continued beyond Section ??, we saw fewer and fewer functions with ‘weird’ domains.
It is worth your time to go back through the text to see that the domains of the polynomial,
rational, exponential, logarithmic and algebraic functions discussed thus far have fairly predictable
domains which almost always consist of just a collection of intervals on the real line. This may lead
some readers to believe that the only important functions in a College Algebra text have domains
which consist of intervals and everything else was just introductory nonsense. In this section, we
introduce sequences which are an important class of functions whose domains are the set of natural
numbers.1 Before we get to far ahead of ourselves, let’s look at what the term ‘sequence’ means
mathematically. Informally, we can think of a sequence as an infinite list of numbers. For example,
consider the sequence

1
2
,−3

4
,
9
8
,−27

16
, . . . (1)

As usual, the periods of ellipsis, . . ., indicate that the proposed pattern continues forever. Each of
the numbers in the list is called a term, and we call 1

2 the ‘first term’, −3
4 the ‘second term’, 9

8 the
‘third term’ and so forth. In numbering them this way, we are setting up a function, which we’ll
call a per tradition, between the natural numbers and the terms in the sequence.

n a(n)

1 1
2

2 −3
4

3 9
8

4 −27
16

...
...

In other words, a(n) is the nth term in the sequence. We formalize these ideas in our definition of
a sequence and introduce some accompanying notation.

Definition 1.1. A sequence is a function a whose domain is the natural numbers. The value
a(n) is often written as an and is called the nth term of the sequence. The sequence itself is
usually denoted {an}∞n=1.

Applying the notation provided in Definition 1.1 to the sequence given (1), we have a1 = 1
2 , a2 = −3

4 ,
a3 = 9

8 and so forth. Now suppose we wanted to know a117, that is, the 117th term in the sequence.
While the pattern of the sequence is apparent, it would benefit us greatly to have an explicit formula

1Recall that this is the set {1, 2, 3, . . .}.
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for an. Unfortunately, there is no general algorithm that will produce a formula for every sequence,
so any formulas we do develop will come from that greatest of teachers, experience. In other words,
it is time for an example.

Example 1.1.1. Write the first four terms of the following sequences.

1. an =
5n−1

3n
, n ≥ 1

2. bk =
(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1

4.
{

1 + (−1)j

j

}∞
j=2

5. a1 = 7, an+1 = 2− an, n ≥ 1

6. f0 = 1, fn = n · fn−1, n ≥ 1

Solution.

1. Since we are given n ≥ 1, the first four terms of the sequence are a1, a2, a3 and a4. Since
the notation a1 means the same thing as a(1), we obtain our first term by replacing every
occurrence of n in the formula for an with n = 1 to get a1 = 51−1

31 = 1
3 . Proceeding similarly,

we get a2 = 52−1

32 = 5
9 , a3 = 53−1

33 = 25
27 and a4 = 54−1

34 = 125
81 .

2. For this sequence we have k ≥ 0, so the first four terms are b0, b1, b2 and b3. Proceeding
as before, replacing in this case the variable k with the appropriate whole number, we get
b0 = (−1)0

2(0)+1 = 1, b1 = (−1)1

2(1)+1 = −1
3 , b2 = (−1)2

2(2)+1 = 1
5 and b3 = (−1)3

2(3)+1 = −1
7 . (This sequence

is called an alternating sequence since the signs alternate between + and −. The reader is
encouraged to think what component of the formula is producing this effect.)

3. From {2n− 1}∞n=1, we have that an = 2n − 1, n ≥ 1. We get a1 = 1, a2 = 3, a3 = 5 and
a4 = 7. (The first four terms are the first four odd natural numbers. The reader is encouraged
to examine whether or not this pattern continues indefinitely.)

4. Proceeding as in the previous problem, we set aj = 1+(−1)j

j , j ≥ 2. We find a2 = 1, a3 = 0,
a4 = 1

2 and a5 = 0.

5. To obtain the terms of this sequence, we start with a1 = 7 and use the equation an+1 = 2−an

for n ≥ 1 to generate successive terms. When n = 1, this equation becomes a1 + 1 = 2 − a1

which simplifies to a2 = 2−a1 = 2−7 = −5. When n = 2, the equation becomes a2 + 1 = 2−a2

so we get a3 = 2 − a2 = 2 − (−5) = 7. Finally, when n = 3, we get a3 + 1 = 2 − a3 so
a4 = 2− a3 = 2− 7 = −5.

6. As with the problem above, we are given a place to start with f0 = 1 and given a formula
to build other terms of the sequence. Substituting n = 1 into the equation fn = n · fn−1,
we get f1 = 1 · f0 = 1 · 1 = 1. Advancing to n = 2, we get f2 = 2 · f1 = 2 · 1 = 2. Finally,
f3 = 3 · f2 = 3 · 2 = 6.
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Some remarks about Example 1.1.1 are in order. We first note that since sequences are functions,
we can graph them in the same way we graph functions. For example, if we wish to graph the
sequence {bk}∞k=0 from Example 1.1.1, we graph the equation y = b(k) for the values k ≥ 0. That
is, we plot the points (k, b(k)) for the values of k in the domain, k = 0, 1, 2, . . .. The resulting
collection of points is the graph of the sequence. Note that we do not connect the dots in a pleasing
fashion as we are used to doing, because the domain is just the whole numbers in this case, not a
collection of intervals of real numbers. If you feel a sense of nostalgia, you should see Section ??.

x

y

1 2 3

− 3
2

−1

− 1
2

1
2

1

3
2

Graphing y = bk =
(−1)k

2k + 1
, k ≥ 0

Speaking of {bk}∞k=0, the astute and mathematically minded reader will correctly note that this
technically isn’t a sequence, since according to Definition 1.1, sequences are functions whose domains
are the natural numbers, not the whole numbers, as is the case with {bk}∞k=0. In other words, to
satisfy Definition 1.1, we need to shift the variable k so it starts at k = 1 instead of k = 0. To
see how we can do this, it helps to think of the problem graphically. What we want is to shift the
graph of y = b(k) to the right one unit, and thinking back to Section ??, we can accomplish this by
replacing k with k−1 in the definition of {bk}∞k=0. Specifically, let ck = bk−1 where k−1 ≥ 0. We get
ck = (−1)k−1

2(k−1)+1 = (−1)k−1

2k−1 , where now k ≥ 1. We leave to the reader to verify that {ck}∞k=1 generates
the same list of numbers as does {bk}∞k=0, but the former satisfies Definition 1.1, while the latter does
not. Like so many things in this text, we acknowledge that this point is pedantic and join the vast
majority of authors who adopt a more relaxed view of Definition 1.1 to include any function which
generates a list of numbers which can be then be matched up with the natural numbers.2 Finally,
we wish to note the sequences in parts 5 and 6 are examples of sequences described recursively.
In each instance, an initial value of the sequence is given which is then followed by a recursion
equation − a formula which enables us to use known terms of the sequence to determine other
terms. The terms of the sequence in part 6 are given a special name: fn is called n-factorial.
We will study factorials in greater detail in Section 1.4. The world famous Fibonacci Numbers are
defined recursively and are explored in the exercises. While none of the sequences worked out to
be the sequence in (1), they do give us some insight into what kinds of patterns to look for. Two
patterns in particular are given in the next definition.

2Math fans will delight to know we are basically talking about the ‘countably infinite’ subsets of the real number
line when we do this.

http://en.wikipedia.org/wiki/Fibonacci_number
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Definition 1.2. Arithmetic and Geometric Sequences: Suppose {an}∞n=k is a sequencea

� If there is a number d so that an+1 = an + d for all n ≥ k, then {an}∞n=k is called an
arithmetic sequence. The number d is called the common difference.

� If there is a number r so that an+1 = ran for all n ≥ k, then {an}∞n=k is called an geometric
sequence. The number r is called the common ratio.

aNote that we have adjusted for the fact that not all ‘sequences’ begin at n = 1.

Both arithmetic and geometric sequences are defined in terms of recursion equations. In English,
an arithmetic sequence is one in which we proceed from one term to the next by always adding
the fixed number d. The name ‘common difference’ comes from a slight rewrite of the recursion
equation from an+1 = an + d to an+1 − an = d. Analogously, a geometric sequence is one in which
we proceed from one term to the next by always multiplying by the same fixed number r. If r 6= 0,
we can rearrange the recursion equation to get an+1

an
= r, hence the name ‘common ratio.’ Some

sequences are arithmetic, some are geometric and some are neither as the next example illustrates.3

Example 1.1.2. Determine if the following sequences are arithmetic, geometric or neither. If
arithmetic, find the common difference d; if geometric, find the common ratio r.

1. an =
5n−1

3n
, n ≥ 1

2. bk =
(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1

4.
1
2
,−3

4
,
9
8
,−27

16
, . . .

Solution. A good rule of thumb to keep in mind when working with sequences is “When in doubt,
write it out!” Writing out the first several terms can help you identify the pattern of the sequence
should one exist.

1. From Example 1.1.1, we know that the first four terms of this sequence are 1
3 , 5

9 , 25
27 and 125

81 .
To see if this is an arithmetic sequence, we look at the successive differences of terms. We
find that a2 − a1 = 5

9 −
1
3 = 2

9 and a3 − a2 = 25
27 −

5
9 = 10

27 . Since we get different numbers,
there is no ‘common difference’ and we have established that the sequence is not arithmetic.
To investigate whether or not it is geometric, we compute the ratios of successive terms. The
first three ratios

a2

a1

=
5
9
1
3

=
5
3
,

a3

a2

=
25
27
5
9

=
5
3

and
a4

a3

=
125
81
25
27

=
5
3

suggest that the sequence is geometric. To prove it, we must show that an+1

an
= r for all n.

an+1

an
=

5(n+1)−1

3n+1

5n−1

3n

=
5n

3n+1
· 3n

5n−1
=

5
3

3Sequences which are both arithmetic and geometric are discussed in the Exercises.



6 CHAPTER 1. SEQUENCES, SERIES AND THE BINOMIAL THEOREM

This sequence is geometric with common ratio r = 5
3 .

2. Again, we have Example 1.1.1 to thank for providing the first four terms of this sequence:
1, −1

3 , 1
5 and −1

7 . We find b1 − b0 = −4
3 and b2 − b1 = 8

15 . Hence, the sequence is not
arithmetic. To see if it is geometric, we compute b1

b0
= −1

3 and b2
b1

= −3
5 . Since there is no

‘common ratio,’ we conclude the sequence is not geometric, either.

3. As we saw in Example 1.1.1, the sequence {2n− 1}∞n=1 generates the odd numbers: 1, 3, 5, 7, . . ..
Computing the first few differences, we find a2 − a1 = 2, a3 − a2 = 2, and a4 − a3 = 2. This
suggests that the sequence is arithmetic. To verify this, we find

an+1 − an = (2(n + 1)− 1)− (2n− 1) = 2n + 2− 1− 2n + 1 = 2

This establishes that the sequence is arithmetic with common difference d = 2. To see if it is
geometric, we compute a2

a1
= 3 and a3

a2
= 5

3 . Since these ratios are different, we conclude the
sequence is not geometric.

4. We met our last sequence at the beginning of the section. Given that a2 − a1 = −5
4 and

a3−a2 = 15
8 , the sequence is not arithmetic. Computing the first few ratios, however, gives us

a2
a1

= −3
2 , a3

a2
= −3

2 and a4
a3

= −3
2 . Since these are the only terms given to us, we assume that

the pattern of ratios continue in this fashion and conclude that the sequence is geometric.

We are now one step away from determining an explicit formula for the sequence given in (1). We
know that it is a geometric sequence and our next result gives us the explicit formula we require.

Equation 1.1. Formulas for Arithmetic and Geometric Sequences:

� An arithmetic sequence with first term a and common difference d is given by

an = a + (n− 1)d, n ≥ 1

� A geometric sequence with first term a and common ratio r 6= 0 is given by

an = arn−1, n ≥ 1

While the formal proofs of the formulas in Equation 1.1 require the techniques set forth in Sec-
tion 1.3, we attempt to motivate them here. According to Definition 1.2, given an arithmetic
sequence with first term a and common difference d, the way we get from one term to the next is
by adding d. Hence, the terms of the sequence are: a, a+d, a+2d, a+3d, . . . . We see that to reach
the nth term, we add d to a exactly (n−1) times, which is what the formula says. The derivation of
the formula for geometric series follows similarly. Here, we start with a and go from one term to the
next by multiplying by r. We get a, ar, ar2, ar3 and so forth. The nth term results from multiplying
a by r exactly (n− 1) times. We note here that the reason r = 0 is excluded from Equation 1.1 is
to avoid an instance of 00 which is an indeterminant form.4 With Equation 1.1 in place, we finally

4See the footnotes on page ?? in Section ?? and page ?? of Section ??.
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have the tools required to find an explicit formula for the nth term of the sequence given in (1).
We know from Example 1.1.2 that it is geometric with common ratio r = −3

2 . The first term is
a = 1

2 so by Equation 1.1 we get an = arn−1 = 1
2

(
−3

2

)n−1 for n ≥ 1. After a touch of simplifying,

we get an = (−3)n−1

2n for n ≥ 1. Note that we can easily check our answer by substituting in values
of n and seeing that the formula generates the sequence given in (1). We leave this to the reader.
Our next example gives us more practice finding patterns.

Example 1.1.3. Find an explicit formula for the nth term of the following sequences.

1. 0.9, 0.09, 0.009, 0.0009, . . .

2.
2
5
, 2,−2

3
,−2

7
, . . .

3. 1,−2
7
,

4
13

,− 8
19

, . . .

Solution.

1. Although this sequence may seem strange, the reader can verify it is actually a geometric
sequence with common ratio r = 0.1 = 1

10 . With a = 0.9 = 9
10 , we get an = 9

10

(
1
10

)n−1 for
n ≥ 0. Simplifying, we get an = 9

10n , n ≥ 1. There is more to this sequence than meets the
eye and we shall return to this example in the next section.

2. As the reader can verify, this sequence is neither arithmetic nor geometric. In an attempt
to find a pattern, we rewrite the second term with a denominator to make all the terms
appear as fractions. We have 2

5 , 2
1 ,−2

3 ,−2
7 , . . .. If we associate the negative ‘−’ of the last two

terms with the denominators we get 2
5 , 2

1 , 2
−3 , 2

−7 , . . .. This tells us that we can tentatively
sketch out the formula for the sequence as an = 2

dn
where dn is the sequence of denominators.

Looking at the denominators 5, 1,−3,−7, . . ., we find that they go from one term to the next
by subtracting 4 which is the same as adding −4. This means we have an arithmetic sequence
on our hands. Using Equation 1.1 with a = 5 and d = −4, we get the nth denominator by
the formula dn = 5 + (n− 1)(−4) = 9− 4n for n ≥ 1. Our final answer is an = 2

9−4n , n ≥ 1.

3. The sequence as given is neither arithmetic nor geometric, so we proceed as in the last problem
to try to get patterns individually for the numerator and denominator. Letting cn and dn

denote the sequence of numerators and denominators, respectively, we have an = cn
dn

. After
some experimentation,5 we choose to write the first term as a fraction and associate the
negatives ‘−’ with the numerators. This yields 1

1 , −2
7 , 4

13 , −8
19 , . . .. The numerators form the

sequence 1,−2, 4,−8, . . . which is geometric with a = 1 and r = −2, so we get cn = (−2)n−1,
for n ≥ 1. The denominators 1, 7, 13, 19, . . . form an arithmetic sequence with a = 1 and
d = 6. Hence, we get dn = 1 + 6(n − 1) = 6n − 5, for n ≥ 1. We obtain our formula for
an = cn

dn
= (−2)n−1

6n−5 , for n ≥ 1. We leave it to the reader to show that this checks out.

5Here we take ‘experimentation’ to mean a frustrating guess-and-check session.
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While the last problem in Example 1.1.3 was neither geometric nor arithmetic, it did resolve into
a combination of these two kinds of sequences. If handed the sequence 2, 5, 10, 17, . . ., we would
be hard-pressed to find a formula for an if we restrict our attention to these two archetypes. We
said before that there is no general algorithm for finding the explicit formula for the nth term of
a given sequence, and it is only through experience gained from evaluating sequences from explicit
formulas that we learn to begin to recognize number patterns. The pattern 1, 4, 9, 16, . . . is rather
recognizable as the squares, so the formula an = n2, n ≥ 1 may not be too hard to determine.
With this in mind, it’s possible to see 2, 5, 10, 17, . . . as the sequence 1 + 1, 4 + 1, 9 + 1, 16 + 1, . . .,
so that an = n2 + 1, n ≥ 1. Of course, since we are given only a small sample of the sequence, we
shouldn’t be too disappointed to find out this isn’t the only formula which generates this sequence.
For example, consider the sequence defined by bn = −1

4n4 + 5
2n3 − 31

4 n2 + 25
2 n − 5, n ≥ 1. The

reader is encouraged to verify that it also produces the terms 2, 5, 10, 17. In fact, it can be shown
that given any finite sample of a sequence, there are infinitely many explicit formulas all of which
generate those same finite points. This means that there will be infinitely many correct answers to
some of the exercises in this section.6 Just because your answer doesn’t match ours doesn’t mean
it’s wrong. As always, when in doubt, write your answer out. As long as it produces the same
terms in the same order as what the problem wants, your answer is correct.

We would be remiss to close this section without mention of the utility of sequences in everyday
life. Indeed, sequences play a major role in the Mathematics of Finance, as we have already seen
with Equation ?? in Section ??. Recall that if we invest P dollars at an annual percentage rate r
and compound the interest n times per year, the formula for Ak, the amount in the account after k

compounding periods, is Ak = P
(
1 + r

n

)k =
[
P
(
1 + r

n

)] (
1 + r

n

)k−1, k ≥ 1. We now spot this as a
geometric sequence with first term P

(
1 + r

n

)
and common ratio

(
1 + r

n

)
. In retirement planning,

it is seldom the case that an investor deposits a set amount of money into an account and waits for
it to grow. Usually, additional payments of principal are made at regular intervals and the value
of the investment grows accordingly. This kind of investment is called an annuity and will be
discussed in the next section once we have developed more mathematical machinery.

1.1.1 Exercises

1. Write out the four terms of the following sequences.

(a) an = 2n − 1, n ≥ 0

(b) dj = (−1)
j(j+1)

2 , j ≥ 1
(c) {5k − 2}∞k=1

(d)
{

n2+1
n+1

}∞
n=0

(e)
{

xn

n2

}∞
n=1

(f)
{

ln(n)
n

}∞
n=1

(g) a1 = 3, an+1 = an − 1, n ≥ 1

(h) d0 = 12, dm = dm-1
100 , m ≥ 1

(i) b1 = 2, bk+1 = 3bk + 1, k ≥ 1

(j) c0 = −2, cj = cj-1
(j+1)(j+2) , m ≥ 1

(k) a1 = 117, an+1 = 1
an

, n ≥ 1

(l) s0 = 1, sn+1 = xn+1 + sn, n ≥ 0

6For more on this, see When Every Answer is Correct: Why Sequences and Number Patterns Fail the Test by
Professor Don White of Kent State University.

http://www.math.kent.edu/~white/papers/pattern.pdf
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(m) F0 = 1, F1 = 1, Fn = Fn-1 + Fn-2, n ≥ 2 (This is the famous Fibonacci Sequence )

2. Find an explicit formula for the nth term of the following sequences. Use the formulas in
Equation 1.1 as needed.

(a) 3, 5, 7, 9, . . .

(b) 1, −1
2 , 1

4 , −1
8 , . . .

(c) 1, 2
3 , 4

5 , 8
7 , . . .

(d) 1, 2
3 , 1

3 , 4
27 , . . .

(e) 1, 1
4 , 1

9 , 1
16 , . . .

(f) x, −x3

3 , x5

5 , −x7

7 , . . .

(g) 0.9, 0.99, 0.999, 0.9999, . . .

(h) 27, 64, 125, 216, . . .

(i) 1, 0, 1, 0, . . .

3. Find a sequence which is both arithmetic and geometric. (Hint: Start with an = c for all n.)

4. Show that a geometric sequence can be transformed into an arithmetic sequence by taking
the natural logarithm of the terms.

5. Thomas Robert Malthus is credited with saying, “The power of population is indefinitely
greater than the power in the earth to produce subsistence for man. Population, when
unchecked, increases in a geometrical ratio. Subsistence increases only in an arithmetical
ratio. A slight acquaintance with numbers will show the immensity of the first power in
comparison with the second.” (See this webpage for more information.) Discuss this quote
with your classmates from a sequences point of view.

6. This classic problem involving sequences shows the power of geometric sequences. Suppose
that a wealthy benefactor agrees to give you one penny today and then double the amount
she gives you each day for 30 days. So, for example, you get two pennies on the second day
and four pennies on the third day. How many pennies do you get on the 30th day? What is
the total dollar value of the gift you have received?

7. Research the terms ‘arithmetic mean’ and ‘geometric mean.’ With the help of your classmates,
show that a given term of a arithmetic sequence ak, k ≥ 2 is the arithmetic mean of the
term immediately preceding, ak−1 it and immediately following it, ak+1. State and prove an
analogous result for geometric sequences.

8. Discuss with your classmates how the results of this section might change if we were to
examine sequences of other mathematical things like complex numbers or matrices. Find an
explicit formula for the nth term of the sequence i,−1,−i, 1, i, . . .. List out the first four terms
of the matrix sequences we discussed in Exercise ?? in Section ??.

1.1.2 Answers

1. (a) 0, 1, 3, 7

(b) −1,−1, 1, 1

(c) 3, 8, 13, 18

(d) 1, 1, 5
3 , 5

2

(e) x, x2

2 , x3

3 , x4

4

(f) 0, ln(2), ln(3)
3 , ln(4)

4

(g) 3, 2, 1, 0
(h) 12, 0.12, 0.0012, 0.000012

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Malthus
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(i) 2, 7, 22, 67
(j) −2,−1

3 ,− 1
36 ,− 1

720

(k) 117, 1
117 , 117, 1

117

(l) 1, x + 1, x2 + x + 1, x3 + x2 + x + 1

(m) 1, 1, 2, 3

2. (a) an = 1 + 2n, n ≥ 1

(b) an =
(
−1

2

)n−1
, n ≥ 1

(c) an = 2n−1

2n−1 , n ≥ 1

(d) an = n
3n−1 , n ≥ 1

(e) an = 1
n2 , n ≥ 1

(f) (−1)n−1x2n−1

2n−1 , n ≥ 1

(g) an = 10n−1
10n , n ≥ 1

(h) an = (n + 2)3, n ≥ 1

(i) an = 1+(−1)n−1

2 , n ≥ 1

1.2 Series and Summation Notation

In the previous section, we introduced sequences and now we shall present notation and theorems
concerning the sum of terms of a sequence. We begin with a definition, which, while intimidating,
is meant to make our lives easier.

Definition 1.3. Summation Notation: Given a sequence {an}∞n=k and numbers m and p
satisfying k ≤ m ≤ p, the summation from m to p of the sequence {an} is written

p∑
n=m

an = am + am+1 + . . . + ap

The variable n is called the index of summation. The number m is called the lower limit of
summation while the number p is called the upper limit of summation.

In English, Definition 1.3 is simply defining a short-hand notation for adding up the terms of the
sequence {an}∞n=k from am through ap. The symbol Σ is the capital Greek letter sigma and is
shorthand for ‘sum’. The index of summation tells us which term to start with and which term
to end with. For example, using the sequence an = 2n − 1 for n ≥ 1, we can write the sum
a3 + a4 + a5 + a6 as

6∑
n=3

(2n− 1) = (2(3)− 1) + (2(4)− 1) + (2(5)− 1) + (2(6)− 1)

= 5 + 7 + 9 + 11
= 32

The index variable is considered a ‘dummy variable’ in the sense that it may be changed to any
letter without affecting the value of the summation. For instance,

6∑
n=3

(2n− 1) =
6∑

k=3

(2k − 1) =
6∑

j=3

(2j − 1)

One place you may encounter summation notation is in mathematical definitions. For example,
summation notation allows us to define polynomials as functions of the form
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f(x) =
n∑

k=0

akx
k

for real numbers ak, k = 0, 1, . . . n. The reader is invited to compare this with what is given in
Definition ??. Summation notation is particularly useful when talking about matrix operations.
For example, we can write the product of the ith row Ri of a matrix A = [aij ]m×n and the jth

column Cj of a matrix B = [bij ]n×r as

Ri · Cj =
n∑

k=1

aikbkj

Again, the reader is encouraged to write out the sum and compare it to Definition ??. Our next
example gives us practice with this new notation.

Example 1.2.1.

1. Find the following sums.

(a)
4∑

k=1

13
100k

(b)
5∑

n=1

(−1)n+1

n
(x− 1)n

2. Write the following sums using summation notation.

(a) 1 + 3 + 5 + . . . + 117

(b) 1− 1
2

+
1
3
− 1

4
+− . . . +

1
117

(c) 0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9

Solution.

1. (a) We substitute k = 1 into the formula 13
100k and add successive terms until we reach k = 4.

4∑
k=1

13
100k

=
13

1001
+

13
1002

+
13

1003
+

13
1004

= 0.13 + 0.0013 + 0.000013 + 0.00000013
= 0.13131313

(b) We proceed as in part (a), replacing the index n, but not the variable x, with the values
1 through 5 and adding the resulting terms.
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5∑
n=1

(−1)n+1

n
(x− 1)n =

(−1)1+1

1
(x− 1)1 +

(−1)2+1

2
(x− 1)2 +

(−1)3+1

3
(x− 1)3

+
(−1)1+4

4
(x− 1)4 +

(−1)1+5

5
(x− 1)5

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+

(x− 1)5

5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
To that end, we make good use of the techniques presented in Section 1.1.

(a) The terms of the sum 1, 3, 5, etc., form an arithmetic sequence with first term a = 1
and common difference d = 2. We get a formula for the nth term of the sequence using
Equation 1.1 to get an = 1+(n−1)2 = 2n−1, n ≥ 1. At this stage, we have the formula
for the terms, namely 2n − 1, and the lower limit of the summation, n = 1. To finish
the problem, we need to determine the upper limit of the summation. In other words,
we need to determine which value of n produces the term 117. Setting an = 117, we get
2n− 1 = 117 or n = 59. Our final answer is

1 + 3 + 5 + . . . + 117 =
59∑

n=1

(2n− 1)

(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate the
negatives ‘−’ with the numerators to get

1
1

+
−1
2

+
1
3

+
−1
4

+ . . . +
1

117

The numerators, 1, −1, etc. can be described by the geometric sequence1 cn = (−1)n−1

for n ≥ 1, while the denominators are given by the arithmetic sequence2 dn = n for
n ≥ 1. Hence, we get the formula an = (−1)n−1

n for our terms, and we find the lower and
upper limits of summation to be n = 1 and n = 117, respectively. Thus

1− 1
2

+
1
3
− 1

4
+− . . . +

1
117

=
117∑
n=1

(−1)n−1

n

(c) Thanks to Example 1.1.3, we know that one formula for the nth term is an = 9
10n for

n ≥ 1. This gives us a formula for the summation as well as a lower limit of summation.
To determine the upper limit of summation, we note that to produce the n− 1 zeros to
the right of the decimal point before the 9, we need a denominator of 10n. Hence, n is

1This is indeed a geometric sequence with first term a = 1 and common ratio r = −1.
2It is an arithmetic sequence with first term a = 1 and common difference d = 1.
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the upper limit of summation. Since n is used in the limits of the summation, we need
to choose a different letter for the index of summation.3 We choose k and get

0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =
n∑

k=1

9
10k

The following theorem presents some general properties of summation notation. While we shall not
have much need of these properties in Algebra, they do play a great role in Calculus. Moreover,
there is much to be learned by thinking about why the properties hold. We invite the reader to
prove these results. To get started, remember, “When in doubt, write it out!”

Theorem 1.1. Properties of Summation Notation: Suppose {an} and {bn} are sequences
so that the following sums are defined.

�

p∑
n=m

(an ± bn) =
p∑

n=m

an ±
p∑

n=m

bn

�

p∑
n=m

c an = c

p∑
n=m

an, for any real number c.

�

p∑
n=m

an =
j∑

n=m

an +
p∑

n=j+1

an, for any natural number m ≤ j < j + 1 ≤ p.

�

p∑
n=m

an =
p+r∑

n=m+r

an−r, for any whole number r.

We now turn our attention to the sums involving arithmetic and geometric sequences. Given an
arithmetic sequence ak = a + (k − 1)d for k ≥ 1, we let S denote the sum of the first n terms. To
derive a formula for S, we write it out in two different ways

S = a + (a + d) + . . . + (a + (n− 2)d) + (a + (n− 1)d)
S = (a + (n− 1)d) + (a + (n− 2)d) + . . . + (a + d) + a

If we add these two equations and combine the terms which are aligned vertically, we get

2S = (2a + (n− 1)d) + (2a + (n− 1)d) + . . . + (2a + (n− 1)d) + (2a + (n− 1)d)

The right hand side of this equation contains n terms, all of which are equal to (2a + (n− 1)d) so
we get 2S = n(2a + (n− 1)d). Dividing both sides of this equation by 2, we obtain the formula

3To see why, try writing the summation using ‘n’ as the index.
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S =
n

2
(2a + (n− 1)d)

If we rewrite the quantity 2a + (n− 1)d as a + (a + (n− 1)d) = a1 + an, we get the formula

S = n

(
a1 + an

2

)
A helpful way to remember this last formula is to recognize that we have expressed the sum as the
product of the number of terms n and the average of the first and nth terms.
To derive the formula for the geometric sum, we start with a geometric sequence ak = ark−1, k ≥ 1,
and let S once again denote the sum of the first n terms. Comparing S and rS, we get

S = a + ar + ar2 + . . . + arn−2 + arn−1

rS = ar + ar2 + . . . + arn−2 + arn−1 + arn

Subtracting the second equation from the first forces all of the terms except a and arn to cancel
out and we get S− rS = a− arn. Factoring, we get S(1− r) = a (1− rn). Assuming r 6= 1, we can
divide both sides by the quantity (1− r) to obtain

S = a

(
1− rn

1− r

)
If we distribute a through the numerator, we get a− arn = a1 − an+1 which yields the formula

S =
a1 − an+1

1− r
In the case when r = 1, we get the formula

S = a + a + . . . + a︸ ︷︷ ︸
n times

= n a

Our results are summarized below.
Equation 1.2. Sums of Arithmetic and Geometric Sequences:

� The sum S of the first n terms of an arithmetic sequence ak = a + (k − 1)d for k ≥ 1 is

S =
n∑

k=1

ak = n

(
a1 + an

2

)
=

n

2
(2a + (n− 1)d)

� The sum S of the first n terms of a geometric sequence ak = ark−1 for k ≥ 1 is

1. S =
n∑

k=1

ak =
a1 − an+1

1− r
= a

(
1− rn

1− r

)
, if r 6= 1.

2. S =
n∑

k=1

ak =
n∑

k=1

a = na, if r = 1.
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While we have made an honest effort to derive the formulas in Equation 1.2, formal proofs require
the machinery in Section 1.3. An application of the arithmetic sum formula which proves useful
in Calculus results in formula for the sum of the first n natural numbers. The natural numbers
themselves are a sequence4 1, 2, 3, . . . which is arithmetic with a = d = 1. Applying Equation 1.2,

1 + 2 + 3 + . . . + n =
n(n + 1)

2

So, for example, the sum of the first 100 natural numbers is 100(101)
2 = 5050.5

We close this section with a peek into Calculus by considering infinite sums, called series. Consider
the number 0.9. We can write this number as

0.9 = 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009 + . . .

From Example 1.2.1, we know we can write the sum of the first n of these terms as

0. 9 · · · 9︸ ︷︷ ︸
n nines

= .9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =
n∑

k=1

9
10k

Using Equation 1.2, we have

n∑
k=1

9
10k

=
9
10

1− 1
10n+1

1− 1
10

 = 1− 1
10n+1

It stands to reason that 0.9 is the same value of 1− 1
10n+1 as n→∞. Our knowledge of exponential

expressions from Section ?? tells us that 1
10n+1 → 0 as n → ∞, so 1 − 1

10n+1 → 1. We have
just argued that 0.9 = 1, which may cause some distress for some readers.6 Any non-terminating
decimal can be thought of as an infinite sum whose denominators are the powers of 10, so the
phenomenon of adding up infinitely many terms and arriving at a finite number is not as foreign
of a concept as it may appear. We end this section with a theorem concerning geometric series.

Theorem 1.2. Geometric Series: Given the sequence ak = ark−1 for k ≥ 1, where |r| < 1,

a + ar + ar2 + . . . =
∞∑

k=1

ark−1 =
a

1− r

If |r| ≥ 1, the sum a + ar + ar2 + . . . is not defined.

The justification of the result in Theorem 1.2 comes from taking the formula in Equation 1.2 for the
sum of the first n terms of a geometric sequence and examining the formula as n→∞. Assuming
|r| < 1 means −1 < r < 1, so rn → 0 as n→∞. Hence as n→∞,

4This is the identity function on the natural numbers!
5There is an interesting anecdote which says that the famous mathematician Carl Friedrich Gauss was given this

problem in primary school and devised a very clever solution.
6To make this more palatable, it is usually accepted that 0.3 = 1

3
so that 0.9 = 3

`
0.3

´
= 3

`
1
3

´
= 1. Feel better?

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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n∑
k=1

ark−1 = a

(
1− rn

1− r

)
→ a

1− r

As to what goes wrong when |r| ≥ 1, we leave that to Calculus as well, but will explore some cases
in the exercises.

1.2.1 Exercises

1. Find the following sums.

(a)
9∑

g=4

(5g + 3)

(b)
8∑

k=3

1
k

(c)
5∑

j=0

2j

(d)
2∑

k=0

(3k − 5)xk

(e)
4∑

i=1

1
4

(i2 + 1)

(f)
100∑
n=1

(−1)n

2. Rewrite the sum using summation notation.

(a) 8 + 11 + 14 + 17 + 20
(b) 1− 2 + 3− 4 + 5− 6 + 7− 8

(c) x− x3

3
+

x5

5
− x7

7
(d) 1 + 2 + 4 + · · ·+ 229

(e) 2 + 3
2 + 4

3 + 5
4 + 6

5

(f) − ln(3) + ln(4)− ln(5) + · · ·+ ln(20)

(g) 1− 1
4 + 1

9 −
1
16 + 1

25 −
1
36

(h) 1
2(x−5)+ 1

4(x−5)2+ 1
6(x−5)3+ 1

8(x−5)4

3. Find the sum of the first 10 terms of the following sequences.

(a) an = 3 + 5n (b) bn =
(

1
2

)n (c) cn = −2n +
(

5
3

)n
4. Express the following repeating decimals as a fraction of integers.

(a) 0.7 (b) 0.13 (c) 10.159 (d) −5.867

5. Prove the properties listed in Theorem 1.1.

6. Discuss with your classmates the problems which arise in trying to find the sum of the
following geometric series. When in doubt, write them out!

(a)
∞∑

k=1

2k−1 (b)
∞∑

k=1

(1.0001)k−1 (c)
∞∑

k=1

(−1)k−1

1.2.2 Answers

1.
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(a) 213

(b) 341
280

(c) 63

(d) −5− 2x + x2

(e) 17
2

(f) 0

2. (a)
5∑

k=1

(3k + 5)

(b)
8∑

k=1

(−1)k−1k

(c)
4∑

k=1

(−1)k−1 x

2k − 1

(d)
29∑

k=1

2k−1

(e)
5∑

k=1

k + 1
k

(f)
20∑

k=3

(−1)k ln(k)

(g)
6∑

k=1

(−1)k−1

k2

(h)
4∑

k=1

1
2k

(x− 5)k

3. (a) 305 (b)
1023
1024

(c)
17771050

59049

4. (a)
7
9

(b)
13
99

(c)
3383
333

(d) −5809
990

1.3 Mortgages and Annuities

An important application of the geometric sum formula is the investment plan called an annu-
ity. Annuities differ from the kind of investments we studied in Section ?? in that payments are
deposited into the account on an on-going basis, and this complicates the mathematics a little.7

Suppose you have an account with annual interest rate r which is compounded n times per year.
We let i = r

n denote the interest rate per period. Suppose we wish to make ongoing deposits of P
dollars at the end of each compounding period. Let Ak denote the amount in the account after k
compounding periods. Then A1 = P , because we have made our first deposit at the end of the first
compounding period and no interest has been earned. During the second compounding period, we
earn interest on A1 so that our initial investment has grown to A1(1 + i) = P (1 + i) in accordance
with Equation ??. When we add our second payment at the end of the second period, we get

A2 = A1(1 + i) + P = P (1 + i) + P = P (1 + i)
(

1 +
1

1 + i

)
The reason for factoring out the P (1 + i) will become apparent in short order. During the third
compounding period, we earn interest on A2 which then grows to A2(1 + i). We add our third
payment at the end of the third compounding period to obtain

7The reader may wish to re-read the discussion on compound interest in Section ?? before proceeding.
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A3 = A2(1 + i) + P = P (1 + i)
(

1 +
1

1 + i

)
(1 + i) + P = P (1 + i)2

(
1 +

1
1 + i

+
1

(1 + i)2

)
During the fourth compounding period, A3 grows to A3(1+i), and when we add the fourth payment,
we factor out P (1 + i)3 to get

A4 = P (1 + i)3
(

1 +
1

1 + i
+

1
(1 + i)2

+
1

(1 + i)3

)
This pattern continues so that at the end of the kth compounding, we get

Ak = P (1 + i)k−1

(
1 +

1
1 + i

+
1

(1 + i)2
+ . . . +

1
(1 + i)k−1

)
The sum in the parentheses above is the sum of the first k terms of a geometric sequence with
a = 1 and r = 1

1+i . Using Equation 1.2, we get

1 +
1

1 + i
+

1
(1 + i)2

+ . . . +
1

(1 + i)k−1
= 1

1− 1
(1 + i)k

1− 1
1 + i

 =
(1 + i)

(
1− (1 + i)−k

)
i

Hence, we get

Ak = P (1 + i)k−1

(
(1 + i)

(
1− (1 + i)−k

)
i

)
=

P
(
(1 + i)k − 1

)
i

If we let t be the number of years this investment strategy is followed, then k = nt, and we get the
formula for the future value of an ordinary annuity.

Equation 1.3. Future Value of an Ordinary Annuity: Suppose an annuity offers an annual
interest rate r compounded n times per year. Let i = r

n be the interest rate per compounding
period. If a deposit P is made at the end of each compounding period, the amount A in the
account after t years is given by

A =
P
(
(1 + i)nt − 1

)
i

The reader is encouraged to substitute i = r
n into Equation 1.3 and simplify. Some familiar

equations arise which are cause for pause and meditation. One last note: if the deposit P is made
a the beginning of the compounding period instead of at the end, the annuity is called an annuity-
due. We leave the derivation of the formula for the future value of an annuity-due as an exercise
for the reader.

Example 1.3.1. An ordinary annuity offers a 6% annual interest rate, compounded monthly.

1. If monthly payments of $50 are made, find the value of the annuity in 30 years.
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2. How many years will it take for the annuity to grow to $100,000?

Solution.

1. We have r = 0.06 and n = 12 so that i = r
n = 0.06

12 = 0.005. With P = 50 and t = 30,

A =
50
(
(1 + 0.005)(12)(30) − 1

)
0.005

≈ 50225.75

Our final answer is $50,225.75.

2. To find how long it will take for the annuity to grow to $100,000, we set A = 100000 and
solve for t. We isolate the exponential and take the natural logarithm of both sides of the
equation.

100000 =
50
(
(1 + 0.005)12t − 1

)
0.005

10 = (1.005)12t − 1

(1.005)12t = 11

ln
(
(1.005)12t

)
= ln(11)

12t ln(1.005) = ln(11)

t = ln(11)
12 ln(1.005) ≈ 40.06

This means that it takes just over 40 years for the investment to grow to $100,000. Comparing
this with our answer to part 1, we see that in just 10 additional years, the value of the annuity
nearly doubles. This is a lesson worth remembering.

A mortgage is like a backwards annuity. Here’s an example.

Example 1.3.2. A family takes out a 30 year $100,000 mortgage to buy a house. The interest
rate is 6% per year and they will repay the loan in 360 equal monthly payments. To compute the
monthly payment imagine that the family has taken 360 loans

100000 = L1 + L2 + · · ·+ L360

and they will repay the kth loan at the end of the kth month with the monthly payment of a dollars.
The monthly interest rate is 6%/12 = 0.005 so the amount owed on the kth loan after k months is
(1.005)kLk. This is the amount of the kth payment so a = (1.005)kLk so Lk = a(1.005)−k so

100000 = L1 + L2 + · · ·+ L360 = a(1.005)−1 + a(1.005)−2 + · · ·+ a(1.005)−360.

Using Sigma notation and Theorem ?? with r = (1.005)−1 this may be written

100000 =
360∑
k=1

a(1.005)−k = a
(1.005)−361 − (1.005)−1

(1.005)−1 − 1
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To evaluate the expression on the right multiply top and bottom by 1.005 to get

(1.005)−361 − (1.005)−1

(1.005)−1 − 1
=

(1.005)−360 − 1
1− 1.005

=
1− (1.005)−360

0.005
= 166.79

so 100000 = 166.79a so the monthly payment is

a = 100000/166.79 = 599.56.

1.3.1 Exercises

1. If monthly payments of $300 are made to an ordinary annuity with an APR of 2.5% com-
pounded monthly what is the value of the annuity after 17 years?

2. Show that the formula for the future value of an annuity due is

A = P (1 + i)
[

(1 + i)nt − 1
i

]
1.3.2 Answers

1. $76,163.67
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