
Chapter 1

Systems of Equations and Matrices

1



2 CHAPTER 1. SYSTEMS OF EQUATIONS AND MATRICES

1.1 Systems of Linear Equations: Gaussian Elimination

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f(x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x, y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 1.1. A linear equation in two variables is an equation of the form a1x+ a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 1.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3x− y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2

and c = 0.1. We can also consider x = 5 to be a linear equation in two variables by identifying
a1 = 1, a2 = 0, and c = 5.1 If a1 and a2 are both 0, then depending on c, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If c = 0, then we get 0 = 0, which is always true. If c 6= 0, then we’d have
0 6= 0, which is never true.) Even though identities and contradictions have a large role to play
in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are x2 +y = 1, xy = 5 and
e2x + ln(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 1.1. From
what we know from Sections ?? and ??, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 1.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

1Critics may argue that x = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.
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1.
{

2x− y = 1
y = 3

2.
{

3x+ 4y = −2
−3x− y = 5

3.

{
x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

4.
{

2x− 4y = 6
3x− 6y = 9

5.
{

6x+ 3y = 9
4x+ 2y = 12

6.


x− y = 0
x+ y = 2

−2x+ y = −2

Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x− y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3x+ 4y = −2
+ (−3x− y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say −3x−y = 5,
to get −3x− 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)− 1 = 5, which is also true. Geometrically, the
lines 3x+ 4y = −2 and −3x− y = 5 intersect at (−2, 1).

(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x− y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x + 4y = −2
−3x − y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
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to obtain the kinder, gentler system{
5x− 12y = 21
4x+ 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term

20x− 48y = 84
+ (−20x− 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2

into both x
3 −

4y
5 = 7

5 and 2x
9 + y

3 = 1
2 . We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by −2, we are ready to
eliminate the x

6x− 12y = 18
+ (−6x+ 12y = −18)

0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x, y) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x− 6y = 9. One way to describe the solution set to this system is to use the roster method2

and write {(x, y) : 2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution. Our first step is to solve 2x − 4y = 6 for one of the
variables, say y = 1

2x −
3
2 . For each value of x, the formula y = 1

2x −
3
2 determines the

corresponding y-value of a solution. Since we have no restriction on x, it is called a free

2See Section ?? for a review of this.
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variable. We let x = t, a so-called ‘parameter’, and get y = 1
2 t−

3
2 . Our set of solutions can

then be described as
{(
t, 1

2 t−
3
2

)
: −∞ < t <∞

}
.3 For specific values of t, we can generate

solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117 gives us (117, 57),

and while we can readily check each of these particular solutions satisfy both equations, the
question is how do we check our general answer algebraically? Same as always. We claim that
for any real number t, the pair

(
t, 1

2 t−
3
2

)
satisfies both equations. Substituting x = t and

y = 1
2 t−

3
2 into 2x−4y = 6 gives 2t−4

(
1
2 t−

3
2

)
= 6. Simplifying, we get 2t−2t+6 = 6, which

is always true. Similarly, when we make these substitutions in the equation 3x− 6y = 9, we
get 3t− 6

(
1
2 t−

3
2

)
= 9 which reduces to 3t− 3t+ 9 = 9, so it checks out, too. Geometrically,

2x − 4y = 6 and 3x − 6y = 9 are the same line, which means that they intersect at every
point on their graphs. The reader is encouraged to think about how our parametric solution
says exactly that.

“
3,− 1

2

” x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3
− 4y

5
= 7

5
2x
9

+ y
3

= 1
2

x

y

1 2 3 4

−1

1

2

2x− 4y = 6
3x − 6y = 9
(Same line.)

5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by −3, we set the stage to eliminate x

12x+ 6y = 18
+ (−12x− 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x, y)
which satisfies both equations; in other words, the system has no solution. Graphically, we
see that the lines 6x+ 3y = 9 and 4x+ 2y = 12 are distinct and parallel, and as such do not
intersect.

6. We can begin to solve our last system by adding the first two equations
3Note that we could have just as easily chosen to solve 2x− 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t, we have that for any value of t, x = 2t + 3, which gives {(2t + 3, t) : −∞ < t < ∞}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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x− y = 0
+ (x+ y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1.
We seem to have determined a solution to our system, (1, 1). While this checks in the
first two equations, when we substitute x = 1 and y = 1 into the third equation, we get
−2(1)+(1) = −2 which simplifies to the contradiction −1 = −2. Graphing the lines x−y = 0,
x + y = 2, and −2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x + 3y = 9
4x + 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x + y = −2

A few remarks about Example 1.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.4 Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 1.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.5 The system in 6 above is called overdetermined, since we have more
equations than variables.6 Not surprisingly, a system with more variables than equations is called

4In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems - they describe the type of solu-
tions.

6If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.



1.1. SYSTEMS OF LINEAR EQUATIONS: GAUSSIAN ELIMINATION 7

underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,7 but a consistent
underdetermined system of linear equations is necessarily dependent.8

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 1.2. A linear equation in n variables, x1, x2, . . . , xn is an equation of the form
a1x1 + a2x2 + . . .+ anxn = c where a1, a2, . . . an and c are real numbers and at least one of a1, a2,
. . . , an is nonzero.

Instead of using more familiar variables like x, y, and even z and/or w in Definition 1.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3x1−x2 = 4 represents the same relationship
between the variables x1 and x2 as the equation 3x − y = 4 does between the variables x and y.
In addition, just as we cannot combine the terms in the expression 3x− y, we cannot combine the
terms in the expression 3x1 − x2. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.9

Theorem 1.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

� Interchange the position of any two equations.

� Replace an equation with a nonzero multiple of itself.a

� Replace an equation with itself plus a nonzero multiple of another equation.
aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 1.1 when we solved
the systems Example 1.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations

7We need more than two variables to give an example of the latter.
8Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.
9That is, a system with the same solution set.
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
x− 1

3y + 1
2z = 1

y − 1
2z = 4
z = −1

Clearly z = −1, and we substitute this into the second equation y − 1
2(−1) = 4 to obtain y = 7

2 .
Finally, we substitute y = 7

2 and z = −1 into the first equation to get x − 1
3

(
7
2

)
+ 1

2(−1) = 1,
so that x = 8

3 . The reader can verify that these values of x, y and z satisfy all three original
equations. It is tempting for us to write the solution to this system by extending the usual (x, y)
notation to (x, y, z) and list our solution as

(
8
3 ,

7
2 ,−1

)
. The question quickly becomes what does

an ‘ordered triple’ like
(

8
3 ,

7
2 ,−1

)
represent? Just as ordered pairs are used to locate points on the

two-dimensional plane, ordered triples can be used to locate points in space.10 Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,11

so our intersection point is where all three of these lines meet.

Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

10You were asked to think about this in Exercise ?? in Section ??.
11In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these

equations by themselves.



1.1. SYSTEMS OF LINEAR EQUATIONS: GAUSSIAN ELIMINATION 9


x− 1

3y + 1
2z = 1

y − 1
2z = 4
z = −1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 1.3. A system of linear equations with variables x1, x2, . . .xn is said to be in trian-
gular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.

2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variablesa cannot be placed above an equation with variables.
anecessarily an identity or contradiction

In our previous system, if make the obvious choices x = x1, y = x2, and z = x3, we see that the
system is in triangular form.12 An example of a more complicated system in triangular form is

x1 − 4x3 + x4 − x6 = 6
x2 + 2x3 = 1

x4 + 3x5 − x6 = 8
x5 + 9x6 = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 1.1.

Example 1.1.2. Use Theorem 1.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

1.


3x− y + z = 3

2x− 4y + 3z = 16
x− y + z = 5

2.


2x+ 3y − z = 1

10x− z = 2
4x− 9y + 2z = 5

3.


3x1 + x2 + x4 = 6
2x1 + x2 − x3 = 4
x2 − 3x3 − 2x4 = 0

12If letters are used instead of subscripted variables, Definition 1.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Solution.

1. For definitiveness, we label the topmost equation in the system E1, the equation beneath that
E2, and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with x, we transform
the system so that conditions 2 and 3 in Definition 1.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 1.1 and interchange E1 and E3.


(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

To satisfy Definition 1.3, we need to eliminate the x’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by −2 then add; to eliminate the x from E3, we need to
multiply E1 by −3 then add. Applying the third move listed in Theorem 1.1 twice, we get


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

Replace E2 with −2E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −3E1 + E3


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Now we enforce the conditions stated in Definition 1.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem
1.1 and replace E2 with itself times −1

2 .


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Replace E2 with − 1
2
E2

−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

To eliminate the y in E3, we add −2E2 to it.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

Replace E3 with −2E2 + E3−−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Finally, we apply the second move from Theorem 1.1 one last time and multiply E3 by −1
to satisfy the conditions of Definition 1.3 for the variable z.
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
(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Replace E3 with −1E3−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y − 3 = −3 so that y = 0.
With y = 0 and z = 6, E1 becomes x − 0 + 6 = 5, or x = −1. Our solution is (−1, 0, 6).
We leave it to the reader to check that substituting the respective values for x, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

2. Proceeding as we did in 1, our first step is to get an equation with x in the E1 position with
1 as its coefficient. Since there is no easy fix, we multiply E1 by 1

2 .


(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E1 with 1
2
E1

−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Now it’s time to take care of the x’s in E2 and E3.


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3

Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have


(E1) x+ 3

2y −
1
2z = 1

2

(E2) −15y + 4z = −3
(E3) −15y + 4z = 3

Replace E2 with − 1
15

E2
−−−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Finally, we rid E3 of y.


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Replace E3 with 15E2 + E3−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 1.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.



12 CHAPTER 1. SYSTEMS OF EQUATIONS AND MATRICES

3. For our last system, we begin by multiplying E1 by 1
3 to get a coefficient of 1 on x1.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Next we eliminate x1 from E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E2−−−−−−−−−−→
with −2E1 + E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0
(E3) x2 − 3x3 − 2x4 = 0

We switch E2 and E3 to get a coefficient of 1 for x2.


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0
(E3) x2 − 3x3 − 2x4 = 0

Switch E2 and E3−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0
(E3) 1

3x2 − x3 − 2
3x4 = 0

Finally, we eliminate x2 in E3.


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0
(E3) 1

3x2 − x3 − 2
3x4 = 0

Replace E3−−−−−−−−−−→
with − 1

3
E2 + E3


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0
(E3) 0 = 0

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x3

or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting x3 = s and x4 = t and obtain from E2
that x2 = 3s + 2t. Substituting this and x4 = t into E1, we have x1 + 1

3 (3s+ 2t) + 1
3 t = 2

which gives x1 = 2−s− t. Our solution is the set {(2−s− t, 2s+3t, s, t) : −∞ < s, t <∞}.13

We leave it to the reader to verify that the substitutions x1 = 2− s− t, x2 = 3s+ 2t, x3 = s
and x4 = t satisfy the equations in the original system.

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

13Here, any choice of s and t will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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
(E1) x+ 3

2y −
1
2z = 1

2

(E2) −15y + 4z = −3
(E3) −15y + 4z = 3

that equations E2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 1.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 1.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we’ll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each
of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution + amount of water = 500 mL

Using our defined variables, this reduces to x+ y +w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30x+ 0.90y = 200. Converting to fractions,14 our system of equations becomes{

x+ y + w = 500
3
10x+ 9

10y = 200

We first eliminate the x from the second equation

14We do this only because we believe students can use all of the practice with fractions they can get!
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{
(E1) x+ y + w = 500
(E2) 3

10x+ 9
10y = 200

Replace E2 with − 3
10

E1 + E2
−−−−−−−−−−−−−−−−−−→

{
(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Next, we get a coefficient of 1 on the leading variable in E2{
(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Replace E2 with 5
3
E2

−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) y − 1

2w = 250
3

Notice that we have no equation to determine w, and as such, w is free. We set w = t and from E2
get y = 1

2 t+ 250
3 . Substituting into E1 gives x+

(
1
2 t+ 250

3

)
+ t = 500 so that x = −3

2 t+ 1250
3 . This

system is consistent, dependent and its solution set is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
: −∞ < t < ∞}.

While this answer checks algebraically, we have neglected to take into account that x, y and w,
being amounts of acid and water, need to be nonnegative. That is, x ≥ 0, y ≥ 0 and w ≥ 0. The
constraint x ≥ 0 gives us −3

2 t+ 1250
3 ≥ 0, or t ≤ 2500

9 . From y ≥ 0, we get 1
2 t+ 250

3 ≥ 0 or t ≥ −500
3 .

The condition z ≥ 0 yields t ≥ 0, and we see that when we take the set theoretic intersection of
these intervals, we get 0 ≤ t ≤ 2500

9 . Our final answer is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
: 0 ≤ t ≤ 2500

9 }.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that 1

2 t + 250
3 = 100, and we get t = 100

3 . This means the amount of 30% solution required is
x = −3

2 t + 1250
3 = −3

2

(
100
3

)
+ 1250

3 = 1100
3 mL, and for the water, w = t = 100

3 mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix.
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1.1.1 Exercises

1. Put the following systems of linear equations into triangular form and then solve the sys-
tem if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

(a)
{
−5x+ y = 17
x+ y = 5

(b)


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

(c)


4x− y + z = 5

2y + 6z = 30
x+ z = 5

(d)


4x− y + z = 5

2y + 6z = 30
x+ z = 6

(e)
{
x+ y + z = −17
y − 3z = 0

(f)


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

(g)


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

(h)


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

(i)


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

(j)


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3

(k)


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

(l)


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2

(m)


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

(n)


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

(o)


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

(p)


2x1 + x2 − 12x3 − x4 = 16
−x1 + x2 + 12x3 − 4x4 = −5
3x1 + 2x2 − 16x3 − 3x4 = 25

x1 + 2x2 − 5x4 = 11

(q)


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

(r)


x1 − x2 − 5x3 + 3x4 = −1
x1 + x2 + 5x3 − 3x4 = 0

x2 + 5x3 − 3x4 = 1
x1 − 2x2 − 10x3 + 6x4 = −1

2. Find two other forms of the parametric solution to Exercise 1c above by reorganizing the
equations so that x or y can be the free variable.

3. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?
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4. At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

5. Discuss with your classmates how you would approach Exercise 4 above if they needed to use
up a pound of Type I tea to make room on the shelf for a new canister.

6. Discuss with your classmates why it is impossible to mix a 20% acid solution with a 40% acid
solution to produce a 60% acid solution. If you were to try to make 100 mL of a 60% acid
solution using stock solutions at 20% and 40%, respectively, what would the triangular form
of the resulting system look like?
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1.1.2 Answers

1. Because triangular form is not unique, we give only one possible answer to that part of the
question. Yours may be different and still be correct.

(a)
{
x+ y = 5

y = 7
Consistent independent
Solution (−2, 7)

(b)


x− 5

3y −
7
3z = −7

3

y + 5
4z = 2
z = 0

Consistent independent
Solution (1, 2, 0)

(c)


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 0

Consistent dependent
Solution (−t+ 5,−3t+ 15, t)
for all real numbers t

(d)


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 1

Inconsistent
No solution

(e)
{
x+ y + z = −17
y − 3z = 0

Consistent dependent
Solution (−4t− 17, 3t, t)
for all real numbers t

(f)


x− 2y + 3z = 7

y − 11
5 z = −16

5
z = 1

Consistent independent
Solution (2,−1, 1)

(g)


x+ y + 2z = 0

y − 3
2z = 6
z = −2

Consistent independent
Solution (1, 3,−2)

(h)


x− 1

2y + 1
2z = −1

2

y + 3
5z = 3

5
0 = 1

Inconsistent
no solution

(i)


x− y + z = −4
y − 7z = 17

z = −2

Consistent independent
Solution (1, 3,−2)

(j)


x− 2y + 2z = −2

y = 1
2

z = 1

Consistent independent
Solution

(
−3, 1

2 , 1
)



18 CHAPTER 1. SYSTEMS OF EQUATIONS AND MATRICES

(k)


x− 1

2y + 1
2z = 1

2

y − 2
3z = 0
z = 1

Consistent independent
Solution

(
1
3 ,

2
3 , 1
)

(l)


x− 3y − 4z = 3

y + 11
13z = 4

13
0 = 0

Consistent dependent
Solution

(
19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

(m)


x+ y + z = 4
y + 1

2z = 3
2

0 = 1

Inconsistent
no solution

(n)


x− y + z = 8
y − 2z = −5

z = 1

Consistent independent
Solution (4,−3, 1)

(o)


x− 3

2y + 1
2z = −1

2

y + z = −11
2

0 = 0

Consistent dependent
Solution

(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t

(p)


x1 + 2

3x2 − 16
3 x3 − x4 = 25

3

x2 + 4x3 − 3x4 = 2
0 = 0
0 = 0

Consistent dependent
Solution (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

(q)


x1 − x3 = −2
x2 − 1

2x4 = 0
x3 − 1

2x4 = 1
x4 = 4

Consistent independent
Solution (1, 2, 3, 4)

(r)


x1 − x2 − 5x3 + 3x4 = −1

x2 + 5x3 − 3x4 = 1
2

0 = 1
0 = 0

Inconsistent
No solution

2. If x is the free variable then the solution is (t, 3t,−t+ 5) and if y is the free variable then the
solution is

(
1
3 t, t,−

1
3 t+ 5

)
.

3. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

4. 4
3 −

1
2 t pounds of Type I, 2

3 −
1
2 t pounds of Type II and t pounds of Type III where 0 ≤ t ≤ 4

3 .
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1.2 Determinants and Cramer’s Rule

1.2.1 Definition and Properties of the Determinant

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1× 1 matrices
and give a rule by which we can reduce determinants of n × n matrices to a sum of determinants
of (n− 1)× (n− 1) matrices.1 This means we will be able to evaluate the determinant of a 2× 2
matrix as a sum of the determinants of 1× 1 matrices; the determinant of a 3× 3 matrix as a sum
of the determinants of 2 × 2 matrices, and so forth. To explain how we will take an n× n matrix
and distill from it an (n− 1)× (n− 1), we use the following notation.

Definition 1.4. Given an n × n matrix A where n > 1, the matrix Aij is the (n − 1) × (n − 1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A23 by deleting the second row and
third column of A.

A =

 3 1 2
0 −1 5
2 1 4

 Delete R2 and C3−−−−−−−−−−−→ A23 =
[

3 1
2 1

]

We are now in the position to define the determinant of a matrix.

Definition 1.5. Given an n×n matrix A the determinant of A, denoted det(A), is defined as
follows

� If n = 1, then A = [a11] and det(A) = det ([a11]) = a11.

� If n > 1, then A = [aij ]n×n and

det(A) = det
(
[aij ]n×n

)
= a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|A|’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 × 1 matrix. In the expansion
a11 det (A11)−a12 det (A12)+− . . .+(−1)1+na1n det (A1n), the notation ‘+− . . .+(−1)1+na1n’ means
that the signs alternate and the final sign is dictated by the sign of the quantity (−1)1+n. Since
the entries a11, a12 and so forth up through a1n comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 1.13 to the matrix A =
[

4 −3
2 1

]
we get

1We will talk more about the term ‘recursively’ in Section ??.
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det(A) = det
([

4 −3
2 1

])
= 4 det (A11)− (−3) det (A12)
= 4 det([1]) + 3 det([2])
= 4(1) + 3(2)
= 10

For a generic 2× 2 matrix A =
[
a b
c d

]
we get

det(A) = det
([

a b
c d

])
= adet (A11)− bdet (A12)
= adet ([d])− bdet ([c])
= ad− bc

This formula is worth remembering

Equation 1.1. For a 2× 2 matrix,

det
([

a b
c d

])
= ad− bc

Applying Definition 1.13 to the 3× 3 matrix A =

 3 1 2
0 −1 5
2 1 4

 we obtain

det(A) = det

 3 1 2
0 −1 5
2 1 4


= 3 det (A11)− 1 det (A12) + 2 det (A13)

= 3 det
([
−1 5

1 4

])
− det

([
0 5
2 4

])
+ 2 det

([
0 −1
2 1

])
= 3((−1)(4)− (5)(1))− ((0)(4)− (5)(2)) + 2((0)(1)− (−1)(2))
= 3(−9)− (−10) + 2(2)
= −13

To evaluate the determinant of a 4 × 4 matrix, we would have to evaluate the determinants of
four 3 × 3 matrices, each of which involves the finding the determinants of three 2 × 2 matrices.
As you can see, our method of evaluating determinants quickly gets out of hand and many of you
may be reaching for the calculator. There is some mathematical machinery which can assist us in
calculating determinants and we present that here. Before we state the theorem, we need some
more terminology.
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Definition 1.6. Let A be an n × n matrix and Aij be defined as in Definition 1.12. The ij
minor of A, denoted Mij is defined by Mij = det (Aij). The ij cofactor of A, denoted Cij is
defined by Cij = (−1)i+jMij = (−1)i+j det (Aij).

We note that in Definition 1.13, the sum

a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

can be rewritten as

a11(−1)1+1 det (A11) + a12(−1)1+2 det (A12) + . . .+ a1n(−1)1+n det (A1n)

which, in the language of cofactors is

a11C11 + a12C12 + . . .+ a1nC1n

We are now ready to state our main theorem concerning determinants.

Theorem 1.2. Properties of the Determinant: Let A = [aij ]n×n.

� We may find the determinant by expanding along any row. That is, for any 1 ≤ k ≤ n,

det(A) = ak1Ck1 + ak2Ck2 + . . .+ aknCkn

� If A′ is the matrix obtained from A by:

– interchanging any two rows, then det(A′) = −det(A).

– replacing a row with a nonzero multiple (say c) of itself, then det(A′) = cdet(A)

– replacing a row with itself plus a multiple of another row, then det(A′) = det(A)

� If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0.

� If A is upper or lower triangular,a then det(A) is the product of the entries on the main
diagonal.b

� If B is an n× n matrix, then det(AB) = det(A) det(B).

� det (An) = det(A)n for all natural numbers n.

� A is invertible if and only if det(A) 6= 0. In this case, det
(
A−1

)
=

1
det(A)

.

aSee Exercise 5 in 1.3.
bSee page 36 in Section 1.3.

Unfortunately, while we can easily demonstrate the results in Theorem 1.7, the proofs of most of
these properties are beyond the scope of this text. We could prove these properties for generic 2×2
or even 3×3 matrices by brute force computation, but this manner of proof belies the elegance and
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symmetry of the determinant. We will prove what few properties we can after we have developed
some more tools such as the Principle of Mathematical Induction in Section ??.2 For the moment,
let us demonstrate some of the properties listed in Theorem 1.7 on the matrix A below. (Others
will be discussed in the Exercises.)

A =

 3 1 2
0 −1 5
2 1 4


We found det(A) = −13 by expanding along the first row. Theorem 1.7 guarantees that we will
get the same result if we expand along the second row. (Doing so would take advantage of the 0
there.)

det

 3 1 2
0 −1 5
2 1 4

 = 0C21 + (−1)C22 + 5C23

= (−1)(−1)2+2 det (A22) + 5(−1)2+3 det (A23)

= −det
([

3 2
2 4

])
− 5 det

([
3 1
2 1

])
= −((3)(4)− (2)(2))− 5((3)(1)− (2)(1))
= −8− 5
= −13 X

In general, the sign of (−1)i+j in front of the minor in the expansion of the determinant follows
an alternating pattern. Below is the pattern for 2 × 2, 3 × 3 and 4 × 4 matrices, and it extends
naturally to higher dimensions.

[
+ −
− +

]  + − +
− + −
+ − +




+ − + −
− + − +
+ − + −
− + − +


The reader is cautioned, however, against reading too much into these sign patterns. In the example
above, we expanded the 3× 3 matrix A by its second row and the term which corresponds to the
second entry ended up being negative even though the sign attached to the minor is (+). These
signs represent only the signs of the (−1)i+j in the formula; the sign of the corresponding entry as
well as the minor itself determine the ultimate sign of the term in the expansion of the determinant.

To illustrate some of the other properties in Theorem 1.7, we use row operations to transform our
3× 3 matrix A into an upper triangular matrix, keeping track of the row operations, and labeling

2For a very elegant treatment, take a course in Linear Algebra. There, you will most likely see the treatment of
determinants logically reversed than what is presented here. Specifically, the determinant is defined as a function
which takes a square matrix to a real number and satisfies some of the properties in Theorem 1.7. From that function,
a formula for the determinant is developed.
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each successive matrix.3 3 1 2
0 −1 5
2 1 4

 Replace R3−−−−−−−−−−→
with − 2

3
R1 + R3

 3 1 2
0 −1 5
0 1

3
8
3

 Replace R3 with−−−−−−−−−−→
1
3
R2 + R3

 3 1 2
0 −1 5
0 0 13

3


A B C

Theorem 1.7 guarantees us that det(A) = det(B) = det(C) since we are replacing a row with
itself plus a multiple of another row moving from one matrix to the next. Furthermore, since
C is upper triangular, det(C) is the product of the entries on the main diagonal, in this case
det(C) = (3)(−1)

(
13
3

)
= −13. This demonstrates the utility of using row operations to assist in

calculating determinants. This also sheds some light on the connection between a determinant and
invertibility. Recall from Section 1.4 that in order to find A−1, we attempt to transform A to In
using row operations

[
A In

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
In A−1

]
As we apply our allowable row operations on A to put it into reduced row echelon form, the
determinant of the intermediate matrices can vary from the determinant of A by at most a nonzero
multiple. This means that if det(A) 6= 0, then the determinant of A’s reduced row echelon form
must also be nonzero, which, according to Definition 1.4 means that all the main diagonal entries
on A’s reduced row echelon form must be 1. That is, A’s reduced row echelon form is In, and A is
invertible. Conversely, if A is invertible, then A can be transformed into In using row operations.
Since det (In) = 1 6= 0, our same logic implies det(A) 6= 0. Basically, we have established that the
determinant determines whether or not the matrix A is invertible.4

It is worth noting that when we first introduced the notion of a matrix inverse, it was in the context
of solving a linear matrix equation. In effect, we were trying to ‘divide’ both sides of the matrix
equation AX = B by the matrix A. Just like we cannot divide a real number by 0, Theorem 1.7
tells us we cannot ‘divide’ by a matrix whose determinant is 0. We also know that if the coefficient
matrix of a system of linear equations is invertible, then system is consistent and independent. It
follows, then, that if the determinant of said coefficient is not zero, the system is consistent and
independent.

1.2.2 Cramer’s Rule and Matrix Adjoints

In this section, we introduce a theorem which enables us to solve a system of linear equations by
means of determinants only. As usual, the theorem is stated in full generality, using numbered
unknowns x1, x2, etc., instead of the more familiar letters x, y, z, etc. The proof of the general
case is best left to a course in Linear Algebra.

3Essentially, we follow the Gauss Jordan algorithm but we don’t care about getting leading 1’s.
4As we will see in Section 1.5.2, determinants (specifically cofactors) are deeply connected with the inverse of a

matrix.
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Theorem 1.3. Cramer’s Rule: Suppose AX = B is the matrix form of a system of n linear
equations in n unknowns where A is the coefficient matrix, X is the unknowns matrix, and B is
the constant matrix. If det(A) 6= 0, then the corresponding system is consistent and independent
and the solution for unknowns x1, x2, . . .xn is given by:

xj =
det (Aj)
det(A)

,

where Aj is the matrix A whose jth column has been replaced by the constants in B.

In words, Cramer’s Rule tells us we can solve for each unknown, one at a time, by finding the ratio
of the determinant of Aj to that of the determinant of the coefficient matrix. The matrix Aj is
found by replacing the column in the coefficient matrix which holds the coefficients of xj with the
constants of the system. The following example fleshes out this method.

Example 1.2.1. Use Cramer’s Rule to solve for the indicated unknowns.

1. Solve
{

2x1 − 3x2 = 4
5x1 + x2 = −2

for x1 and x2

2. Solve


2x− 3y + z = −1
x− y + z = 1

3x− 4z = 0
for z.

Solution.

1. Writing this system in matrix form, we find

A =
[

2 −3
5 1

]
X =

[
x1

x2

]
B =

[
4
−2

]
To find the matrix A1, we remove the column of the coefficient matrix A which holds the
coefficients of x1 and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of x2 with the constants to form the matrix
A2. This yields

A1 =
[

4 −3
−2 1

]
A2 =

[
2 4
5 −2

]
Computing determinants, we get det(A) = 17, det (A1) = −2 and det (A2) = −24, so that

x1 =
det (A1)
det(A)

= − 2
17

x2 =
det (A2)
det(A)

= −24
17

The reader can check that the solution to the system is
(
− 2

17 ,−
24
17

)
.
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2. To use Cramer’s Rule to find z, we identify x3 as z. We have

A =

 2 −3 1
1 −1 1
3 0 −4

 X =

 x
y
z

 B =

 −1
1
0

 A3 = Az =

 2 −3 −1
1 −1 1
3 0 0


Expanding both det(A) and det (Az) along the third rows (to take advantage of the 0’s) gives

z =
det (Az)
det(A)

=
−12
−10

=
6
5

The reader is encouraged to solve this system for x and y similarly and check the answer.

Our last application of determinants is to develop an alternative method for finding the inverse of
a matrix.5 Let us consider the 3× 3 matrix A which we so extensively studied in Section 1.5.1

A =

 3 1 2
0 −1 5
2 1 4


We found through a variety of methods that det(A) = −13. To our surprise and delight, its inverse
below has a remarkable number of 13’s in the denominators of its entries. This is no coincidence.

A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


Recall that to find A−1, we are essentially solving the matrix equation AX = I3, where X = [xij ]3×3
is a 3 × 3 matrix. Because of how matrix multiplication is defined, the first column of I3 is the
product of A with the first column of X, the second column of I3 is the product of A with the
second column of X and the third column of I3 is the product of A with the third column of X.6

In other words, we are solving three equations

A

 x11

x21

x31

 =

 1
0
0

 A

 x12

x22

x32

 =

 0
1
0

 A

 x13

x23

x33

 =

 0
0
1


We can solve each of these systems using Cramer’s Rule. Focusing on the first system, we have

A1 =

 1 1 2
0 −1 5
0 1 4

 A2 =

 3 1 2
0 0 5
2 0 4

 A3 =

 3 1 1
0 −1 0
2 1 0


5We are developing a method in the forthcoming discussion. As with the discussion in Section 1.4 when we

developed the first algorithm to find matrix inverses, we ask that you indulge us.
6The reader is encouraged to stop and think this through.
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If we expand det (A1) along the first row, we get

det (A1) = det
([
−1 5

1 4

])
− det

([
0 5
0 4

])
+ 2 det

([
0 −1
0 1

])
= det

([
−1 5

1 4

])
Amazingly, this is none other than the C11 cofactor of A. The reader is invited to check this, as
well as the claims that det (A2) = C12 and det (A3) = C13.7 (To see this, though it seems unnatural
to do so, expand along the first row.) Cramer’s Rule tells us

x11 =
det (A1)
det(A)

=
C11

det(A)
, x21 =

det (A2)
det(A)

=
C12

det(A)
, x31 =

det (A3)
det(A)

=
C13

det(A)

So the first column of the inverse matrix X is:

 x11

x21

x31

 =



C11

det(A)

C12

det(A)

C13

det(A)


=

1
det(A)

 C11

C12

C13



Notice the reversal of the subscripts going from the unknown to the corresponding cofactor of A.
This trend continues and we get x12

x22

x32

 =
1

det(A)

 C21

C22

C23

  x13

x23

x33

 =
1

det(A)

 C31

C32

C33


Putting all of these together, we have obtained a new and surprising formula for A−1, namely

A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33


To see that this does indeed yield A−1, we find all of the cofactors of A

C11 = −9, C21 = −2, C31 = 7
C12 = 10, C22 = 8, C32 = −15
C13 = 2, C23 = −1, C33 = −3

And, as promised,
7In a solid Linear Algebra course you will learn that the properties in Theorem 1.7 hold equally well if the word

‘row’ is replaced by the word ‘column’. We’re not going to get into column operations in this text, but they do make
some of what we’re trying to say easier to follow.
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A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33

 = − 1
13

 −9 −2 7
10 8 −15
2 −1 −3

 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


To generalize this to invertible n × n matrices, we need another definition and a theorem. Our
definition gives a special name to the cofactor matrix, and the theorem tells us how to use it along
with det(A) to find the inverse of a matrix.

Definition 1.7. Let A be an n× n matrix, and Cij denote the ij cofactor of A. The adjoint of
A, denoted adj(A) is the matrix whose ij-entry is the ji cofactor of A, Cji. That is

adj(A) =


C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn


This new notation greatly shortens the statement of the formula for the inverse of a matrix.

Theorem 1.4. Let A be an invertible n× n matrix. Then

A−1 =
1

det(A)
adj(A)

For 2× 2 matrices, Theorem 1.9 reduces to a fairly simple formula.

Equation 1.2. For an invertible 2× 2 matrix,[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The proof of Theorem 1.9 is, like so many of the results in this section, best left to a course in
Linear Algebra. In such a course, not only do you gain some more sophisticated proof techniques,
you also gain a larger perspective. The authors assure you that persistence pays off. If you stick
around a few semesters and take a course in Linear Algebra, you’ll see just how pretty all things
matrix really are - in spite of the tedious notation and sea of subscripts. Within the scope of this
text, we will prove a few results involving determinants in Section ?? once we have the Principle of
Mathematical Induction well in hand. Until then, make sure you have a handle on the mechanics
of matrices and the theory will come eventually.
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1.2.3 Exercises

1. Compute the determinant of the following matrices. (Some of these matrices appeared in
Exercise 1 in Section 1.4.)

(a) B =
[

12 −7
−5 3

]
(b) C =

[
6 15

14 35

]
(c) Q =

[
x x2

1 2x

]
(d) L =

[
1
x3

ln(x)
x3

− 3
x4

1−3 ln(x)
x4

]

(e) F =

 4 6 −3
3 4 −3
1 2 6



(f) G =

 1 2 3
2 3 11
3 4 19


(g) V =

 i j k
−1 0 5

9 −4 −2



(h) H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1



2. Use Cramer’s Rule to solve the system of linear equations.

(a)
{

3x+ 7y = 26
5x+ 12y = 39 (b)


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

3. Use Cramer’s Rule to solve for x4 in the following system of linear equations.
x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

4. Find the inverse of the following matrices using their determinants and adjoints.

(a) B =
[

12 −7
−5 3

]
(b) F =

 4 6 −3
3 4 −3
1 2 6


5. Let R =

[
−7 3
11 2

]
, S =

[
1 −5
6 9

]
T =

[
11 2
−7 3

]
, and U =

[
−3 15

6 9

]
(a) Show that det(RS) = det(R) det(S)

(b) Show that det(T ) = −det(R)

(c) Show that det(U) = −3 det(S)
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6. For M and N below, show that det(M) = 0 and det(N) = 0.

M =

 1 2 3
1 2 3
4 5 6

 , N =

 1 2 3
4 5 6
0 0 0


7. Let A be an arbitrary invertible 3× 3 matrix.

(a) Show that det(I3) = 1.8

(b) Using the facts that AA−1 = I3 and det(AA−1) = det(A) det(A−1), show that

det(A−1) =
1

det(A)

8. The purpose of this exercise is to introduce you to the eigenvalues and eigenvectors of a
matrix.9 We begin with an example using a 2 × 2 matrix and then guide you through some
exercises using a 3× 3 matrix.

Consider the matrix

C =
[

6 15
14 35

]
from Exercise 1 above. We know that det(C) = 0 which means that CX = 02×2 does not
have a unique solution. So there is a nonzero matrix Y such that CY = 02×2. In fact, every
matrix of the form

Y =

[
−5

2 t

t

]
is a solution to CX = 02×2, so there are infinitely many matrices such that CX = 02×2. But
consider the matrix

X41 =
[

3
7

]
It is NOT a solution to CX = 02×2, but rather,

CX41 =
[

6 15
14 35

] [
3
7

]
=
[

123
287

]
= 41

[
3
7

]
In fact, if Z is of the form

Z =

[
3
7 t

t

]
8If you think about it for just a moment, you’ll see that det(In) = 1 for any natural number n. The formal proof

of this fact requires the Principle of Mathematical Induction (Section ??) so we’ll stick with n = 3 for the time being.
9This material is usually given its own chapter in a Linear Algebra book so clearly we’re not able to tell you

everything you need to know about eigenvalues and eigenvectors. They are a nice application of determinants,
though, so we’re going to give you enough background so that you can start playing around with them.
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then

CZ =
[

6 15
14 35

][ 3
7 t

t

]
=

[
123
7 t

41t

]
= 41

[
3
7 t

t

]
= 41Z

for all t. The big question is “How did we know to use 41?”

We need a number λ such that CX = λX has nonzero solutions. We have demonstrated that
λ = 0 and λ = 41 both worked. Are there others? If we look at the matrix equation more
closely, what we really wanted was a nonzero solution to (C − λI2)X = 02×2 which we know
exists if and only if the determinant of C − λI2 is zero.10 So we computed

det(C − λI2) = det
([

6− λ 15
14 35− λ

])
= (6− λ)(35− λ)− 14 · 15 = λ2 − 41λ

This is called the characteristic polynomial of the matrix C and it has two zeros: λ = 0
and λ = 41. That’s how we knew to use 41 in our work above. The fact that λ = 0
showed up as one of the zeros of the characteristic polynomial just means that C itself had
determinant zero which we already knew. Those two numbers are called the eigenvalues of
C. The corresponding matrix solutions to CX = λX are called the eigenvectors of C and
the ‘vector’ portion of the name will make more sense after you’ve studied vectors.

Okay, you should be mostly ready to start on your own. In the following exercises, you’ll be
using the matrix

G =

 1 2 3
2 3 11
3 4 19


from Exercise 1 above.

(a) Show that the characteristic polynomial of G is p(λ) = −λ(λ − 1)(λ − 22). That is,
compute the determinant of G− λI3.

(b) Let G0 = G. Find the parametric description of the solution to the system of linear
equations given by GX = 03×3.

(c) Let G1 = G− I3. Find the parametric description of the solution to the system of linear
equations given by G1X = 03×3. Show that any solution to G1X = 03×3 also has the
property that GX = 1X.

(d) Let G22 = G − 22I3. Find the parametric description of the solution to the system of
linear equations given by G22X = 03×3. Show that any solution to G22X = 03×3 also has
the property that GX = 22X.

10Think about this.
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1.2.4 Answers

1. (a) det(B) = 1
(b) det(C) = 0
(c) det(Q) = x2

(d) det(L) = 1
x7

(e) det(F ) = −12

(f) det(G) = 0

(g) det(V ) = 20i+ 43j + 4k

(h) det(H) = −2

2. (a) x = 39, y = −13 (b) x = 1, y = 2, z = 0

3. x4 = 4

4. (a) B−1 =
[

3 7
5 12

]

(b) F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6


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1.3 Systems of Non-Linear Equations and Inequalities

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 1.3.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

1.
{

x2 + y2 = 4
4x2 + 9y2 = 36

2.
{

x2 + y2 = 4
4x2 − 9y2 = 36

3.
{
x2 + y2 = 4
y − 2x = 0

4.
{
x2 + y2 = 4
y − x2 = 0

Solution:

1. Since both equations contain x2 and y2 only, we can eliminate one of the variables as we did
in Section 1.1.

{
(E1) x2 + y2 = 4
(E2) 4x2 + 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) 5y2 = 20

From 5y2 = 20, we get y2 = 4 or y = ±2. To find the associated x values, we substitute each
value of y into one of the equations to find the resulting value of x. Choosing x2 + y2 = 4,
we find that for both y = −2 and y = 2, we get x = 0. Our solution is thus {(0, 2), (0,−2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of x2 + y2 = 4 is a circle
centered at (0, 0) with a radius of 2, whereas the graph of 4x2 +9y2 = 36, when written in the
standard form x2

9 + y2

4 = 1 is easily recognized as an ellipse centered at (0, 0) with a major
axis along the x-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,±2).

2. We proceed as before to eliminate one of the variables

{
(E1) x2 + y2 = 4
(E2) 4x2 − 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) −13y2 = 20
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Since the equation −13y2 = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that x2 + y2 = 4 is the same circle as before, but when writing the
second equation in standard form, x2

9 −
y2

4 = 1, we find a hyperbola centered at (0, 0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We
see that the circle and the hyperbola have no points in common.

x

y

−3 −2 −1 1 2 3

−1

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for
{

x2 + y2 = 4
4x2 + 9y2 = 36

Graphs for
{

x2 + y2 = 4
4x2 − 9y2 = 36

3. Since there are no like terms among the two equations, elimination won’t do us any good.
We turn to substitution and from the equation y − 2x = 0, we get y = 2x. Substituting this
into x2 + y2 = 4 gives x2 + (2x)2 = 4. Solving, we find 5x2 = 4 or x = ±2

√
5

5 . Returning
to the equation we used for the substitution, y = 2x, we find y = 4

√
5

5 when x = 2
√

5
5 , so

one solution is
(

2
√

5
5 , 4

√
5

5

)
. Similarly, we find the other solution to be

(
−2
√

5
5 ,−4

√
5

5

)
. We

leave it to the reader that both points satisfy both equations, so that our final answer is{(
2
√

5
5 , 4

√
5

5

)
,
(
−2
√

5
5 ,−4

√
5

5

)}
. The graph of x2 + y2 = 4 is our circle from before and the

graph of y − 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

4. While it may be tempting to solve y − x2 = 0 as y = x2 and substitute, we note that this
system is set up for elimination.1

{
(E1) x2 + y2 = 4
(E2) y − x2 = 0

Replace E2 with−−−−−−−−−−→
E1 + E2

{
(E1) x2 + y2 = 4
(E2) y2 + y = 4

From y2 + y = 4 we get y2 + y − 4 = 0 which gives y = −1±
√

17
2 . Due to the complicated

nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle x2 + y2 = 4 intersects
the parabola y = x2 exactly twice, and both of these points have a positive y value. Of the
two solutions for y, only y = −1+

√
17

2 is positive, so to get our solution, we substitute this

1We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y − x2 = 0 and solve for x. We get x = ±
√
−1+

√
17

2 = ±
√
−2+2

√
17

2 . Our solution is{(√
−2+2

√
17

2 , −1+
√

17
2

)
,

(
−
√
−2+2

√
17

2 , −1+
√

17
2

)}
, which we leave to the reader to verify.

x

y

−3 −2 −1 1 2 3

1

x

y
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Graphs for
{
x2 + y2 = 4
y − 2x = 0

Graphs for
{
x2 + y2 = 4
y − x2 = 36

A couple of remarks about Example 1.7.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,’ we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 1.3.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1.
{
x2 + 2xy − 16 = 0
y2 + 2xy − 16 = 0

2.
{
y + 4e2x = 1
y2 + 2ex = 1 3.


z(x− 2) = x

yz = y
(x− 2)2 + y2 = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome xy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 + 2xy − 16 = 0

Replace E2 with−−−−−−−−−−→
−E1 + E2

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 − x2 = 0
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We get y2 − x2 = 0 or y = ±x. Substituting y = x into E1 we get x2 + 2x2 − 16 = 0 so
that x2 = 16

3 or x = ±4
√

3
3 . On the other hand, when we substitute y = −x into E1, we get

x2 − 2x2 − 16 = 0 or x2 = −16 which gives no real solutions. Substituting each of x = ±4
√

3
3

into the substitution equation y = x yields the solution
{(

4
√

3
3 , 4

√
3

3

)
,
(
−4
√

3
3 ,−4

√
3

3

)}
. We

leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x2+2xy−16 = 0 for y to obtain y = 16−x2

2x . This
function is easily graphed using the techniques of Section ??. Solving the second equation,
y2 + 2xy − 16 = 0, for y, however, is more complicated. We use the quadratic formula to
obtain y = −x±

√
x2 + 16 which would require the use of Calculus or a calculator to graph.

Believe it or not, we don’t need either because the equation y2 +2xy−16 = 0 can be obtained
from the equation x2 + 2xy − 16 = 0 by interchanging y and x. Thinking back to Section
??, this means we can obtain the graph of y2 + 2xy − 16 = 0 by reflecting the graph of
x2 + 2xy − 16 = 0 across the line y = x. Doing so confirms that the two graphs intersect
twice: once in Quadrant I, and once in Quadrant III as required.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graphs of x2 + 2xy − 16 = 0 and y2 + 2xy − 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic
unpleasantness. Solving y+ 4e2x = 1 for y, we get y = 1− 4e2x which, when substituted into
the second equation, yields

(
1− 4e2x

)2 + 2ex = 1. After expanding and gathering like terms,
we get 16e4x− 8e2x + 2ex = 0. Factoring gives us 2ex

(
8e3x − 4ex + 1

)
= 0, and since 2ex 6= 0

for any real x, we are left with solving 8e3x − 4ex + 1 = 0. We have three terms, and even
though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = ex. The
equation becomes 8u3−4u+1 = 0. Using the techniques set forth in Section ??, we find u = 1

2
is a zero and use synthetic division to factor the left hand side as

(
u− 1

2

) (
8u2 + 4u− 2

)
. We

use the quadratic formula to solve 8u2 + 4u − 2 = 0 and find u = −1±
√

5
4 . Since u = ex, we

now must solve ex = 1
2 and ex = −1±

√
5

4 . From ex = 1
2 , we get x = ln

(
1
2

)
= − ln(2). As

for ex = −1±
√

5
4 , we first note that −1−

√
5

4 < 0, so ex = −1−
√

5
4 has no real solutions. We are
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left with ex = −1+
√

5
4 , so that x = ln

(
−1+

√
5

4

)
. We now return to y = 1 − 4e2x to find the

accompanying y values for each of our solutions for x. For x = − ln(2), we get

y = 1− 4e2x

= 1− 4e−2 ln(2)

= 1− 4eln(1/4)

= 1− 4
(

1
4

)
= 0

For x = ln
(
−1+

√
5

4

)
, we have

y = 1− 4e2x

= 1− 4e2 ln
“
−1+

√
5

4

”
= 1− 4eln

“
−1+

√
5

4

”2

= 1− 4
(
−1+

√
5

4

)2

= 1− 4
(

3−
√

5
8

)
= −1+

√
5

2

We get two solutions,
{

(0,− ln(2)),
(

ln
(
−1+

√
5

4

)
, −1+

√
5

2

)}
. It is a good review of the prop-

erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch y = 1 − 4e2x using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y2 + 2ex = 1, we need to graph both the
positive and negative roots, y = ±

√
1− 2ex. After some careful zooming,2 we confirm our

solutions.

The graphs of y = 1− 4e2x and y = ±
√

1− 2ex.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

2The calculator has trouble confirming the solution (− ln(2), 0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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
E1 z(x− 2) = x
E2 yz = y
E3 (x− 2)2 + y2 = 1

The easiest equation to start with appears to be E2. While it may be tempting to divide
both sides of E2 by y, we caution against this practice because it presupposes y 6= 0. Instead,
we take E2 and rewrite it as yz − y = 0 so y(z − 1) = 0. From this, we get two cases: y = 0
or z = 1. We take each case in turn.

Case 1: y = 0. Substituting y = 0 into E1 and E3, we get{
E1 z(x− 2) = x
E3 (x− 2)2 = 1

Solving E3 for x gives x = 1 or x = 3. Substituting these values into E1 gives z = −1 when
x = 1 and z = 3 when x = 3. We obtain two solutions, (1, 0,−1) and (3, 0, 3).

Case 2: z = 1. Substituting z = 1 into E1 and E3 gives us{
E1 (1)(x− 2) = x
E3 (1− 2)2 + y2 = 1

Equation E1 gives us x − 2 = x or −2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1, 0,−1), (3, 0, 3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1, 0,−1).

Example 1.7.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.
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We close this section discussing how non-linear inequalities can be used to describe regions in
the plane which we first introduced in Section ??. Before we embark on some examples, a little
motivation is in order. Suppose we wish to solve x2 < 4−y2. If we mimic the algorithms for solving
nonlinear inequalities in one variable, we would gather all of the terms on one side and leave a 0
on the other to obtain x2 + y2 − 4 < 0. Then we would find the zeros of the left hand side, that
is, where is x2 + y2 − 4 = 0, or x2 + y2 = 4. Instead of obtaining a few numbers which divide the
real number line into intervals, we get an equation of a curve, in this case, a circle, which divides
the plane into two regions - the ‘inside’ and ‘outside’ of the circle - with the circle itself as the
boundary between the two. Just like we used test values to determine whether or not an interval
belongs to the solution of the inequality, we use test points in the each of the regions to see which
of these belong to our solution set.3 We choose (0, 0) to represent the region inside the circle and
(0, 3) to represent the points outside of the circle. When we substitute (0, 0) into x2 + y2 − 4 < 0,
we get −4 < 4 which is true. This means (0, 0) and all the other points inside the circle are part of
the solution. On the other hand, when we substitute (0, 3) into the same inequality, we get 5 < 0
which is false. This means (0, 3) along with all other points outside the circle are not part of the
solution. What about points on the circle itself? Choosing a point on the circle, say (0, 2), we get
0 < 0, which means the circle itself does not satisfy the inequality.4 As a result, we leave the circle
dashed in the final diagram.

x

y

2

−2

−2 2

The solution to x2 < 4− y2

We put this technique to good use in the following example.

Example 1.3.3. Sketch the solution to the following nonlinear inequalities in the plane.

1. y2 − 4 ≤ x < y + 2 2.
{

x2 + y2 ≥ 4
x2 − 2x+ y2 − 2y ≤ 0

Solution.

1. The inequality y2 − 4 ≤ x < y + 2 is a compound inequality. It translates as y2 − 4 ≤ x
and x < y + 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y2 − 4 ≤ x, we write

3The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

4Another way to see this is that points on the circle satisfy x2 + y2− 4 = 0, so they do not satisfy x2 + y2− 4 < 0.
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y2 − x − 4 ≤ 0. The curve y2 − x − 4 = 0 describes a parabola since exactly one of the
variables is squared. Rewriting this in standard form, we get y2 = x+ 4 and we see that the
vertex is (−4, 0) and the parabola opens to the right. Using the test points (−5, 0) and (0, 0),
we find that the solution to the inequality includes the region to the right of, or ‘inside’, the
parabola. The points on the parabola itself are also part of the solution, since the vertex
(−4, 0) satisfies the inequality. We now turn our attention to x < y+2. Proceeding as before,
we write x− y − 2 < 0 and focus our attention on x− y − 2 = 0, which is the line y = x− 2.
Using the test points (0, 0) and (0,−4), we find points in the region above the line y = x− 2
satisfy the inequality. The points on the line y = x − 2 do not satisfy the inequality, since
the y-intercept (0,−2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations

{
(E1) y2 = x+ 4
(E2) y = x− 2

Solving E1 for x, we get x = y2 − 4. Substituting this into E2 gives y = y2 − 4 − 2, or
y2 − y − 6 = 0. We find y = −2 and y = 3 and since x = y2 − 4, we get that the graphs
intersect at (0,−2) and (5, 3). Putting all of this together, we get our final answer below.

x

y

−5−4

−3

3

x

y

2 3 4 5

−3

x

y

−5−4 2 3 4 5

−3

y2 − 4 ≤ x x < y + 2 y2 − 4 ≤ x < y + 2

2. To solve this system of inequalities, we need to find all of the points (x, y) which satisfy
both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality x2 +y2 ≥ 4 which we rewrite as
x2 + y2− 4 ≥ 0. The points which satisfy x2 + y2− 4 = 0 form our friendly circle x2 + y2 = 4.
Using test points (0, 0) and (0, 3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0, 2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality x2 − 2x + y2 − 2y ≤ 0, we start with
x2 − 2x + y2 − 2y = 0. Completing the squares, we obtain (x − 1)2 + (y − 1)2 = 2, which is
a circle centered at (1, 1) with a radius of

√
2. Choosing (1, 1) to represent the inside of the

circle, (1, 3) as a point outside of the circle and (0, 0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle x2 + y2 = 4 which lie on or
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inside the circle (x− 1)2 + (y− 1)2 = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system{

(E1) x2 + y2 = 4
(E2) x2 − 2x+ y2 − 2y = 0

We can eliminate both the x2 and y2 by replacing E2 with −E1 + E2. Doing so produces
−2x − 2y = −4. Solving this for y, we get y = 2 − x. Substituting this into E1 gives
x2 + (2− x)2 = 4 which simplifies to x2 + 4− 4x+ x2 = 4 or 2x2 − 4x = 0. Factoring yields
2x(x − 2) which gives x = 0 or x = 2. Substituting these values into y = 2 − x gives the
points (0, 2) and (2, 0). The intermediate graphs and final solution are below.

x

y

1

−1

1

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x2 + y2 ≥ 4 x2 − 2x+ y2 − 2y ≤ 0 Solution to the system.
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1.3.1 Exercises

1. Solve the following systems of nonlinear equations. Sketch the graph of both equations on
the same set of axes to verify the solution set.

(a)
{

x2 − y = 4
x2 + y2 = 4

(b)
{
x2 + y2 = 4
x2 − y = 5

(c)
{

x2 + y2 = 16
16x2 + 4y2 = 64

(d)
{

x2 + y2 = 16
9x2 − 16y2 = 144

(e)
{

x2 + y2 = 16
1
9y

2 − 1
16x

2 = 1

(f)
{
x2 + y2 = 16
x− y = 2

2. Solve the following systems of nonlinear equations. Use a graph to help you avoid any potential
extraneous solutions.

(a)
{

x2 − y2 = 1
x2 + 4y2 = 4

(b)
{ √

x+ 1− y = 0
x2 + 4y2 = 4

(c)
{

x+ 2y2 = 2
x2 + 4y2 = 4

(d)
{

(x− 2)2 + y2 = 1
x2 + 4y2 = 4

(e)
{
x2 + y2 = 25
y − x = 1

(f)
{

x2 + y2 = 25
x2 + (y − 3)2 = 10

(g)
{
y = x3 + 8
y = 10x− x2

(h)


x2 + y2 = 25

4x2 − 9y = 0
3y2 − 16x = 0

3. Consider the system of nonlinear equations below
4
x

+
3
y

= 1

3
x

+
2
y

= −1

If we let u = 1
x and v = 1

y then the system becomes{
4u+ 3v = 1
3u+ 2v = −1

This associated system of linear equations can then be solved using any of the techniques
presented earlier in the chapter to find that u = −5 and v = 7. Thus x = 1

u = −1
5 and

y = 1
v = 1

7 .

We say that the original system is linear in form because its equations are not linear but a
few basic substitutions reveal a structure that we can treat like a system of linear equations.
Each system given below is linear in form. Make the appropriate substitutions to help you
solve for x and y.

(a)
{

4x3 + 3
√
y = 1

3x3 + 2
√
y = −1

(b)
{

4ex + 3e−y = 1
3ex + 2e−y = −1

(c)
{

4 ln(x) + 3y2 = 1
3 ln(x) + 2y2 = −1
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4. Solve the following system 
x2 +

√
y + log2(z) = 6

3x2 − 2
√
y + 2 log2(z) = 5

−4x2 +
√
y − 3 log2(z) = 11

5. Sketch the solution to each system of nonlinear inequalities in the plane.

(a)
{

x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

(b)
{

x2 + y2 < 25
x2 + (y − 3)2 ≥ 10

(c)
{

(x− 2)2 + y2 < 1
x2 + 4y2 < 4

(d)
{
y > 10x− x2

y < x3 + 8

(e)
{

x+ 2y2 > 2
x2 + 4y2 ≤ 4

(f)
{
x2 + y2 ≥ 25
y − x ≤ 1

6. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and λ is called a Lagrange
multiplier. With the help of your classmates, solve the system.5

2y + 2z = λyz
2x+ 2z = λxz
2y + 2x = λxy

xyz = 1000

7. According to Theorem ?? in Section ??, the polynomial p(x) = x4 + 4 can be factored into
the product linear and irreducible quadratic factors. In this exercise, we present a method
for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (x2+ax+b)(x2+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms
together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of x4 + 4. You should get four
equations in the four unknowns a, b, c and d. Write p(x) in factored form.

8. Factor q(x) = x4 + 6x2 − 5x+ 6.

5If using λ bothers you, change it to w when you solve the system.
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1.3.2 Answers

1. (a) (±2, 0),
(
±
√

3,−1
)

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

(b) No solution

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

(c) (0,±4)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(d) (±4, 0)

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

(e)
(
±4
√

7
5 ,±12

√
2

5

)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

(f)
(
1 +
√

7,−1 +
√

7
)
,
(
1−
√

7,−1−
√

7
)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

2. (a)
(
±2
√

10
5 ,±

√
15
5

)
(b) (0, 1)
(c) (0,±1), (2, 0)

(d)
(

4
3 ,±

√
5

9

)
(e) (3, 4), (−4,−3)

(f) (±3, 4)

(g) (−4,−56), (1, 9), (2, 16)

(h) (3, 4)
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3. (a)
(
− 3
√

5, 49
)

(b) No solution (c)
(
e−5,
√

7
)

4. (1, 4, 8), (−1, 4, 8)

5. (a)
{

x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

x

y

−2 −1 1 2

−2

−1

1

2

(b)
{

x2 + y2 < 25
x2 + (y − 3)2 ≥ 10

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

(c)
{

(x− 2)2 + y2 < 1
x2 + 4y2 < 4

x

y

1 2

−1

1
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(d)
{
y > 10x− x2

y < x3 + 8

x

y

−4−3−2−1 1 2

−56

9
16

(e)
{

x+ 2y2 > 2
x2 + 4y2 ≤ 4

x

y

1 2

−1

1

(f)
{
x2 + y2 ≥ 25
y − x ≤ 1

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

6. x = 10, y = 10, z = 10, λ = 2
5

7. (c) x4 + 4 = (x2 − 2x+ 2)(x2 + 2x+ 2)

8. x4 + 6x2 − 5x+ 6 = (x2 − x+ 1)(x2 + x+ 6)


	Systems of Equations and Matrices
	Systems of Linear Equations: Gaussian Elimination
	Exercises
	Answers

	Systems of Linear Equations: Augmented Matrices
	Exercises
	Answers

	Matrix Arithmetic
	Exercises
	Answers

	Systems of Linear Equations: Matrix Inverses
	Exercises
	Answers

	Determinants and Cramer's Rule
	Definition and Properties of the Determinant
	Cramer's Rule and Matrix Adjoints
	Exercises
	Answers

	Partial Fraction Decomposition
	Exercises
	Answers

	Systems of Non-Linear Equations and Inequalities
	Exercises
	Answers



