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1.1 Complex Zeros and the Fundamental Theorem of Algebra

In Section ??, we were focused on finding the real zeros of a polynomial function. In this section, we
expand our horizons and look for the non-real zeros as well. Consider the polynomial p(x) = x2 +1.
The zeros of p are the solutions to x2 + 1 = 0, or x2 = −1. This equation has no real solutions, but
you may recall from Intermediate Algebra that we can formally extract the square roots of both
sides to get x = ±

√
−1. The quantity

√
−1 is usually re-labeled i, the so-called imaginary unit.1

The number i, while not a real number, plays along well with real numbers, and acts very much
like any other radical expression. For instance, 3(2i) = 6i, 7i− 3i = 4i, (2− 7i) + (3 + 4i) = 5− 3i,
and so forth. The key properties which distinguish i from the real numbers are listed below.

Definition 1.1. The imaginary unit i satisfies the two following properties

1. i2 = −1

2. If c is a real number with c ≥ 0 then
√
−c = i

√
c

Property 1 in Definition ?? establishes that i does act as a square root2 of −1, and property 2
establishes what we mean by the ‘principal square root’ of a negative real number. In property
2, it is important to remember the restriction on c. For example, it is perfectly acceptable to say√
−4 = i

√
4 = i(2) = 2i. However,

√
−(−4) 6= i

√
−4, otherwise, we’d get

2 =
√

4 =
√
−(−4) = i

√
−4 = i(2i) = 2i2 = 2(−1) = −2,

which is unacceptable.3 We are now in the position to define the complex numbers.

Definition 1.2. A complex number is a number of the form a + bi, where a and b are real
numbers and i is the imaginary unit.

Complex numbers include things you’d normally expect, like 3 + 2i and 2
5 − i

√
3. However, don’t

forget that a or b could be zero, which means numbers like 3i and 6 are also complex numbers. In
other words, don’t forget that the complex numbers include the real numbers, so 0 and π −

√
21

are both considered complex numbers. The arithmetic of complex numbers is as you would expect.
The only thing you need to remember are the two properties in Definition ??. The next example
should help recall how these animals behave.

Example 1.1.1. Perform the indicated operations and simplify. Write your final answer in the
form4 a+ bi.

1Some technical mathematics textbooks label it ‘j’.
2Note the use of the indefinite article ‘a’. Whatever beast is chosen to be i, −i is the other square root of −1.
3We want to enlarge the number system so we can solve things like x2 = −1, but not at the cost of the established

rules already set in place. For that reason, the general properties of radicals simply do not apply for even roots of
negative quantities.

4We’ll accept an answer of say 3− 2i, although, technically, we should write this as 3 + (−2)i. Even we pedants
have our limits.



1.1. COMPLEX ZEROS AND THE FUNDAMENTAL THEOREM OF ALGEBRA 3

1. (1− 2i)− (3 + 4i)

2. (1− 2i)(3 + 4i)

3.
1− 2i
3− 4i

4.
√
−3
√
−12

5.
√

(−3)(−12)

6. (x− [1 + 2i])(x− [1− 2i])

Solution.

1. As mentioned earlier, we treat expressions involving i as we would any other radical. We
combine like terms to get (1− 2i)− (3 + 4i) = 1− 2i− 3− 4i = −2− 6i.

2. Using the distributive property, we get (1−2i)(3+4i) = (1)(3)+(1)(4i)− (2i)(3)− (2i)(4i) =
3 + 4i− 6i− 8i2. Recalling i2 = −1, we get 3 + 4i− 6i− 8i2 = 3− 2i− (−8) = 11− 2i.

3. How in the world are we supposed to simplify 1−2i
3−4i? Well, we deal with the denominator

3− 4i as we would any other denominator containing a radical, and multiply both numerator
and denominator by 3 + 4i (the conjugate of 3− 4i).5 Doing so produces

1− 2i
3− 4i

· 3 + 4i
3 + 4i

=
(1− 2i)(3 + 4i)
(3− 4i)(3 + 4i)

=
11− 2i

25
=

11
25
− 2

25
i

4. We use property 2 of Definition ?? first, then apply the rules of radicals applicable to real
radicals to get

√
−3
√
−12 =

(
i
√

3
) (
i
√

12
)

= i2
√

3 · 12 = −
√

36 = −6.

5. We adhere to the order of operations here and perform the multiplication before the radical
to get

√
(−3)(−12) =

√
36 = 6.

6. We can brute force multiply using the distributive property and see that

(x− [1 + 2i])(x− [1− 2i]) = x2 − x[1− 2i]− x[1 + 2i] + [1− 2i][1 + 2i]
= x2 − x+ 2ix− x− 2ix+ 1− 2i+ 2i− 4i2

= x2 − 2x+ 5

A couple of remarks about the last example are in order. First, the conjugate of a complex number
a+ bi is the number a− bi. The notation commonly used for conjugation is a ‘bar’: a+ bi = a− bi.
For example, 3 + 2i = 3−2i, 3− 2i = 3+2i, 6 = 6, 4i = −4i, and 3 +

√
5 = 3+

√
5. The properties

of the conjugate are summarized in the following theorem.

5We will talk more about this in a moment.
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Theorem 1.1. Suppose z and w are complex numbers.

• z = z

• z + w = z + w

• z w = zw

• (z)n = zn, for any natural number n = 1, 2, 3, . . .

• z is a real number if and only if z = z.

Essentially, Theorem ?? says that complex conjugation works well with addition, multiplication,
and powers. The proof of these properties can best be achieved by writing out z = a + bi and
w = c + di for real numbers a, b, c, and d. Next, we compute the left and right hand side
of each equation and check to see that they are the same. The proof of the first property is
a very quick exercise.6 To prove the second property, we compare z + w and z + w. We have
z + w = a+ bi+ c+ di = a− bi+ c− di. To find z + w, we first compute

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

so
z + w = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = a− bi+ c− di

As such, we have established z+w = z + w. The proof for multiplication works similarly. The proof
that the conjugate works well with powers can be viewed as a repeated application of the product
rule, and is best proved using a technique called Mathematical Induction.7 The last property is a
characterization of real numbers. If z is real, then z = a+ 0i, so z = a− 0i = a = z. On the other
hand, if z = z, then a+ bi = a− bi which means b = −b so b = 0. Hence, z = a+ 0i = a and is real.
We now return to the business of zeros. Suppose we wish to find the zeros of f(x) = x2 − 2x+ 5.
To solve the equation x2 − 2x+ 5 = 0, we note the quadratic doesn’t factor nicely, so we resort to
the Quadratic Formula, Equation ?? and obtain

x =
−(−2)±

√
(−2)2 − 4(1)(5)
2(1)

=
2±
√
−16

2
=

2± 4i
2

= 1± 2i.

Two things are important to note. First, the zeros, 1 + 2i and 1 − 2i are complex conjugates.
If ever we obtain non-real zeros to a quadratic function with real coefficients, the zeros will be a
complex conjugate pair. (Do you see why?) Next, we note that in Example ??, part 6, we found
(x− [1 + 2i])(x− [1− 2i]) = x2− 2x+ 5. This demonstrates that the factor theorem holds even for
non-real zeros, i.e, x = 1 + 2i is a zero of f , and, sure enough, (x− [1 + 2i]) is a factor of f(x). It
turns out that polynomial division works the same way for all complex numbers, real and non-real
alike, and so the Factor and Remainder Theorems hold as well. But how do we know if a general
polynomial has any complex zeros at all? We have many examples of polynomials with no real

6Trust us on this.
7See Section ??.
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zeros. Can there be polynomials with no zeros whatsoever? The answer to that last question is
“No.” and the theorem which provides that answer is The Fundamental Theorem of Algebra.

Theorem 1.2. The Fundamental Theorem of Algebra: Suppose f is a polynomial function
with complex number coefficients of degree n ≥ 1, then f has least one complex zero.

The Fundamental Theorem of Algebra is an example of an ‘existence’ theorem in mathematics. Like
the Intermediate Value Theorem, Theorem ??, the Fundamental Theorem of Algebra guarantees
the existence of at least one zero, but gives us no algorithm to use in finding it. In fact, as we
mentioned in Section ??, there are polynomials whose real zeros, though they exist, cannot be
expressed using the ‘usual’ combinations of arithmetic symbols, and must be approximated. The
authors are fully aware that the full impact and profound nature of the Fundamental Theorem
of Algebra is lost on most students this level, and that’s fine. It took mathematicians literally
hundreds of years to prove the theorem in its full generality, and some of that history is recorded
here. Note that the Fundamental Theorem of Algebra applies to polynomial functions with not
only real coefficients, but, those with complex number coefficients as well.

Suppose f is a polynomial of degree n with n ≥ 1. The Fundamental Theorem of Algebra guarantees
us at least one complex zero, z1, and, as such, the Factor Theorem guarantees that f(x) factors
as f(x) = (x− z1) q1(x) for a polynomial function q1, of degree exactly n − 1. If n − 1 ≥ 1, then
the Fundamental Theorem of Algebra guarantees a complex zero of q1 as well, say z2, and so the
Factor Theorem gives us q1(x) = (x− z2) q2(x), and hence f(x) = (x− z1) (x− z2) q2(x). We can
continue this process exactly n times, at which point our quotient polynomial qn has degree 0 so
it’s a constant. This argument gives us the following factorization theorem.

Theorem 1.3. Complex Factorization Theorem: Suppose f is a polynomial function with
complex number coefficients. If the degree of f is n and n ≥ 1, then f has exactly n complex
zeros, counting multiplicity. If z1, z2, . . . , zk are the distinct zeros of f , with multiplicities m1,
m2, . . . , mk, respectively, then f(x) = a (x− z1)

m1 (x− z2)
m2 · · · (x− zk)mk .

Note that the value a in Theorem ?? is the leading coefficient of f(x) (Can you see why?) and as
such, we see that a polynomial is completely determined by its zeros, their multiplicities, and its
leading coefficient. We put this theorem to good use in the next example.

Example 1.1.2. Let f(x) = 12x5 − 20x4 + 19x3 − 6x2 − 2x+ 1.

1. Find all complex zeros of f and state their multiplicities.

2. Factor f(x) using Theorem ??

Solution.

1. Since f is a fifth degree polynomial, we know we need to perform at least three successful
divisions to get the quotient down to a quadratic function. At that point, we can find the
remaining zeros using the Quadratic Formula, if necessary. Using the techniques developed
in Section ??, we get

http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
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1
2 12 −20 19 −6 −2 1

↓ 6 −7 6 0 −1
1
2 12 −14 12 0 −2 0

↓ 6 −4 4 2
−1

3 12 −8 8 4 0
↓ −4 4 −4

12 −12 12 0

Our quotient is 12x2−12x+12, whose zeros we find to be 1±i
√

3
2 . From Theorem ??, we know

f has exactly 5 zeros, counting multiplicities, and as such we have the zero 1
2 with multiplicity

2, and the zeros −1
3 , 1+i

√
3

2 and 1−i
√

3
2 , each of multiplicity 1.

2. Applying Theorem ??, we are guaranteed that f factors as

f(x) = 12
(
x− 1

2

)2(
x+

1
3

)(
x−

[
1 + i

√
3

2

])(
x−

[
1− i

√
3

2

])

A true test of Theorem ?? (and a student’s mettle!) would be to take the factored form of f(x)
in the previous example and multiply it out8 to see that it really does reduce to the formula
f(x) = 12x5−20x4+19x3−6x2−2x+1. When factoring a polynomial using Theorem ??, we say that
it is factored completely over the complex numbers, meaning that it is impossible to factor
the polynomial any further using complex numbers. If we wanted to completely factor f(x) over
the real numbers then we would have stopped short of finding the nonreal zeros of f and factored
f using our work from the synthetic division to write f(x) =

(
x− 1

2

)2 (
x+ 1

3

) (
12x2 − 12x+ 12

)
,

or f(x) = 12
(
x− 1

2

)2 (
x+ 1

3

) (
x2 − x+ 1

)
. Since the zeros of x2 − x + 1 are nonreal, we call

x2 − x+ 1 an irreducible quadratic meaning it is impossible to break it down any further using
real numbers. The last two results of the section show us that, at least in theory, if we have a
polynomial function with real coefficients, we can always factor it down enough so that any nonreal
zeros come from irreducible quadratics.

Theorem 1.4. Conjugate Pairs Theorem: If f is a polynomial function with real number
coefficients and z is a zero of f , then so is z.

To prove the theorem, suppose f is a polynomial with real number coefficients. Specifically, let
f(x) = anx

n + an−1x
n−1 + . . . + a2x

2 + a1x + a0. If z is a zero of f , then f(z) = 0, which means
anz

n + an−1z
n−1 + . . .+ a2z

2 + a1z+ a0 = 0. Next, we consider f (z) and apply Theorem ?? below.

8You really should do this once in your life to convince yourself that all of the theory actually does work!
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f (z) = an (z)n + an−1 (z)n−1 + . . .+ a2 (z)2 + a1z + a0

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since (z)n = zn

= anzn + an−1zn−1 + . . .+ a2z2 + a1 z + a0 since the coefficients are real

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since z w = zw

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since z + w = z + w

= f(z)
= 0
= 0

This shows that z is a zero of f . So, if f is a polynomial function with real number coefficients,
Theorem ?? tells us if a + bi is a nonreal zero of f , then so is a − bi. In other words, nonreal
zeros of f come in conjugate pairs. The Factor Theorem kicks in to give us both (x− [a+ bi]) and
(x − [a − bi]) as factors of f(x) which means (x − [a + bi])(x − [a − bi]) = x2 + 2ax +

(
a2 + b2

)
is

an irreducible quadratic factor of f . As a result, we have our last result of the section.

Theorem 1.5. Real Factorization Theorem: Suppose f is a polynomial function with real
number coefficients. Then f(x) can be factored into a product of linear factors corresponding to
the real zeros of f and irreducible quadratic factors which give the nonreal zeros of f .

We now present an example which pulls together all of the major ideas of this section.

Example 1.1.3. Let f(x) = x4 + 64.

1. Use synthetic division to show x = 2 + 2i is a zero of f .

2. Find the remaining complex zeros of f .

3. Completely factor f(x) over the complex numbers.

4. Completely factor f(x) over the real numbers.

Solution.

1. Remembering to insert the 0’s in the synthetic division tableau we have

2 + 2i 1 0 0 0 64
↓ 2 + 2i 8i −16 + 16i −64
1 2 + 2i 8i −16 + 16i 0

2. Since f is a fourth degree polynomial, we need to make two successful divisions to get a
quadratic quotient. Since 2 + 2i is a zero, we know from Theorem ?? that 2 − 2i is also a
zero. We continue our synthetic division tableau.



8CHAPTER 1. COMPLEX NUMBERS AND THE FUNDAMENTAL THEOREM OF ALGEBRA

2 + 2i 1 0 0 0 64
↓ 2 + 2i 8i −16 + 16i −64

2− 2i 1 2 + 2i 8i −16 + 16i 0
↓ 2− 2i 8− 8i 16− 16i
1 4 8 0

Our quotient polynomial is x2 +4x+8. Using the quadratic formula, we obtain the remaining
zeros −2 + 2i and −2− 2i.

3. Using Theorem ??, we get f(x) = (x− [2− 2i])(x− [2 + 2i])(x− [−2 + 2i])(x− [−2− 2i]).

4. We multiply the linear factors of f(x) which correspond to complex conjugate pairs. We find
(x − [2 − 2i])(x − [2 + 2i]) = x2 − 4x + 8, and (x − [−2 + 2i])(x − [−2 − 2i]) = x2 + 4x + 8.
Our final answer f(x) =

(
x2 − 4x+ 8

) (
x2 + 4x+ 8

)
.

Our last example turns the tables and asks us to manufacture a polynomial with certain properties
of its graph and zeros.

Example 1.1.4. Find a polynomial p of lowest degree that has integer coefficients and satisfies all
of the following criteria:

• the graph of y = p(x) touches the x-axis at
(

1
3 , 0
)

• x = 3i is a zero of p.

• as x→ −∞, p(x)→ −∞

• as x→∞, p(x)→ −∞

Solution. To solve this problem, we will need a good understanding of the relationship between
the x-intercepts of the graph of a function and the zeros of a function, the Factor Theorem, the
role of multiplicity, complex conjugates, the Complex Factorization Theorem, and end behavior of
polynomial functions. (In short, you’ll need most of the major concepts of this chapter.) Since the
graph of p touches the x-axis at

(
1
3 , 0
)
, we know x = 1

3 is a zero of even multiplicity. Since we
are after a polynomial of lowest degree, we need x = 1

3 to have multiplicity exactly 2. The Factor
Theorem now tells us

(
x− 1

3

)2 is a factor of p(x). Since x = 3i is a zero and our final answer is to
have integer (real) coefficients, x = −3i is also a zero. The Factor Theorem kicks in again to give us
(x−3i) and (x+3i) as factors of p(x). We are given no further information about zeros or intercepts
so we conclude, by the Complex Factorization Theorem that p(x) = a

(
x− 1

3

)2 (x− 3i)(x+ 3i) for
some real number a. Expanding this, we get p(x) = ax4− 2a

3 x
3 + 82a

9 x2−6ax+a. In order to obtain
integer coefficients, we know a must be an integer multiple of 9. Our last concern is end behavior.
Since the leading term of p(x) is ax4, we need a < 0 to get p(x)→ −∞ as x→ ±∞. Hence, if we
choose x = −9, we get p(x) = −9x4 + 6x3 − 82x2 + 54x − 9. We can verify our handiwork using
the techniques developed in this chapter.
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This example concludes our study of polynomial functions.9 The last few sections have contained
what is considered by many to be ‘heavy’ mathematics. Like a heavy meal, heavy mathematics
takes time to digest. Don’t be overly concerned if it doesn’t seem to sink in all at once, and pace
yourself on the exercises or you’re liable to get mental cramps. But before we get to the exercises,
we’d like to offer a bit of an epilogue.

Our main goal in presenting the material on the complex zeros of a polynomial was to give the
chapter a sense of completeness. Given that it can be shown that some polynomials have real zeros
which cannot be expressed using the usual algebraic operations, and still others have no real zeros
at all, it was nice to discover that every polynomial of degree n ≥ 1 has n complex zeros. So like
we said, it gives us a sense of closure. But the observant reader will note that we did not give any
examples of applications which involve complex numbers. Students often wonder when complex
numbers will be used in ‘real-world’ applications. After all, didn’t we call i the imaginary unit?
How can imaginary things be used in reality? It turns out that complex numbers are very useful in
many applied fields such as fluid dynamics, electromagnetism and quantum mechanics, but most
of the applications require Mathematics well beyond College Algebra to fully understand them.
That does not mean you’ll never be be able to understand them; in fact, it is the authors’ sincere
hope that all of you will reach a point in your studies when the glory, awe and splendor of complex
numbers are revealed to you. For now, however, the really good stuff is beyond the scope of this
text. We invite you and your classmates to find a few examples of complex number applications
and see what you can make of them. A simple Internet search with the phrase ‘complex numbers in
real life’ should get you started. Basic electronics classes are another place to look, but remember,
they might use the letter j where we have used i.

For the remainder of the text, we will restrict our attention to real numbers. We do this primarily
because the first Calculus sequence you will take, ostensibly the one that this text is preparing you
for, studies only functions of real variables. Also, lots of really cool scientific things don’t require any
deep understanding of complex numbers to study them, but they do need more Mathematics like
exponential, logarithmic and trigonometric functions. We believe it makes more sense pedagogically
for you to learn about those functions now and then, after you’ve completed the Calculus sequence,
take a course in Complex Function Theory in your junior or senior year. It is in that course that
the true power of the complex numbers is released. But for now, in order to fully prepare you for

life immediately after College Algebra, we will say that functions like f(x) =
1

x2 + 1
have a domain

of all real numbers, even though we know x2 + 1 = 0 has two complex solutions, namely x = ±i.
Because x2 + 1 > 0 for all real numbers x, the fraction 1

x2+1
is never undefined in our real variable

setting.

9With the exception of the exercises on the next page, of course.
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1.1.1 Exercises

1. We know i2 = −1 which means i3 = i2 · i = (−1) · i = −i and i4 = i2 · i2 = (−1)(−1) = 1.
Use this information to simplify the following.

(a) i5 (b) i304 (c) (2i)3 (d) (−i)23

2. Let z = 3 + 4i and w = 2− i. Compute the following and express your answer in a+ bi form.

(a) z + w

(b) w − z

(c) z · w

(d)
z

w

(e)
w

z

(f) w3

3. Simplify the following.

(a)
√
−49

(b)
√
−9
√
−16

(c)
√

(−9)(−16)

(d)
√

49
√
−4

4. Find the complex solutions of the following quadratic equations.

(a) x2 − 4x+ 13 = 0 (b) 3x2 + 2x+ 10 = 0

5. For each polynomial given below find all of its zeros, completely factor it over the real numbers
and completely factor it over the complex numbers.

(a) x2 − 2x+ 5

(b) x3 − 2x2 + 9x− 18

(c) x3 + 6x2 + 6x+ 5

(d) 3x3 − 13x2 + 43x− 13

(e) x4 + 9x2 + 20

(f) 4x4 − 4x3 + 13x2 − 12x+ 3

(g) x3 + 3x2 + 4x+ 12

(h) 2x4 − 7x3 + 14x2 − 15x+ 6

(i) 4x3 − 6x2 − 8x+ 15

(j) x4 + x3 + 7x2 + 9x− 18

(k) 6x4 + 17x3 − 55x2 + 16x+ 12

(l) x5 − x4 + 7x3 − 7x2 + 12x− 12

(m) x3 + 7x2 + 9x− 2

(n) −3x4 − 8x3 − 12x2 − 12x− 5

(o) 8x4 + 50x3 + 43x2 + 2x− 4

(p) 9x3 + 2x+ 1

(q) x4 − 2x3 + 27x2 − 2x+ 26 (Hint: x = i is one of the zeros.)
(r) 2x4 + 5x3 + 13x2 + 7x+ 5 (Hint: x = −1 + 2i is a zero.)

6. Let z and w be arbitrary complex numbers. Show that z w = zw and z = z.

7. With the help of your classmates, build a polynomial p with integer coefficients such that
x = −2 − i is a zero of p, p has a local maximum at the point (4, 0) and p(x) → −∞ as
x→∞
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1.1.2 Answers

1. (a) i5 = i4 · i = 1 · i = i

(b) i304 = (i4)76 = 176 = 1

(c) (2i)3 = 8i3 = −8i

(d) (−i)23 = −i23 = −i20 · i3 = (−1)(−i) = i

2. (a) z + w = 5 + 3i

(b) w − z = −1− 5i

(c) z · w = 10 + 5i

(d)
z

w
=

2
5

+
11
5
i

(e)
w

z
=

2
25
− 11

25
i

(f) w3 = 2− 11i

3. (a)
√
−49 = 7i

(b)
√
−9
√
−16 = (3i) · (4i) = 12i2 = −12

(c)
√

(−9)(−16) =
√

144 = 12

(d)
√

49
√
−4 = 7 · 2i = 14i

4. (a) x = 2± 3i (b) x = −1
3
±
√

29
3
i

5. (a) x2 − 2x+ 5 = (x− (1 + 2i))(x− (1− 2i))
Zeros: x = 1± 2i

(b) x3 − 2x2 + 9x− 18 = (x− 2)
(
x2 + 9

)
= (x− 2)(x− 3i)(x+ 3i)

Zeros: x = 2,±3i

(c) x3+6x2+6x+5 = (x+5)(x2+x+1) = (x+5)

(
x−

(
−1

2
+
√

3
2
i

))(
x−

(
−1

2
−
√

3
2
i

))
Zeros: x = −5, x = −1

2
±
√

3
2
i

(d) 3x3 − 13x2 + 43x− 13 = (3x− 1)(x2 − 4x+ 13) = (3x− 1)(x− (2 + 3i))(x− (2− 3i))

Zeros: x =
1
3
, x = 2± 3i

(e) x4 + 9x2 + 20 =
(
x2 + 4

) (
x2 + 5

)
= (x− 2i)(x+ 2i)

(
x− i

√
5
) (
x+ i

√
5
)

Zeros: x = ±2i,±i
√

5

(f) 4x4 − 4x3 + 13x2 − 12x+ 3 = (2x− 1)2(x2 + 3) = (2x− 1)2(x+
√

3i)(x−
√

3i)

Zeros: x =
1
2
, x = ±

√
3i

(g) x3 + 3x2 + 4x+ 12 = (x+ 3)
(
x2 + 4

)
= (x+ 3)(x+ 2i)(x− 2i)

Zeros: x = −3, ±2i

(h) 2x4 − 7x3 + 14x2 − 15x+ 6 = (x− 1)2
(
2x2 − 3x+ 6

)
= 2(x− 1)2

(
x−

(
3
4

+
√

39
4
i

))(
x−

(
3
4
−
√

39
4
i

))
Zeros: x = 1, x =

3
4
±
√

39
4
i



12CHAPTER 1. COMPLEX NUMBERS AND THE FUNDAMENTAL THEOREM OF ALGEBRA

(i) 4x3 − 6x2 − 8x+ 15 =
(
x+

3
2

)(
4x2 − 12x+ 10

)
=

4
(
x+

3
2

)(
x−

(
3
2

+
1
2
i

))(
x−

(
3
2
− 1

2
i

))
Zeros: x = −3

2
, x =

3
2
± 1

2
i

(j) x4 + x3 + 7x2 + 9x− 18 = (x+ 2)(x− 1)
(
x2 + 9

)
= (x+ 2)(x− 1)(x+ 3i)(x− 3i)

Zeros: x = −2, 1, ±3i

(k) 6x4+17x3−55x2+16x+12 = 6
(
x+

1
3

)(
x− 3

2

)(
x−

(
−2 + 2

√
2
)) (

x−
(
−2− 2

√
2
))

Zeros: x = −1
3
, x =

3
2
, x = −2± 2

√
2

(l) x5 − x4 + 7x3 − 7x2 + 12x− 12 = (x− 1)
(
x2 + 3

) (
x2 + 4

)
= (x− 1)(x− i

√
3)(x+ i

√
3)(x− 2i)(x+ 2i)

Zeros: x = 1, ±
√

3i, ±2i

(m) x3 + 7x2 + 9x− 2 = (x+ 2)

(
x−

(
−5

2
+
√

29
2

))(
x−

(
−5

2
−
√

29
2

))
Zeros: x = −2, x = −5

2
±
√

29
2

(n) −3x4 − 8x3 − 12x2 − 12x− 5 = (x+ 1)2
(
−3x2 − 2x− 5

)
= −3(x+ 1)2

(
x−

(
−1

3
+
√

14
3
i

))(
x−

(
−1

3
−
√

14
3
i

))
Zeros: x = −1, x = −1

3
±
√

14
3
i

(o) 8x4 + 50x3 + 43x2 + 2x− 4 = 8
(
x+

1
2

)(
x− 1

4

)
(x− (−3 +

√
5))(x− (−3−

√
5))

Zeros: x = −1
2
,

1
4
, x = −3±

√
5

(p) 9x3 + 2x+ 1 =
(
x+

1
3

)(
9x2 − 3x+ 3

)
= 9

(
x+

1
3

)(
x−

(
1
6

+
√

11
6
i

))(
x−

(
1
6
−
√

11
6
i

))
Zeros: x = −1

3
, x =

1
6
±
√

11
6
i

(q) x4−2x3 +27x2−2x+26 = (x2−2x+26)(x2 +1) = (x−(1+5i))(x−(1−5i))(x+i)(x−i)
Zeros: x = 1± 5i, x = ±i

(r) 2x4 + 5x3 + 13x2 + 7x+ 5 =
(
x2 + 2x+ 5

) (
2x2 + x+ 1

)
=

2(x− (−1 + 2i))(x− (−1− 2i))

(
x−

(
−1

4
+ i

√
7

4

))(
x−

(
−1

4
− i
√

7
4

))
Zeros: x = −1± 2i,−1

4
± i
√

7
4


