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A.1 The Laws of Algebra

The Laws of Algebra. There are four fundamental operations which can be performed on
numbers.

1. Addition. The sum of a and b is denoted a + b.

2. Multiplication. The product of a and b is denoted ab.

3. Reversing the sign. The negative of a is denoted −a.

4. Inverting. The reciprocal of a (for a 6= 0) is denoted by a−1 or by
1
a

.

These operations satisfy the following laws.

Associative a + (b + c) = (a + b) + c a(bc) = (ab)c
Commutative a + (b + c) = (a + b) + c a(bc) = (ab)c
Identity a + 0 = 0 + a = a a · 1 = 1 · a = a

Inverse a + (−a) = (−a) + a = 0 a · a−1 = a−1 · a = 1
Distributive a(b + c) = ab + ac (a + b)c = ac + bc

The operations of subtraction and division are then defined by

a− b := a + (−b) a÷ b :=
a

b
:= a · b−1 = a · 1

b
.

All the rules of calculation that you learned in elementary school follow from the above funda-
mental laws. In particular, the Commutative and Associative Laws say that you can add a bunch
of numbers in any order and similarly you can multiply a bunch of numbers in any order. For
example,

(A + B) + (C + D) = (A + C) + (B + D), (A ·B) · (C ·D) = (A · C) · (B ·D).

Because both addition and multiplication satisfy the commutative, associative, identity, and
inverse laws, there are other analogies:
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(i) −(−a) = a (a−1)−1 = a

(ii) −(a + b) = −a− b (ab)−1 = a−1b−1

(iii) −(a− b) = b− a
(a

b

)−1
=

b

a

(iv) (a− b) + (c− d) = (a + c)− (b + d)
a

b
· c
d

=
ac

bd

(v) a− b = (a + c)− (b + c)
a

b
=

ac

bc

(vi) (a− b)− (c− d) = (a− b) + (d− c)
a/b

c/d
=

a

b
· d
c

Here are the proofs. Notice how each proof of an addition rule is immediately followed by the
proof for the corresponding multiplication rule.

Theorem A.1. Inverses are unique: b + a = 0 =⇒ b = −a; similarly b · a = 1 =⇒ b = a−1.

Proof. Assume that b + a = 0. Then
step by with
b = b + 0 A = A + 0 A = b

= b +
(
a + (−a)

)
A + (−A) = 0 A = a

=
(
b + a

)
+ (−a) A + (B + C) = (A + B) + C A = b, B = a, C = −a

= 0 + (−a) b + a = 0 by hypothesis
= −a 0 + A = A A = −a

Similarly assume that b · a−1 = 1. Then
step by with
b = b · 1 A = A · 1 A = b

= b ·
(
a · a−1

)
A ·A−1 = 1 A = a

=
(
b · a

)
· a−1 A · (B · C) = (A ·B) · C A = b, B = a, C = a−1

= 1 · a−1 b · a = 1 by hypothesis
= a−1 1 ·A = A A = a−1

Theorem A.2. −(−a) = a and similarly (a−1)−1 = a.
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Proof.
step by with
a + (−a) = 0 A + (−A) = 0 A = a

(−a) + a = 0 A + B = B + A A = a, B = −a

a = −(−a) A + B = 0 =⇒ B = −A A = −a, B = a

step by with
a · a−1 = A A ·A−1 A = a

a−1 · a = 1 A ·B = B ·A A = a, B = a−1

a = −(−a) A ·B = 1 =⇒ B = A−1 A = a−1, B = a

Here are some further identities which are proved using the distributive law.

(i) a · 0 = 0 (ii) −a = (−1)a

(iii) a(−b) = −ab (iv) (−a)(−b) = ab

(v)
a

b
+

c

d
=

ad + cb

bd
(vi) (a + b)(c + d) = ab + ad + bc + bd

(vii) (a + b)2 = a2 + 2ab + b2 (viii) (a + b)(a− b) = a2 − b2
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