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1.1 Function Composition

Before we embark upon any further adventures with functions, we need to take some time to gather
our thoughts and gain some perspective. Chapter ?? first introduced us to functions in Section ??.
At that time, functions were specific kinds of relations - sets of points in the plane which passed the
Vertical Line Test, Theorem ??. In Section ??, we developed the idea that functions are processes
- rules which match inputs to outputs - and this gave rise to the concepts of domain and range.
We spoke about how functions could be combined in Section ?? using the four basic arithmetic
operations, took a more detailed look at their graphs in Section ?? and studied how their graphs
behaved under certain classes of transformations in Section ??. In Chapter ??, we took a closer
look linear functions (Section ??), and quadratic functions (Section ??). Linear and quadratic
functions were special cases of polynomial functions, which we studied in generality in Chapter ??.
(In Chapter ?? we will learn the Real Factorization Theorem, Theorem ??, which says that all
polynomial functions with real coefficients can be thought of as products of linear and quadratic
functions.) Our next step was to enlarge our field1 of study to rational functions in Chapter ??.
Being quotients of polynomials, we can ultimately view this family of functions as being built up of
linear and quadratic functions as well. So in some sense, Chapters ??, ??, and ?? can be thought
of as an exhaustive study of linear and quadratic functions and their arithmetic combinations as
described in Section ??. We now wish to study other algebraic functions, such as f(x) =

√
x and

g(x) = x2/3, and the purpose of the first two sections of this chapter is to see how these kinds of
functions arise from polynomial and rational functions. To that end, we first study a new way to
combine functions as defined below.

Definition 1.1. Suppose f and g are two functions. The composite of g with f , denoted
g ◦ f , is defined by the formula (g ◦ f)(x) = g(f(x)), provided x is an element of the domain of
f and f(x) is an element of the domain of g.

The quantity g ◦ f is also read ‘g composed with f ’ or, more simply ‘g of f .’ At its most basic
level, Definition 1.1 tells us to obtain the formula for (g ◦ f) (x), we replace every occurrence of x
in the formula for g(x) with the formula we have for f(x). If we take a step back and look at this
from a procedural, ‘inputs and outputs’ perspective, Defintion 1.1 tells us the output from g ◦ f is
found by taking the output from f , f(x), and then making that the input to g. The result, g(f(x)),
is the output from g ◦ f . From this perspective, we see g ◦ f as a two step process taking an input
x and first applying the procedure f then applying the procedure g. Abstractly, we have

1This is a really bad math pun.
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f g

g ◦ f

x f(x)
g(f(x))

In the expression g(f(x)), the function f is often called the ‘inside’ function while g is often
called the ‘outside’ function. There are two ways to go about evaluating composite functions -
‘inside out’ and ‘outside in’ - depending on which function we replace with its formula first. Both
ways are demonstrated in the following example.

Example 1.1.1. Let f(x) = x2 − 4x, g(x) = 2−
√
x+ 3, and h(x) =

2x
x+ 1

. Find and simplify the

indicated composite functions. State the domain of each.

1. (g ◦ f)(x)

2. (f ◦ g)(x)

3. (g ◦ h)(x)

4. (h ◦ g)(x)

5. (h ◦ h)(x)

6. (h ◦ (g ◦ f))(x)

7. ((h ◦ g) ◦ f)(x)

Solution.

1. By definition, (g ◦ f)(x) = g(f(x)). We now illustrate the two ways to evaluate this.

� inside out : We insert the expression f(x) into g first to get

(g ◦ f)(x) = g(f(x)) = g
(
x2 − 4x

)
= 2−

√
(x2 − 4x) + 3 = 2−

√
x2 − 4x+ 3

Hence, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

� outside in: We use the formula for g first to get

(g ◦ f)(x) = g(f(x)) = 2−
√
f(x) + 3 = 2−

√
(x2 − 4x) + 3 = 2−

√
x2 − 4x+ 3

We get the same answer as before, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

To find the domain of g ◦ f , we need to find the elements in the domain of f whose outputs
f(x) are in the domain of g. We accomplish this by following the rule set forth in Section
??, that is, we find the domain before we simplify. To that end, we examine (g ◦ f)(x) =
2−

√
(x2 − 4x) + 3. To keep the square root happy, we solve the inequality x2 − 4x+ 3 ≥ 0

by creating a sign diagram. If we let r(x) = x2 − 4x + 3, we find the zeros of r to be x = 1
and x = 3. We obtain
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1 3

(+) 0 (−) 0 (+)

Our solution to x2 − 4x+ 3 ≥ 0, and hence the domain of g ◦ f , is (−∞, 1] ∪ [3,∞).

2. To find (f ◦ g)(x), we find f(g(x)).

� inside out : We insert the expression g(x) into f first to get

(f ◦ g)(x) = f(g(x))

= f
(
2−
√
x+ 3

)
=

(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
= 4− 4

√
x+ 3 +

(√
x+ 3

)2 − 8 + 4
√
x+ 3

= 4 + x+ 3− 8
= x− 1

� outside in: We use the formula for f(x) first to get

(f ◦ g)(x) = f(g(x))

= (g(x))2 − 4 (g(x))

=
(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
= x− 1 same algebra as before

Thus we get (f ◦ g)(x) = x − 1. To find the domain of (f ◦ g), we look to the step before
we did any simplification and find (f ◦ g)(x) =

(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
. To keep the

square root happy, we set x+ 3 ≥ 0 and find our domain to be [−3,∞).

3. To find (g ◦ h)(x), we compute g(h(x)).

� inside out : We insert the expression h(x) into g first to get

(g ◦ h)(x) = g(h(x))

= g

(
2x
x+ 1

)

= 2−

√(
2x
x+ 1

)
+ 3

= 2−
√

2x
x+ 1

+
3(x+ 1)
x+ 1

get common denominators
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= 2−
√

5x+ 3
x+ 1

� outside in: We use the formula for g(x) first to get

(g ◦ h)(x) = g(h(x))

= 2−
√
h(x) + 3

= 2−

√(
2x
x+ 1

)
+ 3

= 2−
√

5x+ 3
x+ 1

get common denominators as before

Hence, (g ◦ h)(x) = 2−
√

5x+3
x+1 . To find the domain, we look to the step before we began to

simplify: (g ◦ h)(x) = 2−
√(

2x
x+1

)
+ 3. To avoid division by zero, we need x 6= −1. To keep

the radical happy, we need to solve 2x
x+1 + 3 ≥ 0. Getting common denominators as before,

this reduces to 5x+3
x+1 ≥ 0. Defining r(x) = 5x+3

x+1 , we have that r is undefined at x = −1 and
r(x) = 0 at x = −3

5 . We get

−1 −3
5

(+) � (−) 0 (+)

Our domain is (−∞,−1) ∪
[
−3

5 ,∞
)
.

4. We find (h ◦ g)(x) by finding h(g(x)).

� inside out : We insert the expression g(x) into h first to get

(h ◦ g)(x) = h(g(x))

= h
(
2−
√
x+ 3

)
=

2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

� outside in: We use the formula for h(x) first to get

(h ◦ g)(x) = h(g(x))
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=
2 (g(x))

(g(x)) + 1

=
2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

Hence, (h ◦ g)(x) = 4−2
√

x+3
3−
√

x+3
. To find the domain of h ◦ g, we look to the step before any

simplification: (h ◦ g)(x) =
2(2−

√
x+3)

(2−
√

x+3)+1
. To keep the square root happy, we require x+ 3 ≥ 0

or x ≥ −3. Setting the denominator equal to zero gives
(
2−
√
x+ 3

)
+ 1 = 0 or

√
x+ 3 = 3.

Squaring both sides gives us x+ 3 = 9, or x = 6. Since x = 6 checks in the original equation,(
2−
√
x+ 3

)
+1 = 0, we know x = 6 is the only zero of the denominator. Hence, the domain

of h ◦ g is [−3, 6) ∪ (6,∞).

5. To find (h ◦ h)(x), we substitute the function h into itself, h(h(x)).

� inside out : We insert the expression h(x) into h to get

(h ◦ h)(x) = h(h(x))

= h

(
2x
x+ 1

)

=
2
(

2x
x+ 1

)
(

2x
x+ 1

)
+ 1

=

4x
x+ 1
2x
x+ 1

+ 1
· (x+ 1)

(x+ 1)

=

4x
x+ 1

· (x+ 1)(
2x
x+ 1

)
· (x+ 1) + 1 · (x+ 1)

=

4x

���
�: 1(x+ 1)
·����(x+ 1)

2x

��
��: 1

(x+ 1)
·����(x+ 1) + x+ 1

=
4x

3x+ 1
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� outside in: This approach yields

(h ◦ h)(x) = h(h(x))

=
2(h(x))
h(x) + 1

=
2
(

2x
x+ 1

)
(

2x
x+ 1

)
+ 1

=
4x

3x+ 1
same algebra as before

To find the domain of h ◦ h, we analyze (h ◦ h)(x) =
2
(

2x
x+1

)
(

2x
x+1

)
+ 1

. To keep the denominator

x + 1 happy, we need x 6= −1. Setting the denominator 2x
x+1 + 1 = 0 gives x = −1

3 . Our
domain is (−∞,−1) ∪

(
−1,−1

3

)
∪
(
−1

3 ,∞
)
.

6. The expression (h ◦ (g ◦ f))(x) indicates that we first find the composite, g ◦ f and compose
the function h with the result. We know from number 1 that (g ◦ f)(x) = 2−

√
x2 − 4x+ 3.

We now proceed as usual.

� inside out : We insert the expression (g ◦ f)(x) into h first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x))

= h
(

2−
√
x2 − 4x+ 3

)
=

2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

� outside in: We use the formula for h(x) first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x))

=
2 ((g ◦ f)(x))

((g ◦ f)(x)) + 1

=
2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1
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=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

So we get (h ◦ (g ◦ f))(x) = 4−2
√

x2−4x+3
3−
√

x2−4x+3
. To find the domain, we look at the step before

we began to simplify, (h ◦ (g ◦ f))(x) =
2(2−

√
x2−4x+3)

(2−
√

x2−4x+3)+1
. For the square root, we need

x2 − 4x + 3 ≥ 0, which we determined in number 1 to be (−∞, 1] ∪ [3,∞). Next, we set
the denominator to zero and solve:

(
2−
√
x2 − 4x+ 3

)
+ 1 = 0. We get

√
x2 − 4x+ 3 = 3,

and, after squaring both sides, we have x2 − 4x + 3 = 9. To solve x2 − 4x − 6 = 0, we use
the quadratic formula and get x = 2 ±

√
10. The reader is encouraged to check that both

of these numbers satisfy the original equation,
(

2−
√
x2 − 4x+ 3

)
+ 1 = 0. Hence we must

exclude these numbers from the domain of h ◦ (g ◦ f). Our final domain for h ◦ (f ◦ g) is
(−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2 +

√
10
)
∪
(
2 +
√

10,∞
)
.

7. The expression ((h◦g)◦f)(x) indicates that we first find the composite h◦g and then compose
that with f . From number 4, we gave (h ◦ g)(x) = 4−2

√
x+3

3−
√

x+3
. We now proceed as before.

� inside out : We insert the expression f(x) into h ◦ g first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x))

= (h ◦ g)
(
x2 − 4x

)
=

4− 2
√

(x2 − 4x) + 3
3−

√
(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

� outside in: We use the formula for (h ◦ g)(x) first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x))

=
4− 2

√
(f(x)) + 3

3−
√
f(x)) + 3

=
4− 2

√
(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

We note that the formula for ((h ◦ g) ◦ f)(x) before simplification is identical to that of
(h ◦ (g ◦ f))(x) before we simplified it. Hence, the two functions have the same domain,
h ◦ (f ◦ g) is (−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2 +

√
10
)
∪
(
2 +
√

10,∞
)
.
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It should be clear from Example 1.1.1 that, in general, when you compose two functions, such
as f and g above, the order matters.2 We found that the functions f ◦ g and g ◦ f were different as
were g ◦h and h ◦ g. Thinking of functions as processes, this isn’t all that surprising. If we think of
one process as putting on our socks, and the other as putting on our shoes, the order in which we
do these two tasks does matter.3 Also note the importance of finding the domain of the composite
function before simplifying. For instance, the domain of f ◦ g is much different than its simplified
formula would indicate. Composing a function with itself, as in the case of h ◦ h, may seem odd.
Looking at this from a procedural perspective, however, this merely indicates performing a task
h and then doing it again - like setting the washing machine to do a ‘double rinse’. Composing a
function with itself is called ‘iterating’ the function, and we could easily spend an entire course on
just that. The last two problems in Example 1.1.1 serve to demonstrate the associative property
of functions. That is, when composing three (or more) functions, as long as we keep the order the
same, it doesn’t matter which two functions we compose first. This property as well as another
important property are listed in the theorem below.

Theorem 1.1. Properties of Function Composition: Suppose f , g, and h are functions.

� h ◦ (g ◦ f) = (h ◦ g) ◦ f , provided the composite functions are defined.

� If I is defined as I(x) = x for all real numbers x, then I ◦ f = f ◦ I = f .

By repeated applications of Definition 1.1, we find (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))).
Similarly, ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))). This establishes that the formulas for the
two functions are the same. We leave it to the reader to think about why the domains of these
two functions are identical, too. These two facts establish the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f .
A consequence of the associativity of function composition is that there is no need for parentheses
when we write h ◦ g ◦ f . The second property can also be verified using Definition 1.1. Recall that
the function I(x) = x is called the identity function and was introduced in Exercise ?? in Section
??. If we compose the function I with a function f , then we have (I ◦ f)(x) = I(f(x)) = f(x),
and a similar computation shows (f ◦ I)(x) = f(x). This establishes that we have an identity
for function composition much in the same way the real number 1 is an identity for real number
multiplication. That is, just as for any real number x, 1 · x = x · 1 = x , we have for any function
f , I ◦ f = f ◦ I = f . We shall see the concept of an identity take on great significance in the next

2This shows us function composition isn’t commutative. An example of an operation we perform on two functions
which is commutative is function addition, which we defined in Section ??. In other words, the functions f + g and
g + f are always equal. Which of the remaining operations on functions we have discussed are commutative?

3A more mathematical example in which the order of two processes matters can be found in Section ??. In fact,
all of the transformations in that section can be viewed in terms of composing functions with linear functions.
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section. Out in the wild, function composition is often used to relate two quantities which may not
be directly related, but have a variable in common, as illustrated in our next example.

Example 1.1.2. The surface area S of a sphere is a function of its radius r and is given by the
formula S(r) = 4πr2. Suppose the sphere is being inflated so that the radius of the sphere is
increasing according to the formula r(t) = 3t2, where t is measured in seconds, t ≥ 0, and r is
measured in inches. Find and interpret (S ◦ r)(t).

Solution. If we look at the functions S(r) and r(t) individually, we see the former gives the
surface area of a sphere of a given radius while the latter gives the radius at a given time. So,
given a specific time, t, we could find the radius at that time, r(t) and feed that into S(r) to find
the surface area at that time. From this we see that the surface area S is ultimately a function of
time t and we find (S ◦ r)(t) = S(r(t)) = 4π(r(t))2 = 4π

(
3t2
)2 = 36πt4. This formula allows us to

compute the surface area directly given the time without going through the ‘middle man’ r.

A useful skill in Calculus is to be able to take a complicated function and break it down into a
composition of easier functions which our last example illustrates.

Example 1.1.3. Write each of the following functions as a composition of two or more (non-identity)
functions. Check your answer by performing the function composition.

1. F (x) = |3x− 1|

2. G(x) =
2

x2 + 1

3. H(x) =
√
x+ 1√
x− 1

Solution. There are many approaches to this kind of problem, and we showcase a different
methodology in each of the solutions below.

1. Our goal is to express the function F as F = g ◦ f for functions g and f . From Definition
1.1, we know F (x) = g(f(x)), and we can think of f(x) as being the ‘inside’ function and g
as being the ‘outside’ function. Looking at F (x) = |3x − 1| from an ‘inside versus outside’
perspective, we can think of 3x − 1 being inside the absolute value symbols. Taking this
cue, we define f(x) = 3x − 1. At this point, we have F (x) = |f(x)|. What is the outside
function? The function which takes the absolute value of its input, g(x) = |x|. Sure enough,
(g ◦ f)(x) = g(f(x)) = |f(x)| = |3x− 1| = F (x), so we are done.

2. We attack deconstructing G from an operational approach. Given an input x, the first step
is to square x, then add 1, then divide the result into 2. We will assign each of these steps a
function so as to write G as a composite of three functions: f , g and h. Our first function,
f , is the function that squares its input, f(x) = x2. The next function is the function that
adds 1 to its input, g(x) = x + 1. Our last function takes its input and divides it into 2,
h(x) = 2

x . The claim is that G = h ◦ g ◦ f . We find (h ◦ g ◦ f)(x) = h(g(f(x))) = h(g
(
x2
)
) =

h
(
x2 + 1

)
= 2

x2+1
= G(x).
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3. If we look H(x) =
√

x+1√
x−1

with an eye towards building a complicated function from simpler
functions, we see the expression

√
x is a simple piece of the larger function. If we define

f(x) =
√
x, we have H(x) = f(x)+1

f(x)−1 . If we want to decompose H = g ◦ f , then we can glean
the formula from g(x) by looking at what is being done to f(x). We find g(x) = x+1

x−1 . We

check (g ◦ f)(x) = g(f(x)) = f(x)+1
f(x)−1 =

√
x+1√
x−1

= H(x), as required.
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1.1.1 Exercises

1. Let f(x) = 3x − 6, g(x) = |x|, h(x) =
√
x and k(x) =

1
x

. Find and simplify the indicated
composite functions. State the domain of each.

(a) (f ◦ g)(x)

(b) (g ◦ f)(x)

(c) (f ◦ h)(x)

(d) (h ◦ f)(x)

(e) (g ◦ h)(x)

(f) (h ◦ g)(x)

(g) (f ◦ k)(x)

(h) (k ◦ f)(x)

(i) (h ◦ k)(x)

(j) (k ◦ h)(x)

(k) (f ◦ g ◦ h)(x)

(l) (h ◦ g ◦ k)(x)

(m) (k ◦ h ◦ f)(x)

(n) (h ◦ k ◦ g ◦ f)(x)

2. Let f(x) = 2x + 1, g(x) = x2 − x − 6 and h(x) =
x+ 6
x− 6

. Find and simplify the indicated

composite functions. Find the domain of each.

(a) (g ◦ f) (x)

(b) (h ◦ f) (x)

(c) (h ◦ g) (x)

(d) (h ◦ h) (x)

3. Let f(x) =
√
x− 3, g(x) = 4x + 3 and h(x) =

x− 2
x+ 3

. Find and simplify the indicated

composite functions. Find the domain of each.

(a) (f ◦ g) (x)
(b) (g ◦ f) (x)
(c) (f ◦ h) (x)
(d) (h ◦ f) (x)
(e) (g ◦ h) (x)

(f) (h ◦ g) (x)

(g) (f ◦ f) (x)

(h) (g ◦ g) (x)

(i) (h ◦ h) (x)

4. Let f(x) =
√

9− x2 and g(x) = x2− 9. Find and simplify the indicated composite functions.
State the domain of each.

(a) (f ◦ f)(x)

(b) (g ◦ g)(x)

(c) (g ◦ f)(x)

(d) (f ◦ g)(x)
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5. Let f be the function defined by f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)} and
let g be the function defined g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}.
Find the each of the following values if it exists.

(a) (f ◦ g)(3)
(b) f(g(−1))
(c) (f ◦ f)(0)
(d) (f ◦ g)(−3)
(e) (g ◦ f)(3)
(f) g(f(−3))
(g) (g ◦ g)(−2)

(h) (g ◦ f)(−2)

(i) g(f(g(0)))

(j) f(f(f(−1)))

(k) f(f(f(f(f(1)))))

(l)

n times︷ ︸︸ ︷
(g ◦ g ◦ · · · ◦ g)(0)

6. Let g(x) = −x, h(x) = x+2, j(x) = 3x and k(x) = x−4. In what order must these functions
be composed with f(x) =

√
x to create F (x) = 3

√
−x+ 2− 4?

7. What linear functions could be used to transform f(x) = x3 into F (x) = −1
2(2x − 7)3 + 1?

What is the proper order of composition?

8. Write the following as a composition of two or more non-identity functions.

(a) h(x) =
√

2x− 1

(b) r(x) =
2

5x+ 1

(c) F (x) =
(
x2 − 1

)3
(d) R(x) =

2x3 + 1
x3 − 1

9. Write the function F (x) =

√
x3 + 6
x3 − 9

as a composition of three or more non-identity functions.

10. The volume V of a cube is a function of its side length x. Let’s assume that x = t + 1 is
also a function of time t, where x is measured in inches and t is measured in minutes. Find
a formula for V as a function of t.

11. Suppose a local vendor charges $2 per hot dog and that the number of hot dogs sold per hour
x is given by x(t) = −4t2 + 20t+ 92, where t is the number of hours since 10 AM, 0 ≤ t ≤ 4.

(a) Find an expression for the revenue per hour R as a function of x.

(b) Find and simplify (R ◦ x) (t). What does this represent?

(c) What is the revenue per hour at noon?

12. Discuss with your classmates how ‘real-world’ processes such as filling out federal income tax
forms or computing your final course grade could be viewed as a use of function composition.
Find a process for which composition with itself (iteration) makes sense.
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1.1.2 Answers

1. (a) (f ◦ g)(x) = 3|x| − 6
Domain: (−∞,∞)

(b) (g ◦ f)(x) = |3x− 6|
Domain: (−∞,∞)

(c) (f ◦ h)(x) = 3
√
x− 6

Domain: [0,∞)

(d) (h ◦ f)(x) =
√

3x− 6
Domain: [2,∞)

(e) (g ◦ h)(x) =
√
x

Domain: [0,∞)

(f) (h ◦ g)(x) =
√
|x|

Domain: (−∞,∞)

(g) (f ◦ k)(x) =
3
x
− 6

Domain: (−∞, 0) ∪ (0,∞)

(h) (k ◦ f)(x) =
1

3x− 6
Domain: (−∞, 2) ∪ (2,∞)

(i) (h ◦ k)(x) =
√

1
x

Domain: (0,∞)

(j) (k ◦ h)(x) =
1√
x

Domain: (0,∞)

(k) (f ◦ g ◦ h)(x) = 3
√
x− 6

Domain: [0,∞)

(l) (h ◦ g ◦ k)(x) =

√∣∣∣∣1x
∣∣∣∣

Domain: (−∞, 0) ∪ (0,∞)

(m) (k ◦ h ◦ f)(x) =
1√

3x− 6
Domain: (2,∞)

(n) (h ◦ k ◦ g ◦ f)(x) =
√

1
|3x− 6|

Domain: (−∞, 2) ∪ (2,∞)

2. (a) (g ◦ f) (x) = 4x2 + 2x− 6

Domain: (−∞,∞)

(b) (h ◦ f) (x) =
2x+ 7
2x− 5

Domain:
(
−∞, 5

2

)
∪
(

5
2 ,∞

)

(c) (h ◦ g) (x) =
x2 − x

x2 − x− 12
Domain: (−∞,−3) ∪ (−3, 4) ∪ (4,∞)

(d) (h ◦ h) (x) = −7x− 30
5x− 42

Domain: (−∞, 6) ∪
(
6, 42

5

)
∪
(

42
5 ,∞

)
3. (a) (f ◦ g) (x) = 2

√
x

Domain: [0,∞)
(b) (g ◦ f) (x) = 4

√
x− 3 + 3

Domain: [3,∞)

(c) (f ◦ h) (x) =
√
−2x− 11
x+ 3

Domain:
[
−11

2 ,−3
)

(d) (h ◦ f) (x) =
√
x− 3− 2√
x− 3 + 3

Domain: [3,∞)

(e) (g ◦ h) (x) =
7x+ 1
x+ 3

Domain: (−∞,−3) ∪ (−3,∞)

(f) (h ◦ g) (x) =
4x+ 1
4x+ 6

Domain:
(
−∞,−3

2

)
∪
(
−3

2 ,∞
)

(g) (f ◦ f) (x) =
√√

x− 3− 3

Domain: [12,∞)

(h) (g ◦ g) (x) = 16x+ 15

Domain: (−∞,∞)

(i) (h ◦ h) (x) =
−x− 8
4x+ 7

Domain:

(−∞,−3) ∪
(
−3,−7

4

)
∪
(
−7

4 ,∞
)
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4. (a) (f ◦ f)(x) = |x|
Domain: [−3, 3]

(b) (g ◦ g)(x) = x4 − 18x2 + 72
Domain: (−∞,∞)

(c) (g ◦ f)(x) = −x2

Domain: [−3, 3]

(d) (f ◦ g)(x) =
√
−x4 + 18x2 − 72

Domain: [−
√

12,−
√

6] ∪ [
√

6,
√

12]4

5. (a) (f ◦ g)(3) = f(g(3)) = f(2) = 4

(b) f(g(−1)) = f(−4) which is undefined

(c) (f ◦ f)(0) = f(f(0)) = f(1) = 3

(d) (f ◦ g)(−3) = f(g(−3)) = f(−2) = 2

(e) (g ◦ f)(3) = g(f(3)) = g(−1) = −4

(f) g(f(−3)) = g(4) which is undefined

(g) (g ◦ g)(−2) = g(g(−2)) = g(0) = 0

(h) (g ◦ f)(−2) = g(f(−2)) = g(2) = 1

(i) g(f(g(0))) = g(f(0)) = g(1) = −3

(j) f(f(f(−1))) = f(f(0)) = f(1) = 3

(k) f(f(f(f(f(1))))) = f(f(f(f(3)))) =
f(f(f(−1))) = f(f(0)) = f(1) = 3

(l)

n times︷ ︸︸ ︷
(g ◦ g ◦ · · · ◦ g)(0) = 0

6. F (x) = 3
√
−x+ 2− 4 = k(j(f(h(g(x)))))

7. One possible solution is F (x) = −1
2(2x− 7)3 + 1 = k(j(f(h(g(x))))) where g(x) = 2x, h(x) =

x − 7, j(x) = −1
2x and k(x) = x + 1. You could also have F (x) = H(f(G(x))) where

G(x) = 2x− 7 and H(x) = −1
2x+ 1.

8. (a) h(x) = (g ◦ f) (x) where f(x) = 2x − 1
and g(x) =

√
x.

(b) r(x) = (g ◦ f) (x) where f(x) = 5x + 1

and g(x) =
2
x

.

(c) F (x) = (g ◦ f) (x) where f(x) = x2 − 1
and g(x) = x3.

(d) R(x) = (g ◦ f) (x) where f(x) = x3 and

g(x) =
2x+ 1
x− 1

.

9. F (x) =

√
x3 + 6
x3 − 9

= (h(g(f(x))) where f(x) = x3, g(x) =
x+ 6
x− 9

and h(x) =
√
x.

10. V (x) = x3 so V (x(t)) = (t+ 1)3

11. (a) R(x) = 2x

(b) (R ◦ x) (t) = −8t2 + 40t+ 184, 0 ≤ t ≤ 4. This gives the revenue per hour as a function
of time.

(c) Noon corresponds to t = 2, so (R ◦ x) (2) = 232. The hourly revenue at noon is $232
per hour.

4The quantity −x4 + 18x2 − 72 is a ‘quadratic in disguise’ which factors nicely.
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1.2 Inverse Functions

Thinking of a function as a process like we did in Section ??, in this section we seek another function
which might reverse that process. As in real life, we will find that some processes (like putting on
socks and shoes) are reversible while some (like cooking a steak) are not. We start by discussing a
very basic function which is reversible, f(x) = 3x+ 4. Thinking of f as a process, we start with an
input x and apply two steps, as we saw in Section ??

1. multiply by 3

2. add 4

To reverse this process, we seek a function g which will undo each of these steps and take the
output from f , 3x + 4, and return the input x. If we think of the real-world reversible two-step
process of first putting on socks then putting on shoes, to reverse the process, we first take off the
shoes, and then we take off the socks. In much the same way, the function g should undo the second
step of f first. That is, the function g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) = x−4
3 . Let’s check to see if the function g does the

job. If x = 5, then f(5) = 3(5) + 4 = 15 + 4 = 19. Taking the output 19 from f , we substitute
it into g to get g(19) = 19−4

3 = 15
3 = 5, which is our original input to f . To check that g does

the job for all x in the domain of f , we take the generic output from f , f(x) = 3x + 4, and
substitute that into g. That is, g(f(x)) = g(3x + 4) = (3x+4)−4

3 = 3x
3 = x, which is our original

input to f . If we carefully examine the arithmetic as we simplify g(f(x)), we actually see g first
‘undoing’ the addition of 4, and then ‘undoing’ the multiplication by 3. Not only does g undo
f , but f also undoes g. That is, if we take the output from g, g(x) = x−4

3 , and put that into
f , we get f(g(x)) = f

(
x−4

3

)
= 3

(
x−4

3

)
+ 4 = (x − 4) + 4 = x. Using the language of function

composition developed in Section 1.1, the statements g(f(x)) = x and f(g(x)) = x can be written
as (g ◦ f)(x) = x and (f ◦ g)(x) = x, respectively. Abstractly, we can visualize the relationship
between f and g in the diagram below.

f

g

x = g(f(x)) y = f(x)
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The main idea to get from the diagram is that g takes the outputs from f and returns them to
their respective inputs, and conversely, f takes outputs from g and returns them to their respective
inputs. We now have enough background to state the central definition of the section.

Definition 1.2. Suppose f and g are two functions such that

1. (g ◦ f)(x) = x for all x in the domain of f and

2. (f ◦ g)(x) = x for all x in the domain of g.

Then f and g are said to be inverses of each other. The functions f and g are said to be
invertible.

Our first result of the section formalizes the concepts that inverse functions exchange inputs
and outputs and is a consequence of Definition 1.2 and the Fundamental Graphing Principle for
Functions.

Theorem 1.2. Properties of Inverse Functions: Suppose f and g are inverse functions.

� The rangea of f is the domain of g and the domain of f is the range of g

� f(a) = b if and only if g(b) = a

� (a, b) is on the graph of f if and only if (b, a) is on the graph of g

aRecall this is the set of all outputs of a function.

The third property in Theorem 1.2 tells us that the graphs of inverse functions are reflections
about the line y = x. For a proof of this, we refer the reader to Example ?? in Section ??. A plot
of the inverse functions f(x) = 3x+ 4 and g(x) = x−4

3 confirms this to be the case.

x

y

y = f(x)

y = g(x)

y = x

−2 −1 1 2

−1

−2

1

2

If we abstract one step further, we can express the sentiment in Definition 1.2 by saying that
f and g are inverses if and only if g ◦ f = I1 and f ◦ g = I2 where I1 is the identity function
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restricted1 to the domain of f and I2 is the identity function restricted to the domain of g. In other
words, I1(x) = x for all x in the domain of f and I2(x) = x for all x in the domain of g. Using
this description of inverses along with the properties of function composition listed in Theorem 1.1,
we can show that function inverses are unique.2 Suppose g and h are both inverses of a function
f . By Theorem 1.2, the domain of g is equal to the domain of h, since both are the range of f .
This means the identity function I2 applies both to the domain of h and the domain of g. Thus
h = h ◦ I2 = h ◦ (f ◦ g) = (h ◦ f) ◦ g = I1 ◦ g = g, as required.3 We summarize the discussion of the
last two paragraphs in the following theorem.4

Theorem 1.3. Uniqueness of Inverse Functions and Their Graphs : Suppose f is an
invertible function.

� There is exactly one inverse function for f , denoted f−1 (read f -inverse)

� The graph of y = f−1(x) is the reflection of the graph of y = f(x) across the line y = x.

The notation f−1 is an unfortunate choice since you’ve been programmed since Elementary
Algebra to think of this as 1

f . This is most definitely not the case since, for instance, f(x) = 3x+4
has as its inverse f−1(x) = x−4

3 , which is certainly different than 1
f(x) = 1

3x+4 . Why does this
confusing notation persist? As we mentioned in Section 1.1, the identity function I is to function
composition what the real number 1 is to real number multiplication. The choice of notation f−1

alludes to the property that f−1 ◦ f = I1 and f ◦ f−1 = I2, in much the same way as 3−1 · 3 = 1
and 3 · 3−1 = 1.

Let’s turn our attention to the function f(x) = x2. Is f invertible? A likely candidate for
the inverse is the function g(x) =

√
x. Checking the composition yields (g ◦ f)(x) = g(f(x)) =√

x2 = |x|, which is not equal to x for all x in the domain (−∞,∞). For example, when x = −2,
f(−2) = (−2)2 = 4, but g(4) =

√
4 = 2, which means g failed to return the input −2 from its

output 4. What g did, however, is match the output 4 to a different input, namely 2, which
satisfies f(2) = 4. This issue is presented schematically in the picture below.

1The identity function I, which was introduced in Section ?? and mentioned in Theorem 1.1, has a domain of all
real numbers. In general, the domains of f and g are not all real numbers, which necessitates the restrictions listed
here.

2In other words, invertible functions have exactly one inverse.
3It is an excellent exercise to explain each step in this string of equalities.
4In the interests of full disclosure, the authors would like to admit that much of the discussion in the previous

paragraphs could have easily been avoided had we appealed to the description of a function as a set of ordered pairs.
We make no apology for our discussion from a function composition standpoint, however, since it exposes the reader
to more abstract ways of thinking of functions and inverses. We will revisit this concept again in Chapter ??.
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f

g

x = −2

x = 2

4

We see from the diagram that since both f(−2) and f(2) are 4, it is impossible to construct
a function which takes 4 back to both x = 2 and x = −2. (By definition, a function matches
a real number with exactly one other real number.) From a graphical standpoint, we know that
if y = f−1(x) exists, its graph can be obtained by reflecting y = x2 about the line y = x, in
accordance with Theorem 1.3. Doing so produces

(−2, 4) (2, 4)

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = f(x) = x2

reflect across y = x
−−−−−−−−−−−−−−−→
switch x and y coordinates

(4,−2)

(4, 2)

x

y

1 2 3 4 5 6 7

−2

−1

1

2

y = f−1(x) ?

We see that the line x = 4 intersects the graph of the supposed inverse twice - meaning the
graph fails the Vertical Line Test, Theorem ??, and as such, does not represent y as a function of
x. The vertical line x = 4 on the graph on the right corresponds to the horizontal line y = 4 on the
graph of y = f(x). The fact that the horizontal line y = 4 intersects the graph of f twice means
two different inputs, namely x = −2 and x = 2, are matched with the same output, 4, which is
the cause of all of the trouble. In general, for a function to have an inverse, different inputs must
go to different outputs, or else we will run into the same problem we did with f(x) = x2. We give
this property a name.

Definition 1.3. A function f is said to be one-to-one if f matches different inputs to different
outputs. Equivalently, f is one-to-one if and only if whenever f(c) = f(d), then c = d.

Graphically, we detect one-to-one functions using the test below.
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Theorem 1.4. The Horizontal Line Test: A function f is one-to-one if and only if no
horizontal line intersects the graph of f more than once.

We say that the graph of a function passes the Horizontal Line Test if no horizontal line
intersects the graph more than once; otherwise, we say the graph of the function fails the Horizontal
Line Test. We have argued that if f is invertible, then f must be one-to-one, otherwise the graph
given by reflecting the graph of y = f(x) about the line y = x will fail the Vertical Line Test. It
turns out that being one-to-one is also enough to guarantee invertibility. To see this, we think of f
as the set of ordered pairs which constitute its graph. If switching the x- and y-coordinates of the
points results in a function, then f is invertible and we have found f−1. This is precisely what the
Horizontal Line Test does for us: it checks to see whether or not a set of points describes x as a
function of y. We summarize these results below.

Theorem 1.5. Equivalent Conditions for Invertibility: Suppose f is a function. The
following statements are equivalent.

� f is invertible.

� f is one-to-one.

� The graph of f passes the Horizontal Line Test.

We put this result to work in the next example.

Example 1.2.1. Determine if the following functions are one-to-one in two ways: (a) analytically
using Definition 1.3 and (b) graphically using the Horizontal Line Test.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

3. h(x) = x2 − 2x+ 4

4. F = {(−1, 1), (0, 2), (2, 1)}

Solution.

1. (a) To determine if f is one-to-one analytically, we assume f(c) = f(d) and attempt to
deduce that c = d.
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f(c) = f(d)
1− 2c

5
=

1− 2d
5

1− 2c = 1− 2d
−2c = −2d
c = d X

Hence, f is one-to-one.
(b) To check if f is one-to-one graphically, we look to see if the graph of y = f(x) passes the

Horizontal Line Test. We have that f is a non-constant linear function, which means its
graph is a non-horizontal line. Thus the graph of f passes the Horizontal Line Test as
seen below.

2. (a) We begin with the assumption that g(c) = g(d) and try to show c = d.

g(c) = g(d)
2c

1− c
=

2d
1− d

2c(1− d) = 2d(1− c)
2c− 2cd = 2d− 2dc

2c = 2d
c = d X

We have shown that g is one-to-one.
(b) We can graph g using the six step procedure outlined in Section ??. We get the sole

intercept at (0, 0), a vertical asymptote x = 1 and a horizontal asymptote (which the
graph never crosses) y = −2. We see from that the graph of g passes the Horizontal
Line Test.

x

y

−2 −1 1 2

−1

−2

1

2

y = f(x)

x

y

−2 −1 1 2−1

−2

−3

−4

−5

−6

1

2

3

4

y = g(x)

3. (a) We begin with h(c) = h(d). As we work our way through the problem, we encounter a
nonlinear equation. We move the non-zero terms to the left, leave a 0 on the right and
factor accordingly.
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h(c) = h(d)
c2 − 2c+ 4 = d2 − 2d+ 4

c2 − 2c = d2 − 2d
c2 − d2 − 2c+ 2d = 0

(c+ d)(c− d)− 2(c− d) = 0
(c− d)((c+ d)− 2) = 0 factor by grouping

c− d = 0 or c+ d− 2 = 0
c = d or c = 2− d

We get c = d as one possibility, but we also get the possibility that c = 2 − d. This
suggests that f may not be one-to-one. Taking d = 0, we get c = 0 or c = 2. With
f(0) = 4 and f(2) = 4, we have produced two different inputs with the same output
meaning f is not one-to-one.

(b) We note that h is a quadratic function and we graph y = h(x) using the techniques
presented in Section ??. The vertex is (1, 3) and the parabola opens upwards. We see
immediately from the graph that h is not one-to-one, since there are several horizontal
lines which cross the graph more than once.

4. (a) The function F is given to us as a set of ordered pairs. The condition F (c) = F (d)
means the outputs from the function (the y-coordinates of the ordered pairs) are the
same. We see that the points (−1, 1) and (2, 1) are both elements of F with F (−1) = 1
and F (2) = 1. Since −1 6= 2, we have established that F is not one-to-one.

(b) Graphically, we see the horizontal line y = 1 crosses the graph more than once. Hence,
the graph of F fails the Horizontal Line Test.

x

y

1 2

−1

1

2

3

4

5

6

y = h(x)

x

y

−2 −1 1 2

1

2

y = F (x)

We have shown that the functions f and g in Example 1.2.1 are one-to-one. This means they
are invertible, so it is natural to wonder what f−1(x) and g−1(x) would be. For f(x) = 1−2x

5 ,
we can think our way through the inverse since there is only one occurrence of x. We can track
step-by-step what is done to x and reverse those steps as we did at the beginning of the chapter.
The function g(x) = 2x

1−x is a bit trickier since x occurs in two places. When one evaluates g(x) for
a specific value of x, which is first, the 2x or the 1−x? We can imagine functions more complicated
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than these so we need to develop a general methodology to attack this problem. Theorem 1.2 tells
us equation y = f−1(x) is equivalent to f(y) = x and this is the basis of our algorithm.

Steps for finding the Inverse of a One-to-one Function

1. Write y = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f−1(x)

Note that we could have simply written ‘Solve x = f(y) for y’ and be done with it. The act of
interchanging the x and y is there to remind us that we are finding the inverse function by switching
the inputs and outputs.

Example 1.2.2. Find the inverse of the following one-to-one functions. Check your answers ana-
lytically using function composition and graphically.

1. f(x) =
1− 2x

5
2. g(x) =

2x
1− x

Solution.

1. As we mentioned earlier, it is possible to think our way through the inverse of f by recording
the steps we apply to x and the order in which we apply them and then reversing those steps
in the reverse order. We encourage the reader to do this. We, on the other hand, will practice
the algorithm. We write y = f(x) and proceed to switch x and y

y = f(x)

y =
1− 2x

5

x =
1− 2y

5
switch x and y

5x = 1− 2y
5x− 1 = −2y
5x− 1
−2

= y

y = −5
2x+ 1

2

We have f−1(x) = −5
2x+1

2 . To check this answer analytically, we first check that
(
f−1 ◦ f

)
(x) =

x for all x in the domain of f , which is all real numbers.
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(
f−1 ◦ f

)
(x) = f−1(f(x))

= −5
2f(x) + 1

2

= −5
2

(
1− 2x

5

)
+ 1

2

= −1
2(1− 2x) + 1

2

= −1
2 + x+ 1

2

= x X

We now check that
(
f ◦ f−1

)
(x) = x for all x in the range of f which is also all real numbers.

(Recall that the domain of f−1) is the range of f .)

(
f ◦ f−1

)
(x) = f(f−1(x))

=
1− 2f−1(x)

5

=
1− 2

(
−5

2x+ 1
2

)
5

=
1 + 5x− 1

5
=

5x
5

= x X

To check our answer graphically, we graph y = f(x) and y = f−1(x) on the same set of axes.5

They appear to be reflections across the line y = x.

x

y

y = f(x)

y = f−1(x)

y = x

−4 −3 −2 −1 1 2 3 4

−1

−2

1

2

2. To find g−1(x), we start with y = g(x). We note that the domain of g is (−∞, 1) ∪ (1,∞).
5Note that if you perform your check on a calculator for more sophisticated functions, you’ll need to take advantage

of the ‘ZoomSquare’ feature to get the correct geometric perspective.
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y = g(x)

y =
2x

1− x
x =

2y
1− y

switch x and y

x(1− y) = 2y

x− xy = 2y

x = xy + 2y

x = y(x+ 2) factor

y =
x

x+ 2

We obtain g−1(x) = x
x+2 . To check this analytically, we first check

(
g−1 ◦ g

)
(x) = x for all x

in the domain of g, that is, for all x 6= 1.(
g−1 ◦ g

)
(x) = g−1(g(x))

= g−1

(
2x

1− x

)

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

=

(
2x

1− x

)
(

2x
1− x

)
+ 2
· (1− x)

(1− x)
clear denominators

=
2x

2x+ 2(1− x)

=
2x

2x+ 2− 2x

=
2x
2

= x X

Next, we check g
(
g−1(x)

)
= x for all x in the range of g. From the graph of g in Example

1.2.1, we have that the range of g is (−∞,−2) ∪ (−2,∞). This matches the domain we get
from the formula g−1(x) = x

x+2 , as it should.
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(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
= g

(
x

x+ 2

)

=
2
(

x

x+ 2

)
1−

(
x

x+ 2

)

=
2
(

x

x+ 2

)
1−

(
x

x+ 2

) · (x+ 2)
(x+ 2)

clear denominators

=
2x

(x+ 2)− x

=
2x
2

= x X

Graphing y = g(x) and y = g−1(x) on the same set of axes is busy, but we can see the sym-
metric relationship if we thicken the curve for y = g−1(x). Note that the vertical asymptote
x = 1 of the graph of g corresponds to the horizontal asymptote y = 1 of the graph of g−1,
as it should since x and y are switched. Similarly, the horizontal asymptote y = −2 of the
graph of g corresponds to the vertical asymptote x = −2 of the graph of g−1.
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x

y

y = x

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

−2

−3

−4

−5

−6

1

2

3

4

5

6

y = g(x) and y = g−1(x)

We now return to f(x) = x2. We know that f is not one-to-one, and thus, is not invertible.
However, if we restrict the domain of f , we can produce a new function g which is one-to-one. If
we define g(x) = x2, x ≥ 0, then we have

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = f(x) = x2
restrict domain to x ≥ 0
−−−−−−−−−−−−−−−→

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = g(x) = x2, x ≥ 0

The graph of g passes the Horizontal Line Test. To find an inverse of g, we proceed as usual

y = g(x)
y = x2, x ≥ 0
x = y2, y ≥ 0 switch x and y

y = ±
√
x

y =
√
x since y ≥ 0
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We get g−1(x) =
√
x. At first it looks like we’ll run into the same trouble as before, but

when we check the composition, the domain restriction on g saves the day. We get
(
g−1 ◦ g

)
(x) =

g−1(g(x)) = g−1
(
x2
)

=
√
x2 = |x| = x, since x ≥ 0. Checking

(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
=

g (
√
x) = (

√
x)2 = x. Graphing6 g and g−1 on the same set of axes shows that they are reflections

about the line y = x.

y = x

y = g(x)

y = g−1(x)

x

y

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Our next example continues the theme of domain restriction.

Example 1.2.3. Graph the following functions to show they are one-to-one and find their inverses.
Check your answers analytically using function composition and graphically.

1. j(x) = x2 − 2x+ 4, x ≤ 1. 2. k(x) =
√
x+ 2− 1

Solution.

1. The function j is a restriction of the function h from Example 1.2.1. Since the domain of j
is restricted to x ≤ 1, we are selecting only the ‘left half’ of the parabola. We see that the
graph of j passes the Horizontal Line Test and thus j is invertible.

x

y

1 2

−1

1

2

3

4

5

6

y = j(x)

6We graphed y =
√

x in Section ??.
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We now use our algorithm to find j−1(x).

y = j(x)
y = x2 − 2x+ 4, x ≤ 1
x = y2 − 2y + 4, y ≤ 1 switch x and y

0 = y2 − 2y + 4− x

y =
2±

√
(−2)2 − 4(1)(4− x)

2(1)
quadratic formula, c = 4− x

y =
2±
√

4x− 12
2

y =
2±

√
4(x− 3)
2

y =
2± 2

√
x− 3

2

y =
2
(
1±
√
x− 3

)
2

y = 1±
√
x− 3

y = 1−
√
x− 3 since y ≤ 1.

We have j−1(x) = 1 −
√
x− 3. When we simplify

(
j−1 ◦ j

)
(x), we need to remember that

the domain of j is x ≤ 1.

(
j−1 ◦ j

)
(x) = j−1(j(x))

= j−1
(
x2 − 2x+ 4

)
, x ≤ 1

= 1−
√

(x2 − 2x+ 4)− 3
= 1−

√
x2 − 2x+ 1

= 1−
√

(x− 1)2

= 1− |x− 1|
= 1− (−(x− 1)) since x ≤ 1
= x X

Checking j ◦ j−1, we get

(
j ◦ j−1

)
(x) = j

(
j−1(x)

)
= j

(
1−
√
x− 3

)
=

(
1−
√
x− 3

)2 − 2
(
1−
√
x− 3

)
+ 4

= 1− 2
√
x− 3 +

(√
x− 3

)2 − 2 + 2
√
x− 3 + 4

= 3 + x− 3
= x X
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We can use what we know from Section ?? to graph y = j−1(x) on the same axes as y = j(x)
to get

y = j(x)

y = j−1(x)

y = x

x

y

1 2 3 4 5 6

−1

1

2

3

4

5

6

2. We graph y = k(x) =
√
x+ 2−1 using what we learned in Section ?? and see k is one-to-one.

x

y

−2 −1 1 2

−2

−1

1

2

y = k(x)

We now try to find k−1.

y = k(x)
y =

√
x+ 2− 1

x =
√
y + 2− 1 switch x and y

x+ 1 =
√
y + 2

(x+ 1)2 =
(√
y + 2

)2
x2 + 2x+ 1 = y + 2

y = x2 + 2x− 1

We have k−1(x) = x2 +2x−1. Based on our experience, we know something isn’t quite right.
We determined k−1 is a quadratic function, and we have seen several times in this section
that these are not one-to-one unless their domains are suitably restricted. Theorem 1.2 tells
us that the domain of k−1 is the range of k. From the graph of k, we see that the range
is [−1,∞), which means we restrict the domain of k−1 to x ≥ −1. We now check that this
works in our compositions.
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(
k−1 ◦ k

)
(x) = k−1(k(x))

= k−1
(√
x+ 2− 1

)
, x ≥ −2

=
(√
x+ 2− 1

)2 + 2
(√
x+ 2− 1

)
− 1

=
(√
x+ 2

)2 − 2
√
x+ 2 + 1 + 2

√
x+ 2− 2− 1

= x+ 2− 2
= x X

and

(
k ◦ k−1

)
(x) = k

(
x2 + 2x− 1

)
x ≥ −1

=
√

(x2 + 2x− 1) + 2− 1
=
√
x2 + 2x+ 1− 1

=
√

(x+ 1)2 − 1
= |x+ 1| − 1
= x+ 1− 1 since x ≥ −1
= x X

Graphically, everything checks out as well, provided that we remember the domain restriction
on k−1 means we take the right half of the parabola.

y = k(x)

y = k−1(x)

x

y

−2 −1 1 2

−2

−1

1

2

Our last example of the section gives an application of inverse functions.

Example 1.2.4. Recall from Section ?? that the price-demand equation for the PortaBoy game
system is p(x) = −1.5x + 250 for 0 ≤ x ≤ 166, where x represents the number of systems sold
weekly and p is the price per system in dollars.

1. Explain why p is one-to-one and find a formula for p−1(x). State the restricted domain.

2. Find and interpret p−1(220).

3. Recall from Section ?? that the weekly profit P , in dollars, as a result of selling x systems is
given by P (x) = −1.5x2 + 170x− 150. Find and interpret

(
P ◦ p−1

)
(x).
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4. Use your answer to part 3 to determine the price per PortaBoy which would yield the maxi-
mum profit. Compare with Example ??.

Solution.

1. We leave to the reader to show the graph of p(x) = −1.5x + 250, 0 ≤ x ≤ 166, is a line
segment from (0, 250) to (166, 1), and as such passes the Horizontal Line Test. Hence, p is
one-to-one. We find the expression for p−1(x) as usual and get p−1(x) = 500−2x

3 . The domain
of p−1 should match the range of p, which is [1, 250], and as such, we restrict the domain of
p−1 to 1 ≤ x ≤ 250.

2. We find p−1(220) = 500−2(220)
3 = 20. Since the function p took as inputs the weekly sales and

furnished the price per system as the output, p−1 takes the price per system and returns the
weekly sales as its output. Hence, p−1(220) = 20 means 20 systems will be sold in a week if
the price is set at $220 per system.

3. We compute
(
P ◦ p−1

)
(x) = P

(
p−1(x)

)
= P

(
500−2x

3

)
= −1.5

(
500−2x

3

)2 +170
(

500−2x
3

)
−150.

After a hefty amount of Elementary Algebra,7 we obtain
(
P ◦ p−1

)
(x) = −2

3x
2 +220x− 40450

3 .
To understand what this means, recall that the original profit function P gave us the weekly
profit as a function of the weekly sales. The function p−1 gives us the weekly sales as a
function of the price. Hence, P ◦ p−1 takes as its input a price. The function p−1 returns the
weekly sales, which in turn is fed into P to return the weekly profit. Hence,

(
P ◦ p−1

)
(x)

gives us the weekly profit (in dollars) as a function of the price per system, x, using the weekly
sales p−1(x) as the ‘middle man’.

4. We know from Section ?? that the graph of y =
(
P ◦ p−1

)
(x) is a parabola opening down-

wards. The maximum profit is realized at the vertex. Since we are concerned only with the
price per system, we need only find the x-coordinate of the vertex. Identifying a = −2

3 and
b = 220, we get, by the Vertex Formula, Equation ??, x = − b

2a = 165. Hence, weekly profit
is maximized if we set the price at $165 per system. Comparing this with our answer from
Example ??, there is a slight discrepancy to the tune of $0.50. We leave it to the reader to
balance the books appropriately.

7It is good review to actually do this!
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1.2.1 Exercises

1. Show that the following functions are one-to-one and find the inverse. Check your answers
algebraically and graphically. Verify the range of f is the domain of f−1 and vice-versa.

(a) f(x) = 6x− 2
(b) f(x) = 5x− 3

(c) f(x) = 1− 4 + 3x
5

(d) f(x) = −
√
x− 5 + 2

(e) f(x) =
√

3x− 1 + 5
(f) f(x) = 5

√
3x− 1

(g) f(x) = x2 − 10x, x ≥ 5
(h) f(x) = 3(x+ 4)2 − 5, x ≤ −4
(i) f(x) = x2 − 6x+ 5, x ≤ 3

(j) f(x) = 4x2 + 4x+ 1, x < −1

(k) f(x) =
3

4− x

(l) f(x) =
x

1− 3x

(m) f(x) =
2x− 1
3x+ 4

(n) f(x) =
4x+ 2
3x− 6

(o) f(x) =
−3x− 2
x+ 3

2. Show that the Fahrenheit to Celsius conversion function found in Exercise ?? in Section ??
is invertible and that its inverse is the Celsius to Fahrenheit conversion function.

3. Analytically show that the function f(x) = x3 + 3x+ 1 is one-to-one. Since finding a formula
for its inverse is beyond the scope of this textbook, use Theorem 1.2 to help you compute
f−1(1), f−1(5), and f−1(−3).

4. With the help of your classmates, find a formula for the inverse of the following.

(a) f(x) = ax+ b, a 6= 0

(b) f(x) = a
√
x− h+ k, a 6= 0, x ≥ h

(c) f(x) = ax+b
cx+d , a 6= 0, b 6= 0, c 6= 0, d 6= 0

(d) f(x) = ax2 + bx+ c where a 6= 0, x ≥ − b
2a .

5. Let f(x) = 2x
x2−1

. Using the techniques in Section ??, graph y = f(x). Verify f is one-to-one
on the interval (−1, 1). Use the procedure outlined on Page 23 and your graphing calculator to
find the formula for f−1(x). Note that since f(0) = 0, it should be the case that f−1(0) = 0.
What goes wrong when you attempt to substitute x = 0 into f−1(x)? Discuss with your
classmates how this problem arose and possible remedies.

6. Suppose f is an invertible function. Prove that if graphs of y = f(x) and y = f−1(x) intersect
at all, they do so on the line y = x.

7. With the help of your classmates, explain why a function which is either strictly increasing
or strictly decreasing on its entire domain would have to be one-to-one, hence invertible.

8. Let f and g be invertible functions. With the help of your classmates show that (f ◦ g) is
one-to-one, hence invertible, and that (f ◦ g)−1(x) = (g−1 ◦ f−1)(x).

9. What graphical feature must a function f possess for it to be its own inverse?
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1.2.2 Answers

1. (a) f−1(x) =
x+ 2

6

(b) f−1(x) =
x+ 3

5
(c) f−1(x) = −5

3x+ 1
3

(d) f−1(x) = (x− 2)2 + 5, x ≤ 2

(e) f−1(x) = 1
3(x− 5)2 + 1

3 , x ≥ 5

(f) f−1(x) = 1
3x

5 + 1
3

(g) f−1(x) = 5 +
√
x+ 25

(h) f−1(x) = −
√

x+5
3 − 4

(i) f−1(x) = 3−
√
x+ 4

(j) f−1(x) = −
√

x+1
2 , x > 1

(k) f−1(x) =
4x− 3
x

(l) f−1(x) =
x

3x+ 1

(m) f−1(x) =
4x+ 1
2− 3x

(n) f−1(x) =
6x+ 2
3x− 4

(o) f−1(x) =
−3x− 2
x+ 3

3. Given that f(0) = 1, we have f−1(1) = 0. Similarly f−1(5) = 1 and f−1(−3) = −1
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