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1.1 INTRODUCTION TO FUNCTIONS

One of the core concepts in College Algebra is the function. There are many ways to describe a
function and we begin by defining a function as a special kind of relation.

DEFINITION 1.1. A relation in which each x-coordinate is matched with only one y-coordinate
is said to describe y as a function of z.

ExaMpPLE 1.1.1. Which of the following relations describe y as a function of x?

1. Rl = {(_27 l)a (173)7 (174)7 (3a _1)}
2. RQ = {(_27 l)a (173)7 (273)7 (3, _1)}

SOLUTION. A quick scan of the points in R, reveals that the z-coordinate 1 is matched with
two different y-coordinates: namely 3 and 4. Hence in R;, y is not a function of x. On the
other hand, every z-coordinate in R, occurs only once which means each z-coordinate has only one
corresponding y-coordinate. So, R, does represent y as a function of x. O

Note that in the previous example, the relation R, contained two different points with the same
y-coordinates, namely (1,3) and (2,3). Remember, in order to say y is a function of z, we just
need to ensure the same z-coordinate isn’t used in more than one point.!

To see what the function concept means geometrically, we graph R, and R, in the plane.
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The fact that the z-coordinate 1 is matched with two different y-coordinates in R, presents
itself graphically as the points (1,3) and (1,4) lying on the same vertical line, z = 1. If we turn

!We will have occasion later in the text to concern ourselves with the concept of = being a function of y. In this
case, Ry represents x as a function of y; R2 does not.
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our attention to the graph of R,, we see that no two points of the relation lie on the same vertical
line. We can generalize this idea as follows

THEOREM 1.1. The Vertical Line Test: A set of points in the plane represents y as a
function of z if and only if no two points lie on the same vertical line.

It is worth taking some time to meditate on the Vertical Line Test; it will check to see how well
you understand the concept of ‘function’ as well as the concept of ‘graph’.

ExaMPLE 1.1.2. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.
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SoLuTION. Looking at the graph of R, we can easily imagine a vertical line crossing the graph
more than once. Hence, R does not represent y as a function of . However, in the graph of S,
every vertical line crosses the graph at most once, and so S does represent y as a function of z. [

In the previous test, we say that the graph of the relation R fails the Vertical Line Test, whereas
the graph of S passes the Vertical Line Test. Note that in the graph of R there are infinitely many
vertical lines which cross the graph more than once. However, to fail the Vertical Line Test, all you
need is one vertical line that fits the bill, as the next example illustrates.

ExaMPLE 1.1.3. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.
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SOLUTION. Both S, and S, are slight modifications to the relation .S in the previous example whose
graph we determined passed the Vertical Line Test. In both S; and S, it is the addition of the
point (1,2) which threatens to cause trouble. In S, there is a point on the curve with z-coordinate
1 just below (1,2), which means that both (1,2) and this point on the curve lie on the vertical line
x = 1. (See the picture below.) Hence, the graph of S, fails the Vertical Line Test, so y is not a
function of x here. However, in S, notice that the point with z-coordinate 1 on the curve has been
omitted, leaving an ‘open circle’ there. Hence, the vertical line x = 1 crosses the graph of S, only
at the point (1,2). Indeed, any vertical line will cross the graph at most once, so we have that the
graph of S, passes the Vertical Line Test. Thus it describes y as a function of x.

S, and the line z =1

Suppose a relation F' describes y as a function of x. The sets of z- and y-coordinates are given
special names.
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DEFINITION 1.2. Suppose F' is a relation which describes y as a function of z.

e The set of the z-coordinates of the points in F' is called the domain of F'

e The set of the y-coordinates of the points in F' is called the range of F'.

We demonstrate finding the domain and range of functions given to us either graphically or via
the roster method in the following example.

ExaMPLE 1.1.4. Find the domain and range of the following functions

1. F={(-3,2),(0,1),(4,2),(5,2)}

2. G is the function graphed below:

The graph of G

SOLUTION. The domain of F' is the set of the z-coordinates of the points in F: {—3,0,4,5} and
the range of F is the set of the y-coordinates: {1,2}.2

To determine the domain and range of GG, we need to determine which z and y values occur as
coordinates of points on the given graph. To find the domain, it may be helpful to imagine collapsing
the curve to the z-axis and determining the portion of the z-axis that gets covered. This is called
projecting the curve to the z-axis. Before we start projecting, we need to pay attention to two
subtle notations on the graph: the arrowhead on the lower left corner of the graph indicates that the
graph continues to curve downwards to the left forever more; and the open circle at (1, 3) indicates
that the point (1, 3) isn’t on the graph, but all points on the curve leading up to that point are on
the curve.

2When listing numbers in a set, we list each number only once, in increasing order.
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We see from the figure that if we project the graph of G to the z-axis, we get all real numbers
less than 1. Using interval notation, we write the domain of G is (—o0,1). To determine the range
of GG, we project the curve to the y-axis as follows:
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Note that even though there is an open circle at (1, 3), we still include the y value of 3 in our
range, since the point (—1,3) is on the graph of G. We see that the range of G is all real numbers
less than or equal to 4, or, in interval notation: (—oo,4]. O

All functions are relations, but not all relations are functions. Thus the equations which de-
scribed the relations in Section 7?7 may or may not describe y as a function of . The algebraic
representation of functions is possibly the most important way to view them so we need a process
for determining whether or not an equation of a relation represents a function. (We delay the
discussion of finding the domain of a function given algebraically until Section 77.)
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ExaMPLE 1.1.5. Determine which equations represent y as a function of x:
L3492 =1
2. 22+ =1
3. 22y =1-3y

SoLUTION. For each of these equations, we solve for y and determine whether each choice of x will
determine only one corresponding value of y.

1.
B4y =1
y2 - 1— 333
Vi = V1—a3 extract square roots
y = £v1-—a3
If we substitute x = 0 into our equation for y, we get: y = £v1— 03 = +£1, so that (0,1)
and (0, —1) are on the graph of this equation. Hence, this equation does not represent y as
a function of x.
2.
2?43 1
y3 - 1— $2
3 y3 = 1 -2
y = V1—2a2
For every choice of x, the equation y = +v/1 — 22 returns only one value of y. Hence, this
equation describes y as a function of z.
3.
2’y = 1-3y
?y+3y = 1
Y (ac2 + 3) = 1 factor
1
YT 213

For each choice of x, there is only one value for y, so this equation describes y as a function

of z. .

Of course, we could always use our graphing calculator to verify our responses to the previous
example. For example, if we wanted to verify that the first equation does not represent y as a
function of x, we could enter the equation for y into the calculator as indicated below and graph.
Note that we need to enter both solutions — the positive and the negative square root — for y. The
resulting graph clearly fails the Vertical Line Test, so does not represent y as a function of x.
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1.1.1 EXERCISES

1. Determine which of the following relations represent y as a function of x. Find the domain
and range of those relations which are functions.

(a) {(=3,9), (=2,4), (=1,1), (0,0), (1,1), (2,4), (3,9)}

(b) {(=3,0),(1,6),(2,-3),(4,2),(-5,6),(4,-9), (6,2)}

(¢) {(=3,0),(=7,6),(5,5),(6,4),(4,9),(3,0)}

(d) {(1,2),(4,4),(9,6),(16,8),(25,10), (36,12),...}

(e) {(z,y) : z is an odd integer, and y is an even integer}

(f) {(z,1) : z is an irrational number}

(g) {(1,0), (2,1), (4,2), (8,3), (16,4), (32,5), ...}

(h) {..., (-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9), ...}
(1) {(=2,9): 3<y <4}

(§) {(z,3): -2 <x <4}

2. Determine which of the following relations represent y as a function of z. Find the domain
and range of those relations which are functions.
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(k) 1)

(a) y=a3 -2z (h) y=2%+4
(b) y=vz -2 () 22 +y> =4
(c) 2%y =4 () y=vi—a?
(d) 1‘2—112:1 (k) :L‘Q—yQ:
(e)y=x2x_9 (1) 23 +y> =4
(f) = =—6 (m) 2z +3y =4
(g) z=y*+4 (n) 2zy =4

. Explain why the height h of a Sasquatch is a function of its age N in years. Given that a

Sasquatch is 2 feet tall at birth, experiences growth spurts at ages 3, 23 and 57, and lives to
be about 150 years old with a maximum height of 9 feet, sketch a rough graph of the height
function.

. Explain why the population P of Sasquatch in a given area is a function of time t. What

would be the range of this function?

. Explain why the relation between your classmates and their email addresses may not be a

function. What about phone numbers and Social Security Numbers?

. The process given in Example 7?7 for determining whether an equation of a relation represents

y as a function of x breaks down if we cannot solve the equation for y in terms of . However,
that does not prevent us from proving that an equation which fails to represent y as a function
of = actually fails to do so. What we really need is two points with the same z-coordinate
and different y-coordinates which both satisfy the equation so that the graph of the relation
would fail the Vertical Line Test ?7. Discuss with your classmates how you might find such
points for the relations given below.
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(a) 23 +y® —3zy =0 (c) y* =23+ 322
(b) ot = 22 47 (@) @2+ = a5+

1.1.2 ANSWERS

1

(a) Function, domain = {-3,-2,-1,0,1, 2,3}, range = {0, 1,4, 9}.
(b) Not a function.
(c¢) Function, domain = {-7,-3,3,4,5,6}, range = {0,4,5,6,9}
(d) Function, domain = {1,4,9,16,25,36,...} = {z : = is a perfect square},
range = {2,4,6,8,10,12,...} = {y : y is a positive even integer}
e) Not a function
f) Function, domain = {x : z is irrational}, range = {1}.
g) Function, domain = {x : z = 2" for some whole number n}, range = {y : y is any whole number},
h) Function, domain = {z : z is any integer}, range = {y : y = n? for some integer n}.
i) Not a function.
j) Function, domain = [—2,4), range = {3}.

(
(
(
(
(
(

e) Function, domain = [2, 00), range = [0, c0)

f) Function, domain = (—o0, 00), range = (0, 4]

g) Not a function

h) Function, domain = [-5, —3) U (—3,3), range = (—2,—1) U [0,4)
i) Function, domain = [—2,00), range = [—3,00)

(k) Function, domain = [—5,4), range = [—4,4)
(1) Function, domain = [0, 3) U (3, 6], range = (—4, —1] U [0, 4]

(a) Function (h) Function
(b) Function (i) Not a function
(c¢) Function (j) Function
(d) Not a function (k) Not a function
(e) Function (1) Function
(f) Not a function (m) Function
(g) Not a function (n) Function
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1.2 FuNcTION NOTATION

In Definition 7?7, we described a function as a special kind of relation — one in which each x-
coordinate is matched with only one y-coordinate. In this section, we focus more on the process
by which the x is matched with the y. If we think of the domain of a function as a set of inputs
and the range as a set of outputs, we can think of a function f as a process by which each input
z is matched with only one output y. Since the output is completely determined by the input x
and the process f, we symbolize the output with function notation: ‘f(x)’, read ‘f of x.” In this
case, the parentheses here do not indicate multiplication, as they do elsewhere in algebra. This
could cause confusion if the context is not clear. In other words, f(x) is the output which results
by applying the process f to the input z. This relationship is typically visualized using a diagram
similar to the one below.

v y= (@)

Domain Range
(Inputs) (Outputs)

The value of y is completely dependent on the choice of x. For this reason, x is often called the
independent variable, or argument of f, whereas y is often called the dependent variable.

As we shall see, the process of a function f is usually described using an algebraic formula.
For example, suppose a function f takes a real number and performs the following two steps, in
sequence

1. multiply by 3
2. add 4

If we choose 5 as our input, in step 1 we multiply by 3 to get (5)(3) = 15. In step 2, we add 4 to
our result from step 1 which yields 15+4 = 19. Using function notation, we would write f(5) = 19
to indicate that the result of applying the process f to the input 5 gives the output 19. In general,
if we use x for the input, applying step 1 produces 3x. Following with step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(z) = 3z + 4. Notice that to check our
formula for the case z = 5, we replace the occurrence of z in the formula for f(z) with 5 to get
f(5) =3(5) +4=15+4 =19, as required.
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ExaAMPLE 1.2.1. Suppose a function g is described by applying the following steps, in sequence
1. add 4
2. multiply by 3

Determine ¢(5) and find an expression for g(z).

SOLUTION. Starting with 5, step 1 gives 5+4 = 9. Continuing with step 2, we get (3)(9) = 27. To
find a formula for g(z), we start with our input z. Step 1 produces x +4. We now wish to multiply
this entire quantity by 3, so we use a parentheses: 3(x +4) = 3x 4+ 12. Hence, g(z) = 3z + 12. We
can check our formula by replacing x with 5 to get g(5) =3(5) +12=15+12 =27V O

Most of the functions we will encounter in College Algebra will be described using formulas like
the ones we developed for f(z) and g(z) above. Evaluating formulas using this function notation
is a key skill for success in this and many other math courses.

EXAMPLE 1.2.2. For f(z) = —? + 3z + 4, find and simplify
L f(=1), £(0), £(2)
2. f(2z), 2f(x)
3. fl+2), flx)+2, flz) + f(2)

SOLUTION.

1. To find f(—1), we replace every occurrence of z in the expression f(z) with —1
f(=1) = —(-1)*+3(-1)+4

—(1)+(-3)+4
0

Similarly, £(0) = —(0)2 +3(0) +4 =4, and f(2) = —(2)2+3(2) +4= -4+ 6+ 4 =6.

2. To find f(2x), we replace every occurrence of x with the quantity 2x

f2z) = —(22)%+3(2z) + 4
= —(42%) + (62) + 4
—42% + 62 +4

The expression 2f(x) means we multiply the expression f(z) by 2
2f(z) = 2(—a®+3z+4)
= 222 +6x+38

Note the difference between the answers for f(2z) and 2f(z). For f(2z), we are multiplying
the input by 2; for 2f(z), we are multiplying the output by 2. As we see, we get entirely
different results. Also note the practice of using parentheses when substituting one algebraic
expression into another; we highly recommend this practice as it will reduce careless errors.
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3. To find f(x + 2), we replace every occurrence of z with the quantity = + 2

flz+2) = —(z+2)?+3(x+2)+4
= —(2®*+42+4)+(Bzr+6)+4
= 2?2 —4r—-4+3x+6+4
—22—-2+6
To find f(x) + 2, we add 2 to the expression for f(x)

f@)+2 = (-2 +3z+4)+2
= —2>+32+6
Once again, we see there is a dramatic difference between modifying the input and modifying

the output. Finally, in f(x) + f(2) we are adding the value f(2) to the expression f(z).
From our work above, we see f(2) = 6 so that

f@)+f(2) = (-2 +3z+4)+6
= —224+3z+10

Notice that f(x+2), f(z) +2 and f(x)+ f(2) are three different expressions. Even though
function notation uses parentheses, as does multiplication, there is no general ‘distributive

property’ of function notation. O
2
Suppose we wish to find 7(3) for r7(z) = — i 9 Substitution gives
22—
23) 6
"G o

which is undefined. The number 3 is not an allowable input to the function r; in other words, 3 is
not in the domain of . Which other real numbers are forbidden in this formula? We think back
to arithmetic. The reason r(3) is undefined is because substitution results in a division by 0. To
determine which other numbers result in such a transgression, we set the denominator equal to 0
and solve

2-9 = 0
2 = 9
\/:? = \/§ extract square roots
r = =+3

As long as we substitute numbers other than 3 and —3, the expression r(z) is a real number.
Hence, we write our domain in interval notation as (—oo, —3) U (—3,3) U (3,00). When a formula
for a function is given, we assume (unless the contrary is explicitly stated) that the domain of
the function is the set of all real numbers for which the formula makes arithmetic sense when the
number is substituted into the formula. This set of numbers is often called the implied domain'
of the function. At this stage, there are only two mathematical sins we need to avoid: division by
0 and extracting even roots of negative numbers. The following example illustrates these concepts.

Lor, ‘implicit domain’
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ExAMPLE 1.2.3. Find the domain? of the following functions.

2 4
1 T) = 4. r(x) = —————
z—3
2. g(z) =v4 -3z 42
T
3. h(z) =v/4 -3z 5. I(x) = -
SOLUTION.

1. In the expression for f, there are two denominators. We need to make sure neither of them is
0. To that end, we set each denominator equal to 0 and solve. For the ‘small’ denominator,
we get © — 3 = 0 or x = 3. For the ‘large’ denominator

4x
1-— =0
z—3
1 - dx
z—3
(1)(z - 3) 1 ) (237 clear denominat
x — = clear denominators
r—3
r—3 = 4z
-3 = 3z
-1 = =z
So we get two real numbers which make denominators 0, namely x = —1 and = = 3. Our

domain is all real numbers except —1 and 3: (—oo0, —1) U (—1,3) U (3,00).

2. The potential disaster for g is if the radicand? is negative. To avoid this, we set 4 — 3z > 0

4—-3x > 0
4 > 3z
4 >
- x
3 2
Hence, as long as z < %, the expression 4 — 3z > 0, and the formula g(x) returns a real

number. Our domain is (—oo, %]

3. The formula for h(x) is hauntingly close to that of g(z) with one key difference — whereas
the expression for g(z) includes an even indexed root (namely a square root), the formula

2The word ‘implied’ is, well, implied.
3The ‘radicand’ is the expression ‘inside’ the radical.
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for h(x) involves an odd indexed root (the fifth root.) Since odd roots of real numbers (even
negative real numbers) are real numbers, there is no restriction on the inputs to h. Hence,
the domain is (—o0, 00).

4. To find the domain of r, we notice that we have two potentially hazardous issues: not only
do we have a denominator, we have a square root in that denominator. To satisfy the square
root, we set the radicand z 4+ 3 > 0 so z > —3. Setting the denominator equal to zero gives

6—+vr+3 = 0

6 = Vo+3
@ = (VaT)’
36 = 43

33 = =z

Since we squared both sides in the course of solving this equation, we need to check our
answer. Sure enough, when = 33, 6 — vz +3 = 6 — /36 = 0, and so z = 33 will cause
problems in the denominator. At last we can find the domain of r: we need z > —3, but
x # 33. Our final answer is [—3,33) U (33, 00).

5. It’s tempting to simplify I(z) = % = 3z, and, since there are no longer any denominators,

claim that there are no longer any restrictions. However, in simplifying I(z), we are assuming
x # 0, since g is undefined.* Proceeding as before, we find the domain of I to be all real

numbers except 0: (—o0,0) U (0, 00). O

It is worth reiterating the importance of finding the domain of a function before simplifying,
as evidenced by the function I in the previous example. Even though the formula I(x) simplifies to
3z, it would be inaccurate to write I(x) = 3z without adding the stipulation that x # 0. It would
be analogous to not reporting taxable income or some other sin of omission.

Our next example shows how a function can be used to model real-world phenomena.

ExXAMPLE 1.2.4. The height h in feet of a model rocket above the ground ¢ seconds after lift off is
given by

_5¢2 i <t <
h(t): 5t + 100, if 0<t<20
0, if t>20

Find and interpret h(10) and h(60).

SOLUTION. There are a few qualities of h which may be off-putting. The first is that, unlike
previous examples, the independent variable is ¢, not x. In this context, ¢ is chosen because it
represents time. The second is that the function is broken up into two rules: one formula for values
of t between 0 and 20 inclusive, and another for values of ¢ greater than 20. To find h(10), we first
notice that 10 is between 0 and 20 so we use the first formula listed: h(t) = —5¢> + 100¢t. Hence,

4More precisely, the fraction % is an ‘indeterminant form’. Much time will be spent in Calculus wrestling with
such creatures.
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h(10) = —5(10)% + 100(10) = 500. In terms of the model rocket, this means that 10 seconds after
lift off, the model rocket is 500 feet above the ground. To find h(60), we note that 60 is greater
than 20, so we use the rule h(¢) = 0. This function returns a value of 0 regardless of what value is
substituted in for ¢, so h(60) = 0. This means that 60 seconds after lift off, the rocket is 0 feet above
the ground; in other words, a minute after lift off, the rocket has already returned to earth. O

The type of function in the previous example is called a piecewise-defined function, or ‘piece-
wise’ function for short. Many real-world phenomena (e.g. postal rates,” income tax formulas®)
are modeled by such functions. Also note that the domain of A in the above example is restricted
to t > 0. For example, h(—3) is not defined because ¢t = —3 doesn’t satisfy any of the conditions
in any of the function’s pieces. There is no inherent arithmetic reason which prevents us from
calculating, say, —5(—3)2 + 100(—3), it’s just that in this applied setting, t = —3 is meaningless.
In this case, we say h has an applied domain” of [0, 00)

1.2.1 EXERCISES

1. Suppose f is a function that takes a real number = and performs the following three steps in
the order given: (1) square root; (2) subtract 13; (3) make the quantity the denominator of
a fraction with numerator 4. Find an expression for f(z) and find its domain.

2. Suppose g is a function that takes a real number = and performs the following three steps in
the order given: (1) subtract 13; (2) square root; (3) make the quantity the denominator of
a fraction with numerator 4. Find an expression for g(x) and find its domain.

3. Suppose h is a function that takes a real number x and performs the following three steps in
the order given: (1) square root; (2) make the quantity the denominator of a fraction with
numerator 4; (3) subtract 13. Find an expression for h(x) and find its domain.

4. Suppose k is a function that takes a real number x and performs the following three steps
in the order given: (1) make the quantity the denominator of a fraction with numerator 4;
(2) square root; (3) subtract 13. Find an expression for k(x) and find its domain.

5. For f(z) = 22 — 3z + 2, find and simplify the following:

(a) f(3) (d) f(4a) (g) flz—4)
(b) f(-1) (e) 4f() (h) f(z)—4
(c) £(3) (f) f(—=) (i) f(a?)

6. Repeat Exercise ?? above for f(z) = —
x

7. Let f(x) = 322 4+ 3z — 2. Find and simplify the following:

®See the United States Postal Service website http://www.usps.com/prices/first-class-mail-prices.htm
See the Internal Revenue Service’s website http://www.irs.gov/pub/irs-pdf/i1040tt.pdf
"or, ‘explicit domain’
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(a) f(2) (d) 2f(a) (&) f(2)
(b) f(=2) (e) fla+2) (h) f(2a)
(c) f(2a) () fla) + £(2) (i) fla+h)
T+ 5, r <=3
8 Let f(z) =< V9—22, —3<z<3
—x + 5, >3
(a) f(—4) (c) F(3) (e) f(=3.001)
(b) f(=3) (d) f(3.001) (f) f(2)
2 if z<-1
9. Let f(z) =< vV1—22 if —1<z<1 Compute the following function values.
z if x>1
(a) f(4) (d) £(0)
(b) f(=3) (e) f(=1)
(c) f(1) (f) f(—0.999)
10. Find the (implied) domain of the function.
(a) f(z)=a*— 1323 + 5622 — 19 () s(t) = ——
(b) f(z)=a?+4 ’f‘f
(¢) f(z) = xﬁfg‘ﬁ (k) Q(r) = ¢
d ) =+/6x —2 __ Y
()f()_\/ ) (1)13(9)_\/m
I Ve () a(y) = 3/~
(1) f(z) = Vo =2 y-8
(2) f(x):4_ Zx_Q (n) A(x):\/xl—7+\/9—x
AL (0) g(v) =
() fla) = Voo 2 -
¥6x — w—38
0) f) = e ) uw) = 2

11. The population of Sasquatch in Portage County can be modeled by the function P(t) =

150¢
t+15’

where t = 0 represents the year 1803. What is the applied domain of P? What range

“makes sense” for this function? What does P(0) represent? What does P(205) represent?
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12. Recall that the integers is the set of numbers Z = {...,—3,-2,-1,0,1,2,3,...}.8 The
greatest integer of x, |z, is defined to be the largest integer k with k < z.

(a) Find [0.785], [117], [~2.001], and |7 + 6]
(b) Discuss with your classmates how |z | may be described as a piece-wise defined function.
HINT: There are infinitely many pieces!

(¢) Is la+b] = |a] + |b] always true? What if a or b is an integer? Test some values, make
a conjecture, and explain your result.

13. We have through our examples tried to convince you that, in general, f(a + b) # f(a) +
f(b). It has been our experience that students refuse to believe us so we’ll try again with a
different approach. With the help of your classmates, find a function f for which the following
properties are always true.

(a) f(0)=f(=1+1) = f(=1) + f(1)

(b) f(5) =F(2+3)=/f(2)+ [(3)

(¢) f(=6) = f(0—6) = f(0) - f(6)

(d) f(a+0b)= f(a)+ f(b) regardless of what two numbers we give you for a and b.

How many functions did you find that failed to satisfy the conditions above? Did f(z) = 2

1
work? What about f(z) = /x or f(z) = 3z + 7 or f(z) = =7 Did you find an attribute
T

common to those functions that did succeed? You should have, because there is only one
extremely special family of functions that actually works here. Thus we return to our previous
statement, in general, f(a+b) # f(a) + f(b).

1.2.2 ANSWERS

4 4
1. = — 3. h(x) =—=—13
fla) = = @)=
Domain: [0,169) U (169, co) Domain: (0, c0)
4 4
2. = 4. k(z)=4/—- -1
Domain: (13, 00) Domain: (0, c0)
5. (a) 2 (d) 1622 — 122 + 2 (g) 22— 11z + 30
(b) 6 (e) 42% — 122 +8 (h) 2% — 32 —2
1
() =5 (f) 2%+ 3z +2 (i) o* — 322 +2

8The use of the letter Z for the integers is ostensibly because the German word zahlen means ‘to count.’
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10.

11.

12.
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() o 0 -

(b) —2 2 2

() 18 &) =15 = 12 1 480 — 64
27 2 2 — 4g3

D N

(@ 5 0

(a) 16 (f) 3a®+ 3a + 14

(b) 4 (g) 2+5-2

(c) 12a% + 6a — 2 3a% | 3a _

(d) 6a® + 6a — 4 (h) 22+2 )

(6) 3a% + 150 1 14 (i) 3a2 + 6ah + 3h% +3a+3h — 2

(a) f(—4)=1 (c) f(3)=0 (e) f(—3.001) =1.999

(b) f(=3)=2 (d) £(3.001) = 1.999 () £(2) = V5

(a) f(4)=4 (d) f(0)=

(b) f(=3)=9 (e) f(— 1) 1

(c) f(1)=0 (f) f(—0.999) ~ 0.0447101778

(a) (—o0,00) (i) (—o0,00)

(b) (00, 00) () (—00,8)U(8,00)

(c¢) (=00, —6)U(=6,6) U (6,00) (k) [0,8) U (8,00)

(d) [3,00) (1) (8,00)

(e) (5,00) (m) (—o0,8) U (8,00)

(f) (=00, 00) (m) [7,9]

(&) [3.3)U(3,00) (0) (=00, =3) U (=35,0) U (0,3) U (3,0)

(h) [3,6) U (6,00) (p) [0,25) U (25,00)

The applied domain of P is [0, 00). The range is some subset of the natural numbers because
we cannot have fractional Sasquatch. This was a bit of a trick question and we’ll address the
notion of mathematical modeling more thoroughly in later chapters. P(0) = 0 means that
there were no Sasquatch in Portage County in 1803. P(205) &~ 139.77 would mean there were
139 or 140 Sasquatch in Portage County in 2008.

(a) [0.785] =0, [117| =117, |[~2.001| = —3, and |7 + 6] =9
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1.3 FUNCTION ARITHMETIC

In the previous section we used the newly defined function notation to make sense of expressions
such as ‘f(z) + 2’ and ‘2f(x)’ for a given function f. It would seem natural, then, that functions
should have their own arithmetic which is consistent with the arithmetic of real numbers. The
following definitions allow us to add, subtract, multiply and divide functions using the arithmetic
we already know for real numbers.

Function Arithmetic

Suppose f and g are functions and x is an element common to the domains of f and g.
e The sum of f and g, denoted f + g, is the function defined by the formula:
(f +9)(x) = f(z) + g(x)
e The difference of f and g, denoted f — g, is the function defined by the formula:
(f = 9)(x) = f(z) — g(x)
e The product of f and g, denoted fg, is the function defined by the formula:

(f9)(x) = f(x)g(x)

e The quotient of f and g, denoted i, is the function defined by the formula:
g
f [z
(£) =12,
9 9(x)
provided g(z) # 0.

In other words, to add two functions, we add their outputs; to subtract two functions, we
subtract their outputs, and so on.

1
EXAMPLE 1.3.1. Let f(z) = 622 — 2z and g(x) = 3 — —. Find and simplify expressions for for the
X

following functions. In addition, find the domain of each of these functions.

L (f+9)(x) 3. (fg)(x)

2 (g f)() 1 (49) @
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SOLUTION.

1. (f + g)(z) is defined to be f(z) + g(x). To that end, we get

CHAPTER 1. FUNCTIONS

(f+9)(x) = flz)+g(z)
1
= (62? —2z) + (3 - )
x
9 1
= 6z —2x+3——
T
62> 222 3x 1 .
= — - — 4 — = get common denominators
x x x x
623 — 222 4+ 3z — 1

xT

To find the domain of (f 4+ g) we do so before we simplify, that is, at the step

1

(62 — 2z) + (3 - m)

We see x # 0, but everything else is fine. Hence, the domain is (—o0,0) U (0, 00).

2. (g — f)(x) is defined to be g(z) — f(z). To that end, we get

(9— ) = glx) - f(=)
= <3—i>—(6x2—2x)

1 2
= 3———6a22+2

x

3r 1 623 222

= 7———74—7

T T T T

B 623 +22%2+3x—1
x

Looking at the expression for (g — f) before we simplified

<3 - 1> — (62* — 2z)

X

get common denominators

we see, as before, z # 0 is the only restriction. The domain is (—o0,0) U (0, 00).
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3. (fg)(zx) is defined to be f(x)g(z). Substituting yields

(f9)(x)

= f(@)g(z)

= (62® —2x) <3 — i)
— (622 — 22) <3xx_ 1)

<2:c 3z —1) ) <3x—1>
= factor
T

_ (2‘5(3“””_1 > (3 = 1) cancel

= 2(3z —1)?

= 2(92® — 6z +1)

= 1822 - 12z +2

To determine the domain, we check the step just after we substituted

(62* — 2z) (3 — ;)

which gives us, as before, the domain: (—o00,0) U (0, 00).

(¢

9

> (x) is defined to be 9(z)

622 — 2z

Thus we have

flx)

(622 — 2x) x
3z —1

(622 — 2x) x

simplify complex fractions

23
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3r—1
= — factor
222(3x — 1)
1

222(3z—T1)
1
222

To find the domain, we consider the first step after substitution:

1
3_ =
x
622 — 2z

To avoid division by zero in the ‘little’ fraction, %, we need z # 0. For the ‘big’ fraction we

set 622 — 22 = 0 and solve: 2z(3z — 1) = 0 and get = = 0, . Thus we must exclude z = 1 as

well, resulting in a domain of (—oo,0) U (0, %) U (%, oo). O

We close this section with concept of the difference quotient of a function. It is a critical
tool for Calculus and also a great way to practice function notation.'

DEFINITION 1.3. Given a function, f, the difference quotient of f is the expression:

flz+h) - f(z)
h

ExaMpPLE 1.3.2. Find and simplify the difference quotients for the following functions

1. flx)=2%—2—2 9 g(x)ZQi-l
x

SOLUTION.

1. To find f(x + h), we replace every occurrence of x in the formula f(z) = 22 — x — 2 with the
quantity (x + h) to get

flx+h) = (x+h)?—(x+h)—2
= 224 2ch+h2—z—h—2.

So the difference quotient is

You may need to brush up on your Intermediate Algebra skills, as well.
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fla+h)—fx) (2 +2h+h*—x—h—2)— (2® -z —2)
N h
B+ 2h+hP—z—h—2—2*+a+2
B h
_ 2sh+h*—h
N h
h(2 h—1
= (x—;) factor
K2z +h-1)
= — cancel
= 2x+h-1
3
2. To find g(x + h), we replace every occurrence of z in the formula g(z) = 2o+ 1 with the
quantity (x + h)
3
h) = —/———
g(x+h) 2(z + h) + 1
_ 3
2042k + 1
which yields
3 3
glx+h)—g(x) _ 2042h+1 2a+1
h 3 h_ 3
_ 2242h+1 220+1 (2e+2h+1DQRr+1)
h 2z +2h +1)(2z +1)

32z +1)—3(2x+2h+1)
h(2x +2h +1)(2x + 1)
6x + 3 — 6z — 6h — 3

h(2x +2h +1)(22 + 1)
—6h

h(2x 4+ 2h +1)(2z + 1)
—6/

K2z +2h+1)(2z + 1)
—6

(22 +2h+1)(2z+ 1)
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For reasons which will become clear in Calculus, we do not expand the denominator. ]

1.3.1 EXERCISES

1. Let f(z) = vz, g(x) =2+ 10 and h(z) = é

(a) Compute the following function values.

i (f+9)4) ii. (g—h)(7) iii. (fh)(25) v, <Z> 3)
(b) Find the domain of the following functions then simplify their expressions.
i (f +9)(a) i (fh)(a) v (3) (@)
i (9 h)() A <g) (@) vio (b= f)()
2. Let f(x) =3z —1, g(z) =222 =3z — 2 and h(z) = 5 Ex
(a) Compute the following function values.
L (f+9@) ii. (9 —h)(1) iii. () (0) iv. (Z) (-1)
(b) Find the domain of the following functions then simplify their expressions.
i (f-9)) ii. (gh)(x) i @ (2) iv. (i) (2)
3. Let f(x) = v6r —2, g(a) = #* ~ 36, and h(r) = L :
(a) Compute the following function values.
L (f+90) i @ () v (g I
i (9 h)(8) iv. (fh)(8) vi <g) (-12)
(b) Find the domain of the following functions and simplify their expressions.
L (f+9)() i (;) () v (g 1)@
ii. (g —h)(@) iv. (fh)() vi (g> (=)

flz+h) - f(z)
h

4. Find and simplify the difference quotient for the following functions.
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(a) f(x)=22-5

(b) f(z)=-3z+5

(c) f(z) =6

(d) f(z) =322 -2z

(e) f(z)=—a?+22—1
(f) flz)=23+1

(&) Fa) ="

1.3.2 ANSWERS

L (a) 1L (f+g)4)=16 (9—
(b) i (f+g)(z)=+vVr+2+10
Domain: [0, c0) )
ii. (g— )(m)—x—l—l()—;
Domain: (—o0,0) U (0, 00)
i, (/1)) = -
Domain: (0, 00)
2. (a) i (f+g)4)=23 i (g—
®) i (f—g)(x) =222+ 3z +
Domain: [0, c0)
ii. (gh)(x) =—6x—3
Domain: (—o00,2) U (2,00)
3. (a) L (f+9)3)=-23
i (9 - W) =

27
) fla) = 1
() fla) = 5
(3) fl@)=va ?
(k) f(x) =mz+b where m #0
(1) f(z) =ax®+bxr+c where a #0
h)(7) = g i (fR)25) =2 . (;L) (3) = %
. h 1
iv. (g) (x) = T@ 1 10)
Domain: (—oo,—10)U(—10,0)U(0, c0)
v (7) @ =2+ 10
Domain: (—o0,0) U (0, 00)
vi(h- @)= -7
Domain: (0, 00)
R)(1) = =6 ; _ 9 . (h 1
/) i, (/h)(0) = (g) (=1
3Vr+1 .. (f 3z -1
VT iii. <g> () = 57 37 3
Domain: [0,2) U (2,00)
v (1) @) = oy +Je+2va -3
Domain: [0,2) U (2,00)
V22 161
iii. <£> (4) = 50 v. (g+h)(—4) = =
. (h 1
v, () = i (B) e -

2Rationalize the numerator. It won’t look ‘simplified’ per se, but work through until you can cancel the ‘h’.
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i (f+9g)(x) =2?—36+ 6z —2 - (fh)(a:):\/6x_2
x—4

. 1
Domain: [,oo) 1
3 Domain: {3,4) U (4, 00)

1
ii. (g—h)(z)=22-36—
g =h)i) % r—4 v. (g+h)(x) = 2% — 36 + 14
Domain: (—o0,4) U (4, 00) 5 b (o) U (4 x)—
. <§> (x) = 7962636__362 . (h> @) = o
. g (z — 4) (2* — 36)
Domain: [,6) U (6, 00) Domain:
’ (~50,~6) U (=6,4) U (4,6) U (6, )
4. (a) 2 3
(b) —3 () (1—x—h)(1—2x)
9
c) 0 i
((d; 62 + 3h — 1 R CE R
1
() =2z —h+2 e
(f) 322 + 3zh + h? ) vht Ve
2 m
(g) R (1) 2az +ah+b

1.4 GRAPHS OF FUNCTIONS

In Section ?? we defined a function as a special type of relation; one in which each z-coordinate
was matched with only one y-coordinate. We spent most of our time in that section looking at
functions graphically because they were, after all, just sets of points in the plane. Then in Section
7?7 we described a function as a process and defined the notation necessary to work with functions
algebraically. So now it’s time to look at functions graphically again, only this time we’ll do so
with the notation defined in Section ?7. We start with what should not be a surprising connection.

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(x). That is, the
point (x,y) is on the graph of f if and only if y = f(x).

EXAMPLE 1.4.1. Graph f(z) = 2> — 2 — 6.

SoLuTION. To graph f, we graph the equation y = f(x). To this end, we use the techniques
outlined in Section ?7. Specifically, we check for intercepts, test for symmetry, and plot additional
points as needed. To find the z-intercepts, we set y = 0. Since y = f(x), this means f(z) = 0.
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> —2—6
= 22-2—-6

(x —3)(z+2) factor
r—3=0 or x4+2=0

r = —-2,3

f=

S O —

So we get (—2,0) and (3,0) as z-intercepts. To find the y-intercept, we set x = 0. Using
function notation, this is the same as finding f(0) and f(0) = 02 —0—6 = —6. Thus the y-intercept
is (0, —6). As far as symmetry is concerned, we can tell from the intercepts that the graph possesses
none of the three symmetries discussed thus far. (You should verify this.) We can make a table
analogous to the ones we made in Section 77, plot the points and connect the dots in a somewhat
pleasing fashion to get the graph below on the right.

z || f(z) | (z, f(z)
-3 6| (—3,6
) 0| (=2,0
—1|| —4(-1,-4

—6| (0,—6

\
(=)
—~

\
=2

~— |~ |~ |~ |~ |~ |~ |~ [~

Graphing piecewise-defined functions is a bit more of a challenge.

4—22 if z<1

EXAMPLE 1.4.2. Graph: f(z) =
ph: (@) {x—?), if x>1

SOLUTION. We proceed as before: finding intercepts, testing for symmetry and then plotting
additional points as needed. To find the z-intercepts, as before, we set f(x) = 0. The twist is that
we have two formulas for f(z). For z < 1, we use the formula f(x) = 4 — 22. Setting f(z) = 0
gives 0 = 4 — 2, so that = +2. However, of these two answers, only 2 = —2 fits in the domain
x < 1 for this piece. This means the only z-intercept for the x < 1 region of the z-axis is (—2,0).
For z > 1, f(x) = x — 3. Setting f(x) = 0 gives 0 = x — 3, or x = 3. Since x = 3 satisfies the
inequality x > 1, we get (3,0) as another z-intercept. Next, we seek the y-intercept. Notice that
x = 0 falls in the domain < 1. Thus f(0) = 4 — 0> = 4 yields the y-intercept (0,4). As far
as symmetry is concerned, you can check that the equation y = 4 — 22 is symmetric about the
y-axis; unfortunately, this equation (and its symmetry) is valid only for x < 1. You can also verify
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y = x — 3 possesses none of the symmetries discussed in the Section ?7?7. When plotting additional
points, it is important to keep in mind the restrictions on z for each piece of the function. The
sticking point for this function is x = 1, since this is where the equations change. When x = 1, we
use the formula f(x) = x — 3, so the point on the graph (1, f(1)) is (1, —2). However, for all values
less than 1, we use the formula f(z) = 4 — 2. As we have discussed earlier in Section ??, there is
no real number which immediately precedes = 1 on the number line. Thus for the values = = 0.9,
x =0.99, x = 0.999, and so on, we find the corresponding y values using the formula f(z) = 4 —22.
Making a table as before, we see that as the z values sneak up to = 1 in this fashion, the f(z)
values inch closer and closer! to 4 — 12 = 3. To indicate this graphically, we use an open circle at
the point (1,3). Putting all of this information together and plotting additional points, we get

x| f(z) (z, f(2))
09 319 | (09,319
0.99 || ~3.02 | (0.99,3.02)
0.999 || ~ 3.002 | (0.999, 3.002)

O]

In the previous two examples, the z-coordinates of the z-intercepts of the graph of y = f(x)
were found by solving f(x) = 0. For this reason, they are called the zeros of f.

DEFINITION 1.4. The zeros of a function f are the solutions to the equation f(z) = 0. In other
words, z is a zero of f if and only if (x,0) is an x-intercept of the graph of y = f(x).

Of the three symmetries discussed in Section ?7, only two are of significance to functions:
symmetry about the y-axis and symmetry about the origin.? Recall that we can test whether the
graph of an equation is symmetric about the y-axis by replacing x with —z and checking to see
if an equivalent equation results. If we are graphing the equation y = f(x), substituting —z for
x results in the equation y = f(—z). In order for this equation to be equivalent to the original
equation y = f(z) we need f(—z) = f(z). In a similar fashion, we recall that to test an equation’s
graph for symmetry about the origin, we replace x and y with —z and —y, respectively. Doing

"We’ve just stepped into Calculus here!
2Why are we so dismissive about symmetry about the z-axis for graphs of functions?
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this substitution in the equation y = f(z) results in —y = f(—=z). Solving the latter equation for
y gives y = —f(—x). In order for this equation to be equivalent to the original equation y = f(x)
we need — f(—x) = f(x), or, equivalently, f(—x) = —f(x). These results are summarized below.

Steps for testing if the graph of a function possesses symmetry

The graph of a function f is symmetric:

e About the y-axis if and only if f(—x) = f(x) for all z in the domain of f.

e About the origin if and only if f(—z) = —f(z) for all z in the domain of f.

For reasons which won’t become clear until we study polynomials, we call a function even if
its graph is symmetric about the y-axis or odd if its graph is symmetric about the origin. Apart
from a very specialized family of functions which are both even and odd,? functions fall into one of
three distinct categories: even, odd, or neither even nor odd.

EXAMPLE 1.4.3. Analytically determine if the following functions are even, odd, or neither even
nor odd. Verify your result with a graphing calculator.

) . 5%
L@ =50 i) =5 s
o . _ .2 T
ox

SOLUTION. The first step in all of these problems is to replace x with —x and simplify.

1.

) = 5
fe2) = 5=
fea) = 5y
fl-x) = f@)

Hence, f is even. The graphing calculator furnishes the following;:

3 Any ideas?
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Flokl Flokz Flok=
SR | = R ] |
wNe=
W=
why=
wHe=
~NE=
W=
This suggests? the graph of f is symmetric about the y-axis, as expected.
2.
ox
9w = 5
__5(=x)
g(—l‘) - 9 (—QZ)Q
-5z
90m) = 5o

It doesn’t appear that g(—x) is equivalent to g(z). To prove this, we check with an z value.
After some trial and error, we see that g(1) = 5 whereas g(—1) = —5. This proves that g is
not even, but it doesn’t rule out the possibility that g is odd. (Why not?) To check if g is
odd, we compare g(—x) with —g(x)

G ——
bz
22

—9(z) = g(-=)

Hence, g is odd. Graphically,

Flati Flotz Flakz
WU BESEACZ—HED
wWe=
wWar=
wy=
wWe=
W E=
MW=

The calculator indicates the graph of g is symmetric about the origin, as expected.

4Quggests’ is about the extent of what a graphing calculator can do.
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3.
o =
5(—x
M) =

Once again, h(—z) doesn’t appear to be equivalent to h(z). We check with an z value, for
example, h(1) =5 but h(—1) = —32. This proves that h is not even and it also shows % is not
odd. (Why?) Graphically,

Flati Flaotz Flakz
~1ESEACZ2-R"5 01
wWe=
wWr=
wy=
wWe=
W E=
W=

The graph of h appears to be neither symmetric about the y-axis nor the origin.

4.
i(z) = 2305—3:3:3
T e
T s gy
. —bx
i(=2) = —2x + 3

The expression i(—z) doesn’t appear to be equivalent to i(z). However, after checking some
x values, for example z = 1 yields i(1) = 5 and i(—1) = 5, it appears that i(—z) does, in
fact, equal i(x). However, while this suggests i is even, it doesn’t prove it. (It does, however,
prove ¢ is not odd.) To prove i(—z) = i(x), we need to manipulate our expressions for i(x)
and i(—z) and show they are equivalent. A clue as to how to proceed is in the numerators:
in the formula for i(x), the numerator is 5z and in i(—x) the numerator is —5z. To re-write
i(z) with a numerator of —5x, we need to multiply its numerator by —1. To keep the value
of the fraction the same, we need to multiply the denominator by —1 as well. Thus

%5
2r — a3
(—1)5x
(-1) (2z — 2?)
—5x
—2x + a3

i(z) =
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Hence, i(x) = i(—x), so i is even. The calculator supports our conclusion.

Floti Flotz Flokz
~W1ESEAC2E-E3 00
wWe=
wWr=
~Wy=
wWe=
W E=
W=

The expression for j(—x) doesn’t seem to be equivalent to j(x), so we check using x = 1 to
get j(1) = —ﬁ and j(—1) = ﬁ. This rules out j being even. However, it doesn’t rule out
j being odd. Examining —j(x) gives

2 X

. _ _z
. B , X )
- = (22—
i@ ( 100
—j(z) = -2+ L4
= 100
The expression —j(x) doesn’t seem to match j(—x) either. Testing x = 2 gives j(2) = %

and j(—2) = %, so j is not odd, either. The calculator gives:

Flati Flaotz Flakz
WBRT2-Ro188-1
wWe=
wWr=
wy=
~We=
W E=
W=

The calculator suggests that the graph of j is symmetric about the y-axis which would imply
that j is even. However, we have proven that is not the case. O
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There are two lessons to be learned from the last example. The first is that sampling function
values at particular x values is not enough to prove that a function is even or odd — despite the
fact that j(—1) = —j(1), j turned out not to be odd. Secondly, while the calculator may suggest
mathematical truths, it is the algebra which proves mathematical truths.’

1.4.1 GENERAL FUNCTION BEHAVIOR

The last topic we wish to address in this section is general function behavior. As you shall see in
the next several chapters, each family of functions has its own unique attributes and we will study
them all in great detail. The purpose of this section’s discussion, then, is to lay the foundation for
that further study by investigating aspects of function behavior which apply to all functions. To
start, we will examine the concepts of increasing, decreasing, and constant. Before defining
the concepts algebraically, it is instructive to first look at them graphically. Consider the graph of
the function f given on the next page.

Reading from left to right, the graph ‘starts’ at the point (—4,—3) and ‘ends’ at the point
(6,5.5). If we imagine walking from left to right on the graph, between (—4,—3) and (—2,4.5), we
are walking ‘uphill’; then between (—2,4.5) and (3, —8), we are walking ‘downhill’; and between
(3,—8) and (4,—6), we are walking ‘uphill” once more. From (4, —6) to (5, —6), we ‘level off’, and
then resume walking ‘uphill’ from (5, —6) to (6,5.5). In other words, for the x values between —4
and —2 (inclusive), the y-coordinates on the graph are getting larger, or increasing, as we move
from left to right. Since y = f(z), the y values on the graph are the function values, and we say that
the function f is increasing on the interval [—4, —2]. Analogously, we say that f is decreasing
on the interval [—2,3| increasing once more on the interval [3,4], constant on [4,5], and finally
increasing once again on [5,6]. It is extremely important to notice that the behavior (increasing,
decreasing or constant) occurs on an interval on the z-axis. When we say that the function f is
increasing on [—4, —2] we do not mention the actual y values that f attains along the way. Thus,
we report where the behavior occurs, not to what extent the behavior occurs.® Also notice that
we do not say that a function is increasing, decreasing or constant at a single x value. In fact,
we would run into serious trouble in our previous example if we tried to do so because z = —2
is contained in an interval on which f was increasing and one on which it is decreasing. (There’s
more on this issue and many others in the exercises.)

®0Or, in other words, don’t rely too heavily on the machine!
5The notions of how quickly or how slowly a function increases or decreases are explored in Calculus.
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(6,5.5)
(—2,4.5)

_21_:'),_'2_'11 1 2 3 4 5(6 7 x

21
31
(—4,-3) 41
54 (4,—-6)
—641
—74 (5,—6)
—81
-94 (3,-8)

The graph of y = f(x)

We’re now ready for the more formal algebraic definitions of what it means for a function to be
increasing, decreasing or constant.

DEFINITION 1.5. Suppose f is a function defined on an interval 1. We say f is:

e increasing on [ if and only if f(a) < f(b) for all real numbers a, b in I with a < b.
e decreasing on [ if and only if f(a) > f(b) for all real numbers a, b in I with a < b.

e constant on [ if and only if f(a) = f(b) for all real numbers a, b in I.

It is worth taking some time to see that the algebraic descriptions of increasing, decreasing, and
constant as stated in Definition ?? agree with our graphical descriptions given earlier. You should
look back through the examples and exercise sets in previous sections where graphs were given to
see if you can determine the intervals on which the functions are increasing, decreasing or constant.
Can you find an example of a function for which none of the concepts in Definition 77 apply?

Now let’s turn our attention to a few of the points on the graph. Clearly the point (—2,4.5)
does not have the largest y value of all of the points on the graph of f — indeed that honor goes
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to (6,5.5) — but (—2,4.5) should get some sort of consolation prize for being ‘the top of the hill’

between © = —4 and & = 3. We say that the function f has a local maximum’ at the point
(—2,4.5), because the y-coordinate 4.5 is the largest y-value (hence, function value) on the curve
‘near’® x = —2. Similarly, we say that the function f has a local minimum? at the point (3, —8),

since the y-coordinate —8 is the smallest function value near x = 3. Although it is tempting to
say that local extrema!® occur when the function changes from increasing to decreasing or vice
versa, it is not a precise enough way to define the concepts for the needs of Calculus. At the risk of
being pedantic, we will present the traditional definitions and thoroughly vet the pathologies they
induce in the exercises. We have one last observation to make before we proceed to the algebraic
definitions and look at a fairly tame, yet helpful, example.

If we look at the entire graph, we see the largest y value (hence the largest function value) is
5.5 at z = 6. In this case, we say the maximum!! of f is 5.5; similarly, the minimum'? of f is
—8. We formalize these concepts in the following definitions.

DEFINITION 1.6. Suppose f is a function with f(a) = b.

e We say f has a local maximum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) > f(z) for all  in I different than a. The value f(a) = b
is called ‘a local maximum value of f’ in this case.

e We say f has a local minimum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) < f(z) for all x in I different than a. The value f(a) =b
is called ‘a local minimum value of f’ in this case.

e The value b is called the maximum of f if b > f(x) for all z in the domain of f.

e The value b is called the minimum of f if b < f(x) for all z in the domain of f.

It’s important to note that not every function will have all of these features. Indeed, it is
possible to have a function with no local or absolute extrema at alll (Any ideas of what such a
function’s graph would have to look like?) We shall see in the exercises examples of functions which
have one or two, but not all, of these features, some that have instances of each type of extremum
and some functions that seem to defy common sense. In all cases, though, we shall adhere to the
algebraic definitions above as we explore the wonderful diversity of graphs that functions provide
to us.

"Also called ‘relative maximum’.

8We will make this more precise in a moment.

9Also called a ‘relative minimum’.

10Maxima’ is the plural of ‘maximum’ and ‘mimima’ is the plural of ‘minimum’. ‘Extrema’ is the plural of
‘extremum’ which combines maximum and minimum.

Sometimes called the ‘absolute’ or ‘global’ maximum.

12 Again, ‘absolute’ or ‘global’ minimum can be used.
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Here is the ‘tame’ example which was promised earlier. It summarizes all of the concepts
presented in this section as well as some from previous sections so you should spend some time
thinking deeply about it before proceeding to the exercises.

EXAMPLE 1.4.4. Given the graph of y = f(x) below, answer all of the following questions.

Yy
41
(0,3)
(2,0)
1 5 4 T
(47 _3)
1. Find the domain of f. 9. List the intervals on which f is increasing.

2. Find the range of f. 10. List the intervals on which f is decreasing.
3. Determine f(2).
11. List the local maximums, if any exist.
4. List the x-intercepts, if any exist.
5. List the y-intercepts, if any exist. 12. List the local minimums, if any exist.
6. Find the zeros of f. 13. Find the maximum, if it exists.
7. Solve f(x) < 0.
f(z) 14. Find the minimum, if it exists.
8. Determine the number of solutions to the
equation f(x) = 1. 15. Does f appear to be even, odd, or neither?
SOLUTION.

1. To find the domain of f, we proceed as in Section ??. By projecting the graph to the z-axis,
we see the portion of the z-axis which corresponds to a point on the graph is everything from
—4 to 4, inclusive. Hence, the domain is [—4, 4].

2. To find the range, we project the graph to the y-axis. We see that the y values from —3 to
3, inclusive, constitute the range of f. Hence, our answer is [—3, 3].
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. Since the graph of f is the graph of the equation y = f(z), f(2) is the y-coordinate of the

point which corresponds to = 2. Since the point (2,0) is on the graph, we have f(2) = 0.

. The a-intercepts are the points on the graph with y-coordinate 0, namely (—2,0) and (2,0).
. The y-intercept is the point on the graph with z-coordinate 0, namely (0, 3).

. The zeros of f are the z-coordinates of the z-intercepts of the graph of y = f(x) which are

T =—2,2.

. To solve f(z) < 0, we look for the = values of the points on the graph where the y-coordinate

is less than 0. Graphically, we are looking where the graph is below the z-axis. This happens
for the x values from —4 to —2 and again from 2 to 4. So our answer is [—4, —2) U (2, 4].

. To find where f(x) = 1, we look for points on the graph where the y-coordinate is 1. Even

though these points aren’t specified, we see that the curve has two points with a y value of
1, as seen in the graph below. That means there are two solutions to f(z) = 1.

Y

. As we move from left to right, the graph rises from (—4,—3) to (0,3). This means f is

increasing on the interval [—4,0]. (Remember, the answer here is an interval on the z-axis.)

As we move from left to right, the graph falls from (0, 3) to (4, —3). This means f is decreasing
on the interval [0,4]. (Remember, the answer here is an interval on the z-axis.)

The function has its only local maximum at (0, 3).

There are no local minimums. Why don’t (—4,—3) and (4, —3) count? Let’s consider the
point (—4, —3) for a moment. Recall that, in the definition of local minimum, there needs to
be an open interval I which contains = —4 such that f(—4) < f(z) for all = in I different
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from —4. But if we put an open interval around x = —4 a portion of that interval will lie
outside of the domain of f. Because we are unable to fulfill the requirements of the definition
for a local minimum, we cannot claim that f has one at (—4, —3). The point (4, —3) fails for
the same reason — no open interval around x = 4 stays within the domain of f.

13. The maximum value of f is the largest y-coordinate which is 3.
14. The minimum value of f is the smallest y-coordinate which is —3.

15. The graph appears to be symmetric about the y-axis. This suggests'? that f is even.

.

With few exceptions, we will not develop techniques in College Algebra which allow us to
determine the intervals on which a function is increasing, decreasing or constant or to find the local
maximums and local minimums analytically; this is the business of Calculus.'* When we have need
to find such beasts, we will resort to the calculator. Most graphing calculators have ‘Minimum’
and ‘Maximum’ features which can be used to approximate these values, as demonstrated below.

15
EXAMPLE 1.4.5. Let f(x) = 273;
x

which f is increasing and those on which it is decreasing. Approximate all extrema.

. Use a graphing calculator to approximate the intervals on

SOLUTION. Entering this function into the calculator gives

Flakl Flotz Flakz
1B 1SRACEM2+E
wWe=
wWa=
wy=
wWE=
W E=
wMWe=

Using the Minimum and Maximum features, we get

Hinirurm Haxirum
n=-l.rZe0s  IY=-hyEzodeE? n=l.r>2nkd

L Redcdih bedy

3but does not prove
14 Although, truth be told, there is only one step of Calculus involved, followed by several pages of algebra.
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To two decimal places, f appears to have its only local minimum at (—1.73, —4.33) and its only
local maximum at (1,73,4.33). Given the symmetry about the origin suggested by the graph, the
relation between these points shouldn’t be too surprising. The function appears to be increasing on
[—1.73,1.73] and decreasing on (—oo, —1.73]U[1.73, 00). This makes —4.33 the (absolute) minimum
and 4.33 the (absolute) maximum. O

EXAMPLE 1.4.6. Find the points on the graph of y = (z—3)? which are closest to the origin. Round
your answers to two decimal places.

SOLUTION. Suppose a point (z,) is on the graph of y = (z — 3)2. Its distance to the origin, (0,0),
is given by

d = /(e =02+ (y—0)?
_ ST
= \/x2+[(x—3)2]2 Since y = (z — 3)?

= 2% + (z — 3)*

Given a value for z, the formula d = /z2? + (z — 3)* is the distance from (0,0) to the point
(x,9) on the curve y = (z — 3)2. What we have defined, then, is a function d(x) which we wish
to minimize over all values of z. To accomplish this task analytically would require Calculus so as
we’ve mentioned before, we can use a graphing calculator to find an approximate solution. Using
the calculator, we enter the function d(z) as shown below and graph.

Flokl Flotz Flobs
;¥1EIiH“E+iH—3}“

~Nz=Nl

M=

~y=

~Me= Hinimun

“WE= MZZ 000000 Y=z 2:606H

Using the Minimum feature, we see above on the right that the (absolute) minimum occurs near
x = 2. Rounding to two decimal places, we get that the minimum distance occurs when z = 2.00.
To find the y value on the parabola associated with = = 2.00, we substitute 2.00 into the equation
to get y = (v — 3)? = (2.00 — 3)? = 1.00. So, our final answer is (2.00,1.00).!> (What does the y
value listed on the calculator screen mean in this problem?) O

15Tt seems silly to list a final answer as (2.00,1.00). Indeed, Calculus confirms that the exact answer to this
problem is, in fact, (2,1). As you are well aware by now, the author is a pedant, and as such, uses the decimal places
to remind the reader that any result garnered from a calculator in this fashion is an approximation, and should be
treated as such.



42 CHAPTER 1. FUNCTIONS

1.4.2 EXERCISES

1. Sketch the graphs of the following functions. State the domain of the function, identify any
intercepts and test for symmetry.

@ =" D I@=VETE @ f@=VE ) )=

2. Analytically determine if the following functions are even, odd or neither.

() fla) =Tz () fa) =4 () f(2) = o+ rad bl
b z) =Tx +2 () f(z)=0 . _ —

®) J) =70+ e iisey @ =5

(c) f(x):ﬁ (g) flx)=—a®—23+x G) f(z)=2> -2 —6

3. Given the graph of y = f(x) below, answer all of the following questions.

Y

—2l
3]
41
51
(a) Find the domain of f. (i) List the intervals where f is increasing.
(b) Find the range of f. (j) List the intervals where f is decreasing.
(c) Determine f(—2). . . . _
(d) List the z-intercepts, if any exist (k) List the local maximums, if any exist.
(e) List the y-intercepts, if any exist. (1) List the local minimums, if any exist.
(f) Find the zeros of f. (m) Find the maximum, if it exists.
(g) Solve f(z) = 0. . . e
(h) Determine the number of solutions to the (n) Find the minimum, if it exists.
equation f(x) = 2. (o) Is f even, odd, or neither?
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. Use your graphing calculator to approximate the local and absolute extrema of the following

functions. Approximate the intervals on which the function is increasing and those on which
it is decreasing. Round your answers to two decimal places.

(a) f(z) =% — 323 — 2422 4 282 + 48 (c) f(z) =v9—z?
(b) f(a) =223z —4) () @) = 2v0—2?
. Sketch the graphs of the following piecewise-defined functions.
—2z—4 if z<0 2 if < -2
(a) f(:r)—{ 3¢ if >0 (c) fla)=1 3—2 if —2<z<2
4 if x>2
.
. if —6<z<-1
Vr+d if —4<z<5 (d) f@)=1 2 if -1<z<1

Vr—1 if z>5 Ve o if 1<zx<9

. Let f(x) = |z, the greatest integer function defined in Exercise 7?7 in Section ?7.

(a) Graph y = f(x). Be careful to correctly describe the behavior of the graph near the
integers.

(b) Is f even, odd, or neither? Explain.

(c¢) Discuss with your classmates which points on the graph are local minimums, local max-
imums or both. Is f ever increasing? Decreasing? Constant?

. Use your graphing calculator to show that the following functions do not have any extrema,

neither local nor absolute.

(a) f(z)=a+z—12 (b) f(x)=—bzr+2

. In Exercise 7?7 in Section 77, we saw that the population of Sasquatch in Portage County

150t
could be modeled by the function P(t) = 15—15—)()15

your graphing calculator to analyze the general function behavior of P. Will there ever be a
time when 200 Sasquatch roam Portage County?

, where ¢t = 0 represents the year 1803. Use

. One of the most important aspects of the Cartesian Coordinate Plane is its ability to put

Algebra into geometric terms and Geometry into algebraic terms. We’ve spent most of this
chapter looking at this very phenomenon and now you should spend some time with your
classmates reviewing what we’ve done. What major results do we have that tie Algebra and
Geometry together? What concepts from Geometry have we not yet described algebraically?
What topics from Intermediate Algebra have we not yet discussed geometrically?
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10. It’s now time to “thoroughly vet the pathologies induced” by the precise definitions of local
maximum and local minimum. We’ll do this by providing you and your classmates a series
of exercises to discuss. You will need to refer back to Definition ?? (Increasing, Decreasing
and Constant) and Definition ?? (Maximum and Minimum) during the discussion.

(a) Consider the graph of the function f given below.

ii.
iii.

iv.

Y

o

—2/-1 1 2z
141

21
31

Show that f has a local maximum but not a local minimum at the point (—1,1).
Show that f has a local minimum but not a local maximum at the point (1,1).
Show that f has a local maximum AND a local minimum at the point (0, 1).

Show that f is constant on the interval [—1,1] and thus has both a local maximum
AND a local minimum at every point (z, f(z)) where —1 < x < 1.

(b) Using Example ?? as a guide, show that the function g whose graph is given below
does not have a local maximum at (—3,5) nor does it have a local minimum at (3, —3).
Find its extrema, both local and absolute. What’s unique about the point (0,—4) on
this graph? Also find the intervals on which ¢ is increasing and those on which g is
decreasing.

(¢c) We said earlier in the section that it is not good enough to say local extrema exist
where a function changes from increasing to decreasing or vice versa. As a previous
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1.4.3 ANSWERS

exercise showed, we could have local extrema when a function is constant so now we
need to examine some functions whose graphs do indeed change direction. Consider the
functions graphed below. Notice that all four of them change direction at an open circle
on the graph. Examine each for local extrema. What is the effect of placing the “dot”
on the y-axis above or below the open circle? What could you say if no function value
was assigned to x = 07

Y Y

—2 1 1 2 x
141

1. Functigs)n I iii. Function IIT

ii. Function II

Domain: (—o0,00)

x-intercept: (2,0)

y-intercept: (0, — %)
No symmetry

flx)=+b—=x 3__y
Domain: (—o0, 5] \

2¥
x-intercept: (5,0) A
y-intercept: (0,+/5) L N

No symmetry

|
e
|
o
|
o
|
]
et
o
<o
o
o
8
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flz) =z

Domain: (—o0,00)
x-intercept: (0,0)
y-intercept: (0,0)
Symmetry about the origin

1
f(z) = 241
Domain: (—o0,00)
No z-intercepts
y-intercept: (0,1)
Symmetry about the y-axis

CHAPTER 1. FUNCTIONS

T

f(x) =Tz is odd (f) f(x) =25 —2*+2%2+9 is even

f(z) =Tx + 2 is neither (g) f(z) =—2° —2®+ 2 is odd

f(x) = = is odd (h) f(z) =2*+ 23+ 2%+ 2+ 1 is neither
x

f(x) =4 is even (i) f(z) =5 —x is neither

f(z) =0 is even and odd (j) f(x) = 2% —x — 6 is neither

[_573] (f) _47 1) 1 (k) ( 374) (273)

[_5? 4] (g) [_47 _1]1 [17 3] (1) (07 )

f(-2) =2 (h) 4 (m) 4

(—4,0), (—-1,0), (1,0) (i) [-5,-3], [0,2] (n) —

(07 _1) (.]) [_37 0]7 [27 3] (O> Neither

No absolute maximum (c¢) Absolute maximum f(0) =3

Absolute minimum f(4.55) ~ —175.46 Absolute minimum f(+3) =0

Local minimum at (—2.84, —91.32) Local maximum at (0, 3)

Local maximum at (0.54,55.73) No local minimum

Local minimum at (4.55, —175.46) Increasing on [—3, 0]

Increasing on [—2.84,0.54], [4.55, 00) Decreasing on [0, 3]

Decreasing on (—oo, —2.84],[0.54, 4.55]

No absolute maximum

No absolute minimum

Local maximum at (0, 0)

Local minimum at (1.60, —3.28)
Increasing on (—o0, 0], [1.60, 00)
Decreasing on [0, 1.60]

Absolute maximum f(2.12) ~ 4.50
Absolute minimum f(—2.12) ~ —4.50
Local maximum (2.12,4.50)

Local minimum (—2.12, —4.50)
Increasing on [—2.12,2.12]

Decreasing on [—3,—2.12],[2.12, 3]

(d)
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A .
——t ———
—2 —1 1 2 3 '

(b) (d)
—65—ag=a<lf] 12345678 09¢T
6. (a)
y z
6+ o—O
5+ —O0
4+ —o0
34 —o0
24 —oO
1+ *—O
65 45921 1 1 25 45 6w
—o
—o-2
—o —3
— o —4
—o -5

The graph of f(x) = |z].

(b) Note that f(1.1) =1, but f(—1.1) = —2, and so f is neither even nor odd.
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1.5 TRANSFORMATIONS

In this section, we study how the graphs of functions change, or transform, when certain specialized
modifications are made to their formulas. The transformations we will study fall into three broad
categories: shifts, reflections, and scalings, and we will present them in that order. Suppose the
graph below is the complete graph of f.

(5,5)

The Fundamental Graphing Principle for Functions says that for a point (a,b) to be on the
graph, f(a) = b. In particular, we know f(0) = 1, f(2) = 3, f(4) = 3 and f(5) = 5. Suppose
we wanted to graph the function defined by the formula g(z) = f(x) 4+ 2. Let’s take a minute to
remind ourselves of what ¢ is doing. We start with an input x to the function f and we obtain the
output f(x). The function g takes the output f(z) and adds 2 to it. In order to graph g, we need
to graph the points (z,g(x)). How are we to find the values for g(z) without a formula for f(z)?
The answer is that we don’t need a formula for f(x), we just need the values of f(x). The values
of f(x) are the y values on the graph of y = f(x). For example, using the points indicated on the
graph of f, we can make the following table.

(=, f

—~

x)) ) | 9(x) = f(x) +2] (z,9(x))

) )

3 0,3)
5 (2,5)
5 (4,5)
7 (5,7)

In general, if (a,b) is on the graph of y = f(z), then f(a) = b, so g(a) = f(a) +2 = b+ 2.
Hence, (a,b+ 2) is on the graph of g. In other words, to obtain the graph of g, we add 2 to the
y-coordinate of each point on the graph of f. Geometrically, adding 2 to the y-coordinate of a point
moves the point 2 units above its previous location. Adding 2 to every y-coordinate on a graph
en masse is usually described as ‘shifting the graph up 2 units’. Notice that the graph retains the
same basic shape as before, it is just 2 units above its original location. In other words, we connect

the four points we moved in the same manner in which they were connected before. We have the
results side-by-side below.

)

~~
01000\3»—!’8\

ULk (IN|O |8

0
2,
4
5

QLW | W | =
S— | [N | —

(
(
(
(

)
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shift up 2 units

y = f(z) add 2 to each y-coordinate y=g(z) = f(z)+2

You’ll note that the domain of f and the domain of g are the same, namely [0, 5], but that the
range of f is [1,5] while the range of g is [3,7]. In general, shifting a function vertically like this
will leave the domain unchanged, but could very well affect the range. You can easily imagine what
would happen if we wanted to graph the function j(z) = f(z) — 2. Instead of adding 2 to each of
the y-coordinates on the graph of f, we’d be subtracting 2. Geometrically, we would be moving
the graph down 2 units. We leave it to the reader to verify that the domain of j is the same as f,
but the range of j is [—1, 3]. What we have discussed is generalized in the following theorem.

THEOREM 1.2. Vertical Shifts. Suppose f is a function and k is a positive number.

e To graph y = f(z) + k, shift the graph of y = f(z) up k units by adding k to the
y-coordinates of the points on the graph of f.

e To graph y = f(x) — k, shift the graph of y = f(x) down k units by subtracting k from
the y-coordinates of the points on the graph of f.

The key to understanding Theorem ?7 and, indeed, all of the theorems in this section comes from
an understanding of the Fundamental Graphing Principle for Functions. If (a,b) is on the graph
of f, then f(a) = b. Substituting = = a into the equation y = f(x) + k gives y = f(a) + k=b+ k.
Hence, (a,b+ k) is on the graph of y = f(x)+ k, and we have the result. In the language of ‘inputs’
and ‘outputs’, Theorem 7?7 can be paraphrased as “Adding to, or subtracting from, the output of
a function causes the graph to shift up or down, respectively”. So what happens if we add to or
subtract from the input of the function?

Keeping with the graph of y = f(x) above, suppose we wanted to graph g(z) = f(x +2). In
other words, we are looking to see what happens when we add 2 to the input of the function.! Let’s

!We have spent a lot of time in this text showing you that f(z + 2) and f(z) + 2 are, in general, wildly different
algebraic animals. We will see momentarily that the geometry is also dramatically different.
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try to generate a table of values of g based on those we know for f. We quickly find that we run
into some difficulties.

|| (@, f(x)) | fl&) | g(x) =fla+2) |(z,9(z))
0 (01) | 1 |f0+2)=f2)=3] (0,3)
2| (23 | 3 [f2+2)=f1)=3] (2,3)
4 (4,3) 3 f(4+2) = f(6) ="

50 (55 | 5 | f(5+2)=f(7)="

When we substitute z = 4 into the formula g(x) = f(x+2), we are asked to find f(4+2) = f(6)
which doesn’t exist because the domain of f is only [0, 5]. The same thing happens when we attempt
to find g(5). What we need here is a new strategy. We know, for instance, f(0) = 1. To determine
the corresponding point on the graph of g, we need to figure out what value of  we must substitute
into g(z) = f(z 4 2) so that the quantity x + 2, works out to be 0. Solving z + 2 = 0 gives x = —2,
and g(—2) = f((—=2)+2) = f(0) =1 so (—2,1) on the graph of g. To use the fact f(2) = 3, we set
x4+ 2 =2 to get x = 0. Substituting gives g(0) = f(0+ 2) = f(2) = 3. Continuing in this fashion,
we get

zllz+2| g(x)=flz+2) | (x9(2))
-2 0 9g(=2)=f(0)=1| (-2,1
0] 2 |90)=r2=3] (0,3)
4 1 9@2)=r4)=3 | (23)
5 | 9B)=f6G)=5 | (3,5

In summary, the points (0,1), (2,3), (4,3) and (5,5) on the graph of y = f(z) give rise to
the points (—2,1), (0,3), (2,3) and (3,5) on the graph of y = g(x), respectively. In general, if
(a,b) is on the graph of y = f(z), then f(a) = b. Solving x + 2 = a gives * = a — 2 so that
gla—2) = f((a—2)+2) = f(a) =b. As such, (a — 2,b) is on the graph of y = g(z). The point
(a —2,b) is exactly 2 units to the left of the point (a,b) so the graph of y = g(x) is obtained by
shifting the graph y = f(x) to the left 2 units, as pictured below.

y Y
(5,5) (3,5)
51
(0,3)
(2,3)
21
(=2,1) 14+
-2 -1 I shift left 2 units -2 -l L2845 e
y = f(z) subtract 2 from each z-coordinate y=g(z) = fz+2)

Note that while the ranges of f and g are the same, the domain of g is [-2, 3] whereas the domain
of fis [0,5]. In general, when we shift the graph horizontally, the range will remain the same, but
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the domain could change. If we set out to graph j(z) = f(z — 2), we would find ourselves adding
2 to all of the x values of the points on the graph of y = f(z) to effect a shift to the right 2 units.
Generalizing, we have the following result.

THEOREM 1.3. Horizontal Shifts. Suppose f is a function and h is a positive number.

e To graph y = f(z + h), shift the graph of y = f(x) left h units by subtracting h from
the x-coordinates of the points on the graph of f.

e To graph y = f(x — h), shift the graph of y = f(z) right h units by adding h to the
x-coordinates of the points on the graph of f.

In other words, Theorem ?7? says adding to or subtracting from the input to a function amounts
to shifting the graph left or right, respectively. Theorems 7?7 and 77 present a theme which will run
common throughout the section: changes to the outputs from a function affect the y-coordinates
of the graph, resulting in some kind of vertical change; changes to the inputs to a function affect
the x-coordinates of the graph, resulting in some kind of horizontal change.

ExamPLE 1.5.1.
1. Graph f(z) = \/z. Plot at least three points.
2. Use your graph in 1 to graph g(z) = /z — 1.
3. Use your graph in 1 to graph j(z) = Vo — 1.

4. Use your graph in 1 to graph m(x) = Vx + 3 — 2.

SOLUTION.

1. Owing to the square root, the domain of f is x > 0, or [0,00). We choose perfect squares to
build our table and graph below. From the graph we verify the domain of f is [0, 00) and the
range of f is also [0, 00).

S KR R
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2. The domain of ¢ is the same as the domain of f, since the only condition on both functions

is that x > 0. If we compare the formula for g(z) with f(z), we see that g(z) = f(z) — 1.
In other words, we have subtracted 1 from the output of the function f. By Theorem 77,
we know that in order to graph g, we shift the graph of f down one unit by subtracting
1 from each of the y-coordinates of the points on the graph of f. Applying this to the three
points we have specified on the graph, we move (0,0) to (0,—1), (1,1) to (1,0), and (4, 2) to
(4,1). The rest of the points follow suit, and we connect them with the same basic shape as
before. We confirm the domain of g is [0, 00) and find the range of g to be [—1, ).

Yy Yy
(4,2)
24 21
(1,1) (4,1)
14 14
(0,0) (1,0)
1 2 3 4 g 1 2 3 4 g
(0’ _1)‘
shift down 1 unit
y=f(z) =z subtract 1 from each y-coordinate y=g(z)=+x -1

. Solving x — 1 > 0 gives x > 1, so the domain of j is [1,00). To graph j, we note that

j(x) = f(z —1). In other words, we are subtracting 1 from the input of f. According to
Theorem ?7, this induces a shift to the right of the graph of f. We add 1 to the xz-coordinates
of the points on the graph of f and get the result below. The graph reaffirms the domain of
j is [1,00) and tells us that the range is [0, 00).

Yy
(5,2)
2
(2,1)
1
shift right 1 unit | (1,002 3 4 5z
add 1 to each z-coordinate y=j)=vz -1

. To find the domain of m, we solve z + 3 > 0 and get [—3,00). Comparing the formulas of

f(z) and m(z), we have m(z) = f(x + 3) — 2. We have 3 being added to an input, indicating
a horizontal shift, and 2 being subtracted from an output, indicating a vertical shift. We
leave it to the reader to verify that, in this particular case, the order in which we perform
these transformations is immaterial; we will arrive at the same graph regardless as to which
transformation we apply first.> We follow the convention ‘inputs first’,> and to that end we
first tackle the horizontal shift. Letting m,(z) = f(z + 3) denote this intermediate step,
Theorem ?7? tells us that the graph of y = m,(z) is the graph of f shifted to the left 3 units.
Hence, we subtract 3 from each of the z-coordinates of the points on the graph of f.

2We shall see in the next example that order is generally important when applying more than one transformation

to a graph.

3We could equally have chosen the convention ‘outputs first’.
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Yy Y
(4,2) /(1’2,
24 24
(19 1 (_27 1
14 1
M (V1) ) S —— =300 —
-3 —2 —1 1 2 3 4 g -3 -2 —1 1 2 3 4’z
—1 1
—2 —2]
shift left 3 units
y=f(z) == subtract 3 from each x-coordinate y=mi(z) = f(z+3)=+vz+3

Since m(z) = f(x +3) — 2 and f(x + 3) = m,(z), we have m(x) = m,(x) — 2. We can apply
Theorem 7?7 and obtain the graph of m by subtracting 2 from the y-coordinates of each of
the points on the graph of m,(z). The graph verifies that the domain of m is [—3,00) and
we find the range of m is [—2, 00).

Y y
(1,2)
2t 2
(—2,1 i
1+ 14+
(=30 , —t—t—t —— (L*Q’: —t
-3 —2 -1 1 2 3 4 g — 1 2 3 4 g
-14
—2f
shift down 2 units (=3,-2)
y=mi(z)=fz+3)=vVr+3 subtract 2 from each y-coordinate y =m(z) =mi(z) —2=+x +3 —2

Keep in mind that we can check our answer to any of these kinds of problems by showing that
any of the points we’ve moved lie on the graph of our final answer. For example, we can check that
(—3,—2) is on the graph of m, by computing m(—3) = /(-3)+3-2=v/0-2= -2V O

We now turn our attention to reflections. We know from Section ?? that to reflect a point (x,y)
across the z-axis, we replace y with —y. If (z,y) is on the graph of f, then y = f(x), so replacing y
with —y is the same as replacing f(z) with — f(x). Hence, the graph of y = — f(x) is the graph of f
reflected across the z-axis. Similarly, the graph of y = f(—=z) is the graph of f reflected across the
y-axis. Returning to inputs and outputs, multiplying the output from a function by —1 reflects its
graph across the z-axis, while multiplying the input to a function by —1 reflects the graph across
the y-axis.*

“The expressions —f(z) and f(—z) should look familiar - they are the quantities we used in Section ?? to test if
a function was even, odd, or neither. The interested reader is invited to explore the role of reflections and symmetry
of functions. What happens if you reflect an even function across the y-axis? What happens if you reflect an odd
function across the y-axis? What about the x-axis?
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THEOREM 1.4. Reflections. Suppose f is a function.

e To graph y = — f(x), reflect the graph of y = f(x) across the x-axis by multiplying the
y-coordinates of the points on the graph of f by —1.

e To graph y = f(—=z), reflect the graph of y = f(z) across the y-axis by multiplying the
x-coordinates of the points on the graph of f by —1.

Applying Theroem ?? to the graph of y = f(z) given at the beginning of the section, we can
graph y = — f(z) by reflecting the graph of f about the x-axis

y y
(5,5)

(<
|

reflect across z-axis (57 _5)

y = f(z) multiply each y-coordinate by —1 y=—f(z)

By reflecting the graph of f across the y-axis, we obtain the graph of y = f(—x).

(5,5) (—5,5)

|
o
|
e
|
o
|
o4
|
—_
et
o
ot
.
o
8

—t— —t——+
reflect across y-axis -5 —4 -3 -2 —1 1 2 3 4 5 ¢z

y = f(z) multiply each z-coordinate by —1 y=f(—z)

With the addition of reflections, it is now more important than ever to consider the order of
transformations, as the next example illustrates.

ExaMPLE 1.5.2. Let f(x) = y/z. Use the graph of f from Example ?? to graph the following
functions below. Also, state their domains and ranges.
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SOLUTION.

1. The mere sight of v/—x usually causes alarm, if not panic. When we discussed domains
in Section 7?7, we clearly banished negatives from the radicals of even roots. However, we
must remember that x is a variable, and as such, the quantity —x isn’t always negative. For
example, if x = —4, —x = 4, thus \/—z = \/—(—4) = 2 is perfectly well-defined. To find the
domain analytically, we set —z > 0 which gives < 0, so that the domain of g is (—o0, 0].
Since g(z) = f(—x), Theorem ?7? tells us the graph of g is the reflection of the graph of f
across the y-axis. We can accomplish this by multiplying each z-coordinate on the graph
of f by —1, so that the points (0,0), (1,1), and (4,2) move to (0,0), (—1,1), and (—4,2),
respectively. Graphically, we see that the domain of g is (—o0,0] and the range of g is the
same as the range of f, namely [0, c0).

(—=4,2)

(-1,1) (0,0)
—t—+t <0’ 0 —t—t— +—rt l, + ; —t—t
—4 -3 —2 -1 | 1 2 3 4 x reflect across y-axis -4 -3 -2 -1 | 1 2 3 4z

y=f(z) =z multiply each z-coordinate by —1 y=g(z)=f(—z) =+v—=z

2. To determine the domain of j(z) = /3 — z, we solve 3 —z > 0 and get < 3, or (—o0, 3].
To determine which transformations we need to apply to the graph of f to obtain the graph
of j, we rewrite j(z) = v/—x + 3 = f(—x + 3). Comparing this formula with f(z) = \/z, we
see that not only are we multiplying the input x by —1, which results in a reflection across
the y-axis, but also we are adding 3, which indicates a horizontal shift to the left. Does it
matter in which order we do the transformations? If so, which order is the correct order?
Let’s consider the point (4,2) on the graph of f. We refer to the discussion leading up to
Theorem ??. We know f(4) = 2 and wish to find the point on y = j(x) = f(—z + 3) which
corresponds to (4,2). We set —x + 3 = 4 and solve. Our first step is to subtract 3 from both
sides to get —x = 1. Subtracting 3 from the z-coordinate 4 is shifting the point (4,2) to
the left. From —z = 1, we then multiply® both sides by —1 to get z = —1. Multiplying the
x-coordinate by —1 corresponds to reflecting the point about the y-axis. Hence, we perform
the horizontal shift first, then follow it with the reflection about the y-axis. Starting with
f(z) = Vz, we let j,(z) be the intermediate function which shifts the graph of f 3 units to
the left, j,(x) = f(x + 3).

50Or divide - it amounts to the same thing.



56 CHAPTER 1. FUNCTIONS

RO A CROL —
13 5 -1 | 12 3 a4’z shift left 3 units -4 -3 -2 -1 | 12 3 47z
y=f(z) =z subtract 3 from each z-coordinate y=7j1(z)=flz+3)=vz +3

To obtain the function j, we reflect the graph of j; about y-axis. Theorem ?7 tells us we
have j(z) = j,(—z). Putting it all together, we have j(z) = j,(—z) = f(—x +3) = V-2 + 3,
which is what we want.® From the graph, we confirm the domain of j is (—oco, 3] and we get
the range is [0, 00).

(C2R))
(=1,2)
(3,0)

L - K
} bt .
4 reflect across y-axis -4 -3 -2-1 | 12 3 4z

multiply each z-coordinate by —1 y=j)=j(—x)=v—-2+3

3. The domain of m works out to be the domain of f, [0,00). Rewriting m(z) = —/z + 3, we
see m(z) = —f(x) + 3. Since we are multiplying the output of f by —1 and then adding
3, we once again have two transformations to deal with: a reflection across the z-axis and
a vertical shift. To determine the correct order in which to apply the transformations, we
imagine trying to determine the point on the graph of m which corresponds to (4,2) on the
graph of f. Since in the formula for m(z), the input to f is just x, we substitute to find
m(4) = —f(4) +3 = =2+ 3 = 1. Hence, (4,1) is the corresponding point on the graph of
m. If we closely examine the arithmetic, we see that we first multiply f(4) by —1, which
corresponds to the reflection across the z-axis, and then we add 3, which corresponds to
the vertical shift. If we define an intermediate function m,(z) = —f(x) to take care of the
reflection, we get

5Tf we had done the reflection first, then ji(x) = f(—z). Following this by a shift left would give us j(z) =
jilz+3) = f(—(z+3)) = f(—z — 3) = v/—z — 3 which isn’t what we want. However, if we did the reflection first
and followed it by a shift to the right 3 units, we would have arrived at the function j(x). We leave it to the reader
to verify the details.
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Yy Yy
3+ 3
(4,2)
2 2
(1,1)
1 1
0Oy . R
1 2 3 4 g (0,0) 1 2 3 4 g
—14 —14
—24 ,2__(1)_1)
reflect across x-axis (4,-2)
y=f(z) =z multiply each y-coordinate by —1 y=mi(z) = —f(z) = —v/=

To shift the graph of m; up 3 units, we set m(z) = m,(x) + 3. Since m,(z) = —f(x), when
we put it all together, we get m(z) = m,(z) +3 = —f(x) + 3 = —/z + 3. We see from the
graph that the range of m is (—o0, 3].

Y Y
3 (0,3) <
{€,2)
24 21
(4,1)
1 1
(0,0) 102 is 4 g 1 2 3 4 g
—1 -1
_2__(17 -1) shift up 3 units ol
(4,-2) add 3 to each y-coordinate
y=mi(z) =—vz y=m(z) =mi(z)+3=—/z+3

O]

We now turn our attention to our last class of transformations, scalings. Suppose we wish to
graph the function g(z) = 2f(z) where f(x) is the function whose graph is given at the beginning
of the section. From its graph, we can build a table of values for g as before.

Y

(5,5)
x| (z, f(x)) | fx) | g(x) =2f(x) | (z,9(x))
ol 1) | 1 2 0,2)
o 23 | 3 6 (2,6)
, Al @3 | 3 6 (4,6)
et 51 6,5 | 5 10 (5,10)

y=f(z)

In general, if (a,b) is on the graph of f, then f(a) = b so that g(a) = 2f(a) = 2b puts (a, 2b)
on the graph of g. In other words, to obtain the graph of g, we multiply all of the y-coordinates of
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the points on the graph of f by 2. Multiplying all of the y-coordinates of all of the points on the
graph of f by 2 causes what is known as a ‘vertical scaling” by a factor of 2’, and the results are
given below.

(5,10)

vertical scaling by a factor of 2

y= f(z) multiply each y-coordinate by 2 y=2f(x)

If we wish to graph y = % f(x), we multiply the all of the y-coordinates of the points on the
graph of f by % This creates a ‘vertical scaling® by a factor of %’ as seen below.

Yy
54
al
3 (5:3)
3
2 (2.5)
1 (4,%)
1 2
(07 5) 1 1 1 1 1
1 2 3 a1 5 g vertical scaling by a factor of % 12 3 4 5 g
y = f(z) multiply each y-coordinate by % y = %f(w)

These results are generalized in the following theorem.

"Also called a ‘vertical stretch’, ‘vertical expansion’ or ‘vertical dilation’ by a factor of 2.
8 Also called ‘vertical shrink, vertical compression’ or ‘vertical contraction’ by a factor of 2.
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THEOREM 1.5. Vertical Scalings. Suppose f is a function and a > 0. To graph y = af(z),
multiply all of the y-coordinates of the points on the graph of f by a. We say the graph of
f has been vertically scaled by a factor of a.

e If a > 1, we say the graph of f has undergone a vertical stretch (expansion, dilation) by
a factor of a.

e If 0 < a < 1, we say the graph of f has undergone a vertical shrink (compression,
contraction) by a factor of %

A few remarks about Theorem 77 are in order. First, a note about the verbiage. To the
authors, the words ‘stretch’, ‘expansion’, and ‘dilation’ all indicate something getting bigger. Hence,
‘stretched by a factor of 2’ makes sense if we are scaling something by multiplying it by 2. Similarly,
we believe words like ‘shrink’, ‘compression’ and ‘contraction’ all indicate something getting smaller,
so if we scale something by a factor of %, we would say it ‘shrinks by a factor of 2’ - not ‘shrinks by
a factor of %.’ This is why we have written the descriptions ‘stretch by a factor of @’ and ‘shrink by
a factor of %’ in the statement of the theorem. Second, in terms of inputs and outputs, Theorem ?7?
says multiplying the outputs from a function by positive number a causes the graph to be vertically
scaled by a factor of a. It is natural to ask what would happen if we multiply the inputs of a
function by a positive number. This leads us to our last transformation of the section.

Referring to the graph of f given at the beginning of this section, suppose we want to graph
g(z) = f(2z). In other words, we are looking to see what effect multiplying the inputs to f by 2
has on its graph. If we attempt to build a table directly, we quickly run into the same problem we
had in our discussion leading up to Theorem ??, as seen in the table on the left below. We solve
this problem in the same way we solved this problem before. For example, if we want to determine
the point on g which corresponds to the point (2, 3) on the graph of f, we set 2x = 2 so that x = 1.
Substituting = = 1 into g(z), we obtain g(1) = f(2-1) = f(2) = 3, so that (1, 3) is on the graph of
g. Continuing in this fashion, we obtain the table on the lower right.

z || (z, f(z)) | f(z) g(z) = f(22) (z,9(x)) x| 2x| g(x)= f(2x) (z,9(x))
0 (0,1 1 [ f2-00=f0)=1] (0,1) 0] 0] g(0)=f0)=1] (0,0)

2 23 | 3 |se2=s@)=3] 23 | [1]2]|e0)=f@)=3] (L3

O @3 | 3 | je =16 = 2|4 | 9@ =7 =3 (23)

50 (55 | 5 | f(2-5) = f(10) =7 51 5]19B)=Ff6)=5] (3.5
In general, if (a,b) is on the graph of f, then f(a) = b. Hence g (%) =f (2 . %) = f(a) =

so that (%, b) is on the graph of g. In other words, to graph g we divide the z-coordinates of the
points on the graph of f by 2. This results in a horizontal scaling” by a factor of %

9Also called ‘horizontal shrink, *horizontal compression’ or ‘horizontal contraction’ by a factor of 2.
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(5,5)

1 2 3 4 5 g horizontal scaling by a factor of 1 1

y=g(z) = f(2x)

N|=

y = f(z) multiply each z-coordinate by

If, on the other hand, we wish to graph y = f (%x), we end up multiplying the z-coordinates
of the points on the graph of f by 2 which results in a horizontal scaling!? by a factor of 2, as
demonstrated below.

(5,5) (10, 5)

horizontal scaling by a factor of 2

multiply each z-coordinate by 2 y=g(z)=f (%m)

We have the following theorem.

THEOREM 1.6. Horizontal Scalings. Suppose f is a function and b > 0. To graph y = f(bz),
divide all of the x-coordinates of the points on the graph of f by b. We say the graph of f

has been horizontally scaled by a factor of %.

e If 0 < b < 1, we say the graph of f has undergone a horizontal stretch (expansion, dilation)
by a factor of %.
e If b > 1, we say the graph of f has undergone a horizontal shrink (compression, contrac-

tion) by a factor of b.

Theorem ?7 tells us that if we multiply the input to a function by b, the resulting graph is
scaled horizontally by a factor of % since the z-values are divided by b to produce corresponding
points on the graph of f(bxz). The next example explores how vertical and horizontal scalings
sometimes interact with each other and with the other transformations introduced in this section.

10 Also called ‘horizontal stretch, *horizontal expansion’ or ‘horizontal dilation’ by a factor of 2.
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EXAMPLE 1.5.3. Let f(z) = y/z. Use the graph of f from Example ?? to graph the following
functions below. Also, state their domains and ranges.

L g(z) =3V
2. j(z) = 9z

3. m(x)zl—\/@

SOLUTION.

1. First we note that the domain of g is [0, c0) for the usual reason. Next, we have g(z) = 3f(z)
so by Theorem ?7, we obtain the graph of g by multiplying all of the y-coordinates of the
points on the graph of f by 3. The result is a vertical scaling of the graph of f by a factor of
3. We find the range of ¢ is also [0, c0).

Yy
6 6
5 54
4 4
3 3

(4,2)

24 2+

(17 1)
14 14

oy . (0,0) .
28 4 vertical scale by a factor of 3 L2 e

y=f(z) =z multiply each y-coordinate by 3 y=g(z) =3f(z) =3z

2. To determine the domain of j, we solve 92 > 0 to find x > 0. Our domain is once again
[0,00). We recognize j(x) = f(9z) and by Theorem ??, we obtain the graph of j by dividing
the z-coordinates of the points on the graph of f by 9. From the graph, we see the range of
Jj is also [0, c0).

Yy Yy
(4,2)
24 24+ 4
=,2
(17 1) (9’ )
1+ 14 1
(5:1)
ooy . oo ., .
1 T T T '1 '2 '3 ll
! 2 3 ! T horizontal scale by a factor of é z
y=f(z) =z multiply each z-coordinate by % y=j(z) = f(9) = VIz
z+3

3. Solving > 0 gives x > —3, so the domain of m is [—3,00). To take advantage of what

2
we know of transformations, we rewrite m(z) = —\/3z+ 3 + 1, or m(z) = —f (32 + 3) + L.
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Focusing on the inputs first, we note that the input to f in the formula for m(x) is %x + %
Multiplying the = by % corresponds to a horizontal stretch by a factor of 2, and adding the
% corresponds to a shift to the left by % As before, we resolve which to perform first by
thinking about how we would find the point on m corresponding to a point on f, in this case,
(4,2). To use f(4) = 2, we solve 32+ 3 = 4. Our first step is to subtract the 3 (the horizontal
shift) to obtain 32 = 3. Next, we multiply by 2 (the horizontal stretch) and obtain z = 5.

We define two intermediate functions to handle first the shift, then the stretch. In accordance
with Theorem 7?7, m,(z) = f (a: + %) =4/x+ % will shift the graph of f to the left % units.

(4,2) ol 27
2+ (1’1) 7% 1) -/
14 I
+ (0' ) 1 t / t t + + t

f —————— -3 -2 -1 1 2 3 4 5 g

shift left % units

Yy = f(z) = \/E subtract % from each z-coordinate Yy =ma (z) = f (:E + %) = T+ %

Next, m,(z) = my (32) = y/2z + 2 will, according to Theorem ??, horizontally stretch the

graph of m, by a factor of 2.

4 I T T
(=3.0) + (-3,00 -1}
—241 —24
horizontal scale by a factor of 2
Yy = ml(a:) = T + % multiply each z-coordinate by 2 Y =mz2 (CC) =ma (%$) = %I + %
: ) . _ 1 3
We now examine what’s happening to the outputs. From m(z) = —f (§x + 5) 41, we see the

output from f is being multiplied by —1 (a reflection about the z-axis) and then a 1 is added
(a vertical shift up 1). As before, we can determine the correct order by looking at how the
point (4,2) is moved. We have already determined that to make use of the equation f(4) = 2,
we need to substitute 2 = 5. We get m(5) = —f (3(5)+2) +1=—f(4)+1=—-2+1=—1.
We see that f(4) (the output from f) is first multiplied by —1 then the 1 is added meaning we
first reflect the graph about the x-axis then shift up 1. Theorem ?7? tells us ms(z) = —m,(x)
will handle the reflection.
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reflect across z-axis

Yy = mz(a:) = %CE + % multiply each y-coordinate by —1 Yy = m3(:1,‘) = —myo (J?) = — %I + %

Finally, to handle the vertical shift, Theorem ?? gives m(z) = ms(x)+ 1, and we see that the
range of m is (—oo, 1].

Yy Y
24 (-3,1) 2
(—3,0) 14 1
(1,0
—2 -1 1 2 3 4 5 g o2 -1 2 3 4 5 ‘g

shift up 1 unit

y=ma(z) = —ma(z) = —\/%x +3 add 1 to each y-coordinate Yy = m(z) =mz(z) +1=—/52+ 35 +1

Some comments about Example 7?7 are in order. First, recalling the properties of radicals from
Intermediate Algebra, we know that the functions g and j are the same, since j and g have the
same domains and j(z) = V92 = V9y/x = 3/ = g(x). (We invite the reader to verify that the
all of the points we plotted on the graph of g lie on the graph of j and vice-versa.) Hence, for
f(z) = &, a vertical stretch by a factor of 3 and a horizontal shrink by a factor of 9 result in
the same transformation. While this kind of phenomenon is not universal, it happens commonly
enough with some of the families of functions studied in College Algebra that it is worthy of note.
Secondly, to graph the function m, we applied a series of four transformations. While it would have
been easier on the authors to simply inform the reader of which steps to take, we have strived to
explain why the order in which the transformations were applied made sense. We generalize the
procedure in the theorem below.
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THEOREM 1.7. Transformations. Suppose f is a function. To graph
g(x) =Af(Bx+ H)+ K

1. Subtract H from each of the z-coordinates of the points on the graph of f. This results
in a horizontal shift to the left if H > 0 or right if H < 0.

2. Divide the z-coordinates of the points on the graph obtained in Step 1 by B. This results
in a horizontal scaling, but may also include a reflection about the y-axis if B < 0.

3. Multiply the y-coordinates of the points on the graph obtained in Step 2 by A. This
results in a vertical scaling, but may also include a reflection about the x-axis if A < 0.

4. Add K to each of the y-coordinates of the points on the graph obtained in Step 3. This
results in a vertical shift up if K > 0 or down if K < 0.

Theorem 7?7 can be established by generalizing the techniques developed in this section. Suppose
(a,b) is on the graph of f. Then f(a) = b, and to make good use of this fact, we set Bz + H = a
and solve. We first subtract the H (causing the horizontal shift) and then divide by B. If B
is a positive number, this induces only a horizontal scaling by a factor of %. If B < 0, then
we have a factor of —1 in play, and dividing by it induces a reflection about the y-axis. So we
have x = “BH as the input to g which corresponds to the input x = a to f. We now evaluate
g (‘ITBH) = Af (B . “EH +H) + K = Af(a) + K = Ab+ K. We notice that the output from f is
first multiplied by A. As with the constant B, if A > 0, this induces only a vertical scaling. If
A < 0, then the —1 induces a reflection across the z-axis. Finally, we add K to the result, which is
our vertical shift. A less precise, but more intuitive way to paraphrase Theorem 77 is to think of
the quantity Bz + H is the ‘inside’ of the function f. What’s happening inside f affects the inputs
or z-coordinates of the points on the graph of f. To find the z-coordinates of the corresponding
points on g, we undo what has been done to x in the same way we would solve an equation. What’s
happening to the output can be thought of as things happening ‘outside’ the function, f. Things
happening outside affect the outputs or y-coordinates of the points on the graph of f. Here, we
follow the usual order of operations agreement: we first multiply by A then add K to find the
corresponding y-coordinates on the graph of g.

EXAMPLE 1.5.4. Below is the complete graph of y = f(z). Use it to graph g(x) = w.
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(747 73)

SOLUTION. We use Theorem ?? to track the five ‘key points’ (—4,—3), (—2,0), (0,3), (2,0) and
(4,—3) indicated on the graph of f to their new locations. We first rewrite g(z) in the form
presented in Theorem ??, g(z) = —3 f(—2z + 1) + 2. We set —2z + 1 equal to the z-coordinates of
the key points and solve. For example, solving —2x + 1 = —4, we first subtract 1 to get —2z = —5
then divide by —2 to get « = g Subtracting the 1 is a horizontal shift to the left 1 unit. Dividing by
—2 can be thought of as a two step process: dividing by 2 which compresses the graph horizontally
by a factor of 2 followed by dividing (multiplying) by —1 which causes a reflection across the y-axis.
We summarize the results in the table below.

(a, f(a)) a| —2x+4+1=a x
(—4,-3) || —4| 2z+1=—4 =3
(=2,0) || 2| —224+1= -2 3
0,3)|| 0] —224+1=0 =1
(2,0) —2zx+1=2|2z=-%
(4,-3) || 4| —2z+1=4|2z=-3

Next, we take each of the x values and substitute them into g(x) = —% (=2x +1) 4+ 2 to get
the corresponding y-values. Substituting x = %, and using the fact that f(—4) = —3, we get

) 3 ) 3 3 9 13

We see the output from f is first multiplied by —%. Thinking of this as a two step process,

multiplying by % then by —1, we see we have a vertical stretch by a factor of % followed by a
reflection across the x-axis. Adding 2 results in a vertical shift up 2 units. Continuing in this
manner, we get the table below.



66

To graph g, we plot each of the points

z || g(z) | (z,9(x))
s 51 G%)
s 2] (52
il -3 (5:-3)
ey
BT D
2 2 27 2
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in the table above and connect them in the same order

and fashion as the points to which they correspond. Plotting f and g side-by-side gives

v 33y 3
6+ 64
5+ 5+
4+ 44
(0,3)
31
24 (—3:2) % - (3.2)
(2,0) |
1 3 4z 72475!2!11\ 2 3 4 =z
L —2 1\
L —34 (%,-2
s (3:-3)
L 41

The reader is strongly encouraged'! to graph the series of functions which shows the gradual
transformation of the graph of f into the graph of g. We have outlined the sequence of transfor-

mations in the above exposition; all that remains is to plot all five intermediate stages.

O]

Our last example turns the tables and asks for the formula of a function given a desired sequence
of transformations. If nothing else, it is a good review of function notation.

EXAMPLE 1.5.5. Let f(z) = 22. Find and simplify the formula of the function g(x) whose graph
is the result of f undergoing the following sequence of transformations. Check your answer using

a graphing calculator.

1. Vertical shift up 2 units
2. Reflection across the z-axis

3. Horizontal shift right 1 unit

4. Horizontal stretch by a factor of 2

1¥You really should do this once in your life.
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SoLuTION. We build up to a formula for g(x) using intermediate functions as we’ve seen in previous
examples. We let g, take care of our first step. Theorem ?7 tells us g,(z) = f(z) +2 = 2% + 2.
Next, we reflect the graph of g, about the z-axis using Theorem ??: g,(z) = —g,(z) = — (2* + 2) =
—x? — 2. We shift the graph to the right 1 unit, according to Theorem ??, by setting g;(z) =
go(x —1) = —(2 — 1)2 — 2 = —22 + 22 — 3. Finally, we induce a horizontal stretch by a factor of 2
using Theorem ?? to get g(z) = g; (32) = — (%x)Q +2 (32) — 3 which yields g(z) = —32% +2 — 3.
We use the calculator to graph the stages below to confirm our result.

N

shift up 2 units

add 2 to each y-coordinate

y = f(x) = 2? y=gi(z) = flz) +2=1a"+2

reflect across x-axis /\\\I

multiply each y-coordinate by —1

y=gi(z) = 2" +2 y=g:(z) = —gi(a) = —2* - 2

J.'J/d‘-\-\'l\l shift right 1 unit JII.)(-F-\-\.II

add 1 to each z-coordinate
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— ——_
.III.J(-N-\\\ horizontal stretch by a factor of 2 fﬂf_/—"'-'-'_'_'-

multiply each z-coordinate by 2

y = gs(w) = —a® + 20 -3 y=g()=g:(37) = —32° +2 -3

O]

We have kept the viewing window the same in all of the graphs above. This had the undesirable
consequence of making the last graph look ‘incomplete’ in that we cannot see the original shape

of f(z) = 2%, Altering the viewing window results in a more complete graph of the transformed
function as seen below.

!
E

y=g(z)

This example brings our first chapter to a close. In the chapters which lie ahead, be on the
lookout for the concepts developed here to resurface as we study different families of functions.
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1.5.1 EXERCISES

1. The complete graph of y = f(x) is given below. Use it to graph the following functions.

(a) y= f(z) -1 (g) y=flz+1) -1
(b) y = flz+1) (h) y=1- f(x)
(c) y=3/f(2) (i) y=3fz+1) -1

2. The complete graph of y = S(z) is given below. Use it to graph the following functions.

y
(1,3)

—31
(_17_3)

The graph of y = S(x)
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3. The complete graph of y = f(x) is given below. Use it to graph the following functions.

(a) g(z) = f(z) +3 (g) d(z) = —2f(x)

(b) h(z) = f(z) — 3 (h) k(z) = f (32)

(c) j(z)=f(z-3) (i) m(z) = —7f(3z)

(d) a(z) = f(z +4) (J) n(z) =4f(x—3) -6

(e) b(z)=f(x+1)—1 (k) p(xz) =4+ f(1 —22)

(f) c(z) = 3f(@) 1) q(z) = —3f (%3*) -3

4. The graph of y = f(z) = ¥ is given below on the left and the graph of y = g(x) is given
on the right. Find a formula for g based on transformations of the graph of f. Check your
answer by confirming that the points shown on the graph of g satisfy the equation y = g(z).

N W ok O
O W e G
PR T
—t—+—+

—-1+10-9-8-7—-6—-5—-4—-3-2—1 1 2 3 45 6 787 —1+10-9-8—-7—-6—-5—-4— —2—11 123 45 6 7 87T
—24 4

—34
—44
—54

y= vz

5. For many common functions, the properties of algebra make a horizontal scaling the same
as a vertical scaling by (possibly) a different factor. For example, we stated earlier that
V9z = 3/z. With the help of your classmates, find the equivalent vertical scaling produced
by the horizontal scalings y = (22)3, y = [5z|, ¥y = V272 and y = (%:z:)2 What about

y=(-22)% y=|-5z|,y=/—27r and y = (—%x)z?
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10.
11.

12.

We mentioned earlier in the section that, in general, the order in which transformations are
applied matters, yet in our first example with two transformations the order did not matter.
(You could perform the shift to the left followed by the shift down or you could shift down
and then left to achieve the same result.) With the help of your classmates, determine the
situations in which order does matter and those in which it does not.

What happens if you reflect an even function across the y-axis?
What happens if you reflect an odd function across the y-axis?
What happens if you reflect an even function across the x-axis?
What happens if you reflect an odd function across the z-axis?
How would you describe symmetry about the origin in terms of reflections?

As we saw in Example 77, the viewing window on the graphing calculator affects how we see
the transformations done to a graph. Using two different calculators, find viewing windows
so that f(z) = 2% on the one calculator looks like g(z) = 322 on the other.

1.5.2 ANSWERS

(a) y=f(z) -1

4 -3 2 1 x
./ (-3,00  ~1T (10
BETs 21
—1 4 (3’ 72)
(_27_1) =31
-2
41

(b) y=flz+1)
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Yy
441
34
24 (0,2)
—r s _il 1 E
20 1T @0 Gy AT
1 (~2,071 (2,0)
_31 _9
4 (74772) _3
441
(d) y = f(22)
y
(0,4)
(1,0)
—4 -3 75(7170)“ \IZ é lll r
_2__
(2772)
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(g)y:f($+1)—1y (i) y=3fz+1) -1
Yy
4+ 44
3l
2l
(-1,1) a 14
4" 5 1 2 3 4%
1 1,-1)
(73771)
2
(3’_2)
(3,-3) 1
41

(4,3)

(b) y=S(-z+1)

(0,3)

(1,0) (3,0)

Py

é T

(27 _3)
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(=3,3) 2+ (3,3)
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—
oL
N—
<
I
NO|—=

S(—x+1)+1

O S S R -
(~7,0) (-1,004

(e) b(x) = f(x +1) —yl

(=1,2)
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(¢) d(x) = —2f()

(0, —6)

| | | | | | | |
t t t T t T T t
-4 -3 -2 -1 1 2 3 4 T

(-39 (3.9)
() m(x) = ~§f(32)
(-1,0) (1,0)
T -9

4. g(x) = -2v/xr+3—1or g(z) =2v—-2x—-3-1

75

6 x
—14
—24
—34
—44
—54
—6¢
(0, —6) (6, —6)

(k) p(z) = %—i—f(l —2x)=f(—2x+1)+4
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1.6 FuNcTION COMPOSITION

Before we embark upon any further adventures with functions, we need to take some time to gather
our thoughts and gain some perspective. Chapter ?? first introduced us to functions in Section ?7.
At that time, functions were specific kinds of relations - sets of points in the plane which passed the
Vertical Line Test, Theorem ?7. In Section ?7?, we developed the idea that functions are processes
- rules which match inputs to outputs - and this gave rise to the concepts of domain and range.
We spoke about how functions could be combined in Section 7?7 using the four basic arithmetic
operations, took a more detailed look at their graphs in Section 77 and studied how their graphs
behaved under certain classes of transformations in Section ??. In Chapter 7?7, we took a closer
look at three families of functions: linear functions (Section ?7), absolute value functions! (Section
?7), and quadratic functions (Section ??). Linear and quadratic functions were special cases of
polynomial functions, which we studied in generality in Chapter ??. Chapter ?? culminated with
the Real Factorization Theorem, Theorem ?7, which says that all polynomial functions with real
coefficients can be thought of as products of linear and quadratic functions. Our next step was to
enlarge our field? of study to rational functions in Chapter ??. Being quotients of polynomials, we
can ultimately view this family of functions as being built up of linear and quadratic functions as
well. So in some sense, Chapters 77, 7?7, and 7?7 can be thought of as an exhaustive study of linear
and quadratic® functions and their arithmetic combinations as described in Section ??. We now
wish to study other algebraic functions, such as f(z) = /z and g(z) = /3, and the purpose of the
first two sections of this chapter is to see how these kinds of functions arise from polynomial and
rational functions. To that end, we first study a new way to combine functions as defined below.

DEFINITION 1.7. Suppose f and g are two functions. The composite of g with f, denoted
go f,is defined by the formula (go f)(z) = g(f(z)), provided x is an element of the domain of
f and f(z) is an element of the domain of g.

The quantity g o f is also read ‘g composed with f’ or, more simply ‘g of f.” At its most basic
level, Definition ?? tells us to obtain the formula for (g o f) (x), we replace every occurrence of z
in the formula for g(z) with the formula we have for f(z). If we take a step back and look at this
from a procedural, ‘inputs and outputs’ perspective, Defintion ?7? tells us the output from go f is
found by taking the output from f, f(z), and then making that the input to g. The result, g(f(z)),
is the output from g o f. From this perspective, we see g o f as a two step process taking an input
x and first applying the procedure f then applying the procedure g. Abstractly, we have

!These were introduced, as you may recall, as piecewise-defined linear functions.

2This is a really bad math pun.

3If we broaden our concept of functions to allow for complex valued coefficients, the Complex Factorization
Theorem, Theorem 77, tells us every function we have studied thus far is a combination of linear functions.
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#1

In the expression g(f(x)), the function f is often called the ‘inside’ function while g is often
called the ‘outside’ function. There are two ways to go about evaluating composite functions -
‘inside out’ and ‘outside in’ - depending on which function we replace with its formula first. Both
ways are demonstrated in the following example.

2
EXAMPLE 1.6.1. Let f(z) = 2? — 42, g(x) =2 — /x + 3, and h(z) = —fl
X

indicated composite functions. State the domain of each.

. Find and simplify the

1. (go f)(x) 5. (hoh)(z)
2. (fog)(z)

6. (ho(go f))(z
3. (g0 h)(@) (ho(go f))(z)
4. (hog)(x) 7. ((hog)o f)(x)
SOLUTION.

1. By definition, (g o f)(z) = g(f(z)). We now illustrate the two ways to evaluate this.
e inside out: We insert the expression f(z) into g first to get
(90 f)(x) = 9(f(@)) = g (+* —4z) =2 — \/(GZ —d2) + 3 =2~ Va2 — 4z 1 3
Hence, (go f)(z) =2 — Va2 — 4z + 3.

e outside in: We use the formula for g first to get
(90 1)) = g(f(@) =2~ T +8=2— /G~ 13 =2— Vo 4w +3
We get the same answer as before, (go f)(z) =2 — Va2 — 4z + 3.
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To find the domain of g o f, we need to find the elements in the domain of f whose outputs
f(x) are in the domain of g. We accomplish this by following the rule set forth in Section
??, that is, we find the domain before we simplify. To that end, we examine (g o f)(z) =
2 — /(22 — 4z) + 3. To keep the square root happy, we solve the inequality z? — 4z +3 > 0
by creating a sign diagram. If we let r(z) = 22 — 4z + 3, we find the zeros of 7 to be z = 1
and z = 3. We obtain

#2

Our solution to 22 — 4z + 3 > 0, and hence the domain of g o f, is (—oc, 1] U [3, c0).

2. To find (f o g)(x), we find f(g(x)).

e inside out: We insert the expression g(x) into f first to get

(feg)x) = [flg(x))

(2-Ve+3) —4(2-Va+3)

4—4VT+3+ (Vo +3) -8+4vz+3
= 4+x+3-8

z—1

e outside in: We use the formula for f(x) first to get

(fog)(z) = flg(=))

= xz-—1 same algebra as before

Thus we get (f o g)(z) =z — 1. To find the domain of (f o g), we look to the step before
we did any simplification and find (f o g)(z) = (2 —Vx+ 3)2 —4 (2 —Vz+ 3). To keep the
square root happy, we set  + 3 > 0 and find our domain to be [—3,c0).

3. To find (g o h)(x), we compute g(h(x)).

e inside out: We insert the expression h(z) into g first to get

(goh)(x) = g(h(x))
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_ 2x
-9 z+1
2
= 2—,/( ° )+3
r+1
2 1
= 2- ’ + Sw+1) get common denominators
z+1 r+1
_ g 5z + 3
z+1

e outside in: We use the formula for g(x) first to get

(goh)(z) = g(h(z))
= 2—/h(z)+3
- 2 ( 2z ) 13
r+1
= 2- 5x:—13 get common denominators as before
x

Hence, (go h)(z) =2 — / 5;;“'5. To find the domain, we look to the step before we began to

simplify: (goh)(z) =2 — <x2—ﬂ> + 3. To avoid division by zero, we need x # —1. To keep

the radical happy, we need to solve szﬁ + 3 > 0. Getting common denominators as before,

this reduces to 5;—;? > 0. Defining r(z) = 5;;?, we have that r is undefined at x = —1 and

r(z) =0at x = —2. We get

Our domain is (—oo, —1) U [-2, c0).
4. We find (h o g)(z) by finding h(g(z)).

e inside out: We insert the expression g(z) into h first to get

(hog)(z) = hig(z))
= h(2-Vz+3)
2(2 - vz +3)

(2-Vr+3)+1



CHAPTER 1. FUNCTIONS

4—2v/x+3
3—vVzr+3

e outside in: We use the formula for h(x) first to get

(hog)(x) = hig(x))
2(g(x))

(9(x)) +1
22—z +3)
o (2-VzF3)+1
4 -2yz+3
3—vz+3
Hence, (ho g)(x) = 43__2\/7%’. To find the domain of h o g, we look to the step before any
simplification: (hog)(x) = M To keep the square root happy, we require z +3 > 0
(2—vz+3)+1

or x > —3. Setting the denominator equal to zero gives (2 — v+ 3) +1=0o0r+vzx+3=23.
Squaring both sides gives us x +3 = 9, or x = 6. Since x = 6 checks in the original equation,
(2 —vr+ 3) +1 =0, we know x = 6 is the only zero of the denominator. Hence, the domain
of hogis[—3,6)U(6,00).

5. To find (h o h)(x), we substitute the function h into itself, h(h(z)).

e inside out: We insert the expression h(z) into h to get

(hoh)(x) = h(h(z))

. 1
T+ 1 (z+1)

< 2 >-(x—|—1)—|—1-(:n—|—1)

x+1
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(hoh)(x) = h(h(z))

= same algebra as before

2
2 ()
2
(Tﬁ) +1
x + 1 happy, we need x # —1. Setting the denominator xz—fl +1=0gives z = —
domain is (—oo0, —1) U (717 f%) U (7%’ oo).
)

To find the domain of h o h, we analyze (h o h)(x) = . To keep the denominator

Our

Wl

6. The expression (ho (go f))(x) indicates that we first find the composite, g o f and compose
the function h with the result. We know from number 1 that (go f)(z) =2 — Va? — 4z + 3.
We now proceed as usual.

e inside out: We insert the expression (g o f)(z) into h first to get
(ho(gef))(x) = h((go f)(x))
= h(2-Va? =40 +3)
2(2- Va? — 4w +3)
(2-Va? =40 +3) +1

B 4 —2vVx?2 —4x +3
3—Vzr2—4x+3

e outside in: We use the formula for h(z) first to get
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(ho(gof)(xz) = hl(ge f)(x))
2((go f)(=))
((go f)(z)) +1

2(2—¢m)
(2-vaT—To+3) +1

 4-2/a?—dz+3
33—V —4xr+3

So we get (ho (go f))(x) = 4=2v2—4243 T4 find the domain, we look at the step before

3—Vaz2—4z+3 °
. . 2(2—vz2—42+3
we began to simplify, (ho (go f))(z) = (2(\/x24x+3)+)1.

22 — 4z + 3 > 0, which we determined in number 1 to be (—oo,1] U [3,00). Next, we set

the denominator to zero and solve: (2 —Vr? —dr + 3) +1=0. We get Va2 -4z +3 =3,

and, after squaring both sides, we have 22 — 4z +3 = 9. To solve 22 — 42 — 6 = 0, we use
the quadratic formula and get * = 2 £ v/10. The reader is encouraged to check that both

of these numbers satisfy the original equation, <2 —Va? —dr + 3) + 1 = 0. Hence we must

exclude these numbers from the domain of ho (g o f). Our final domain for ho (f o g) is

(—00,2 —V10) U (2 — v10,1] U [3,2 4+ v/10) U (2 + v/10, 00).

For the square root, we need

. The expression ((hog)o f)(x) indicates that we first find the composite hog and then compose

that with f. From number 4, we gave (ho g)(z) = 43:27\/7 V;ir; We now proceed as before.

e inside out: We insert the expression f(z) into h o g first to get

((hog)o f)(x) = (hog)(f(x))
= (hog) (2 — 4x)
4—2./(x? —4x)+3

3— /(2% —4x)+3

o 4-2Va? -4z +3
3 —Va?—4z+3
e outside in: We use the formula for (h o g)(z) first to get
((hog)of)(x) = (hog)(f(x))
_ 42 (f(z))+3
3—Vf(z)+3

4-2/(x*—4z) + 3

3— /(2?2 —4z)+3
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4—2vVx?2 —4x+3
33—V -4z +3

We note that the formula for ((h o g) o f)(z) before simplification is identical to that of
(ho(go f))(xz) before we simplified it. Hence, the two functions have the same domain,
ho(fog)is(—00,2—+10)U (2 —+10,1]U [3,2+v10) U (2 + V10, ).

0

It should be clear from Example 77 that, in general, when you compose two functions, such as
f and ¢ above, the order matters.* We found that the functions f o g and g o f were different as
were go h and hog. Thinking of functions as processes, this isn’t all that surprising. If we think of
one process as putting on our socks, and the other as putting on our shoes, the order in which we
do these two tasks does matter.® Also note the importance of finding the domain of the composite
function before simplifying. For instance, the domain of f o g is much different than its simplified
formula would indicate. Composing a function with itself, as in the case of h o h, may seem odd.
Looking at this from a procedural perspective, however, this merely indicates performing a task
h and then doing it again - like setting the washing machine to do a ‘double rinse’. Composing a
function with itself is called ‘iterating’ the function, and we could easily spend an entire course on
just that. The last two problems in Example 7?7 serve to demonstrate the associative property
of functions. That is, when composing three (or more) functions, as long as we keep the order the
same, it doesn’t matter which two functions we compose first. This property as well as another
important property are listed in the theorem below.

THEOREM 1.8. Properties of Function Composition: Suppose f, g, and h are functions.

e ho(gof)=(hog)o f, provided the composite functions are defined.

e If [ is defined as I(x) = z for all real numbers x, then I o f = fol = f.

By repeated applications of Definition ??, we find (ho (go f))(z) = h((go f)(z)) = h(g(f(x))).
Similarly, ((hog)o f)(x) = (hog)(f(z)) = h(g(f(x))). This establishes that the formulas for the
two functions are the same. We leave it to the reader to think about why the domains of these
two functions are identical, too. These two facts establish the equality ho (go f) = (hog)o f.
A consequence of the associativity of function composition is that there is no need for parentheses
when we write h o g o f. The second property can also be verified using Definition ?7?7. Recall that

4This shows us function composition isn’t commutative. An example of an operation we perform on two functions
which is commutative is function addition, which we defined in Section ??. In other words, the functions f + g and
g + f are always equal. Which of the remaining operations on functions we have discussed are commutative?

® A more mathematical example in which the order of two processes matters can be found in Section ??. In fact,
all of the transformations in that section can be viewed in terms of composing functions with linear functions.
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the function I(z) = x is called the identity function and was introduced in Exercise 7?7 in Section
??. If we compose the function I with a function f, then we have (I o f)(z) = I(f(z)) = f(z),
and a similar computation shows (f o I)(x) = f(x). This establishes that we have an identity
for function composition much in the same way the real number 1 is an identity for real number
multiplication. That is, just as for any real number z, 1-x =z -1 = x , we have for any function
fyITof=fol=f. Weshall see the concept of an identity take on great significance in the next
section. Out in the wild, function composition is often used to relate two quantities which may not
be directly related, but have a variable in common, as illustrated in our next example.

ExXAMPLE 1.6.2. The surface area S of a sphere is a function of its radius r and is given by the
formula S(r) = 47r2. Suppose the sphere is being inflated so that the radius of the sphere is
increasing according to the formula r(t) = 3t2, where t is measured in seconds, ¢t > 0, and r is
measured in inches. Find and interpret (S or)(t).

SOLUTION. If we look at the functions S(r) and r(t) individually, we see the former gives the
surface area of a sphere of a given radius while the latter gives the radius at a given time. So,
given a specific time, ¢, we could find the radius at that time, r(¢) and feed that into S(r) to find
the surface area at that time. From this we see that the surface area S is ultimately a function of
time ¢t and we find (S o7)(t) = S(r(t)) = 4n(r(t))? = 4n (3t2)2 = 367t*. This formula allows us to
compute the surface area directly given the time without going through the ‘middle man’ r. O

A useful skill in Calculus is to be able to take a complicated function and break it down into a
composition of easier functions which our last example illustrates.

EXAMPLE 1.6.3. Write each of the following functions as a composition of two or more (non-identity)
functions. Check your answer by performing the function composition.

1. F(z) = |3z — 1|
_ 2
2241

3 H(x)—gii

SOLUTION. There are many approaches to this kind of problem, and we showcase a different
methodology in each of the solutions below.

2. G(x)

1. Our goal is to express the function F' as F' = g o f for functions g and f. From Definition
7?7, we know F(z) = g(f(z)), and we can think of f(z) as being the ‘inside’ function and g
as being the ‘outside’ function. Looking at F(z) = |3z — 1| from an ‘inside versus outside’
perspective, we can think of 3x — 1 being inside the absolute value symbols. Taking this
cue, we define f(x) = 3z — 1. At this point, we have F(z) = |f(z)|. What is the outside
function? The function which takes the absolute value of its input, g(z) = |z|. Sure enough,

(go f)(z) =g(f(x)) = |f(z)| = |3z — 1| = F(x), so we are done.
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2. We attack deconstructing G from an operational approach. Given an input x, the first step
is to square x, then add 1, then divide the result into 2. We will assign each of these steps a
function so as to write G as a composite of three functions: f, g and h. Our first function,
f, is the function that squares its input, f(z) = 2. The next function is the function that
adds 1 to its input, g(x) = = + 1. Our last function takes its input and divides it into 2,
h(z) = 2. The claim is that G = hogo f. We find (hogo f)(z) = h(g(f(z))) = h(g (2?)) =

h(z?41) = w%“ = G(x).

3. If we look H(z) = gi with an eye towards building a complicated function from simpler

functions, we see the expression /z is a simple piece of the larger function. If we define

f(z) = /z, we have H(z) = ﬁ;gi If we want to decompose H = g o f, then we can glean
the formula from g(z) by looking at what is being done to f(z). We find g(z) = 1. We

check (go f)(z) = g(f(z)) = }cg;i = gi = H(z), as required. O
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1.6.1 EXERCISES

1
1. Let f(x) = 3z — 6, g(x) = |z|, h(z) = /z and k(z) = —. Find and simplify the indicated
x
composite functions. State the domain of each.

(a) (fog)(z) (h) (ko f)(z)

(b) (g0 f)(z) (i) (hok)(x)

(c) (foh)(x) (3) (koh)(x)

(d) (hof)(z) (k) (fogoh)(z)

(e) (goh)(z) (1) (hogok)(x)

(f) (hog)(x) (m) (koho f)(z)
(8) (fok)(z) (n) (hokogo f)(z)

x+6

2. Let f(z) =22+ 1, g(x) = 22 — 2 — 6 and h(x)

composite functions. Find the domain of each.

3. Let f(x) = vz —3, g(z) = 4z + 3 and h(z) = ;
x
composite functions. Find the domain of each.

. Find and simplify the indicated

) (52 ) @) o
(©) (foh)(x) (g) (fof)(x)
(@) (ho /) (@ ) (509) (@
© (oo @) () (hoh) ()

4. Let f(x) =+/9 — 22 and g(z) = 22 — 9. Find and simplify the indicated composite functions.
State the domain of each.
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D.

10.

11.

12.

. Write the function F(z) =

Let f be the function defined by f = {(-3,4),(-2,2),(-1,0), (0,1 ,4),
let g be the function defined g = {(-3, -2),(-2,0), (—1,—4),(0,0),(1,-3),(2,1),(3,2)}.

Find the each of the following values if it exists.

~
—
—
w
~—
—~
[\)

(a) (fog)(3) (h) (go f)(—2)

(b) fg(=1)) () 9(£(g(0)))

(c) (fof)0) . B

@) (fog)(-3) G) fUFF(=1))

(€) (g0 F)(3) (k) UM
(f) g(f(=3)) /_ntir&
(8) (go0g)(=2) (1) (gogo---0g)(0)

. Let g(x) = —x, h(z) = z+2, j(z) = 3z and k(x) = v —4. In what order must these functions

be composed with f(z) = \/x to create F(x) = 3v/—x + 2 — 47

What linear functions could be used to transform f(z) = 2% into F(z) = —1(22 — 7)3 + 17
What is the proper order of composition?

. Write the following as a composition of two or more non-identity functions.

(a) h(z) = 2z — 1 (¢) F(z) = (a2 —1)°
2 223 + 1
VT

2 +6

3 —9

as a composition of three or more non-identity functions.

The volume V of a cube is a function of its side length x. Let’s assume that x = ¢ 4+ 1 is
also a function of time ¢, where x is measured in inches and ¢ is measured in minutes. Find
a formula for V' as a function of ¢.

Suppose a local vendor charges $2 per hot dog and that the number of hot dogs sold per hour
x is given by x(t) = —4t? + 20t + 92, where ¢ is the number of hours since 10 AM, 0 < ¢ < 4.

(a) Find an expression for the revenue per hour R as a function of z.
(b) Find and simplify (R o x) (). What does this represent?

(c) What is the revenue per hour at noon?

Discuss with your classmates how ‘real-world’ processes such as filling out federal income tax
forms or computing your final course grade could be viewed as a use of function composition.
Find a process for which composition with itself (iteration) makes sense.
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1.6.2 ANSWERS

L. (a) (fog)(x) =3lz[—6
Domain: (—o0,00)

(b) (g0 f)(z) = [3z — 6
Domain: (—o0,c0)

(c) (foh)(z)=3yz—6
Domain: [0, 00)

(d) (hof)(z)=+3z-6
Domain: [2,00)

(e) (goh)(z) =z
Domain: [0, 00)

(f) (hog)(x) =]z
Domain: (—o0,00)

() (foR)(@) = —6
Domain: (—o0,0) U (0, 00)

() (ko f)(a) = o
Domain: (—o0,2) U (2, 00)

2. (a) (gof)(z)=4a®+22 -6
Domain: (—o0,00)
) (ho f) @) = 5

Domain: (—oo, g) U (§ o)
3. (a) (fog)(n) =207
Domain: [0, 00)
(b) (gof)(z)=4vVz—3+3
Domain: [3,00)
(© (fom) (@)= /=
Domain: [—%, —3)
_Vr—-3-2
(d) (hof)(x) = NCEE I

Domain: [3,00)

(© (goh) @) =2

Domain: (—oo, —3) U (=3, 00)
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0 ok = /1

Domain: (0, 00)

() (ko)) = —

x
Domain: (0, 00)

(k) (fegoh)(z)=3yz—6

Domain: [0, co

S

(1) (hogok)(z)=
Domain: (—o0,0) U (0, 00)
1

(m) (koho f)(x)

Domain: (2,00)

(n) (hok:ogof)(x):m

Domain: (—o0,2) U (2,00)

3r—6

1'2 — X
(c) (hog)(z)= 2 _r_12
Domain: (—o0,—3) U (—3,4) U (4, 00)
(@) (hoh) ()=~ o=

Domains (~0c.6) U (6, ) U (£,23)

(g) (fof)(x)=vVVe—-3-3
Domain: [12, 00)

(h) (gog)(x) =16z +15
Domain: (—o0,o0)

—xr—8
de + 7

(i) (hoh)(z) =
Domain:

(=00, =3) U (=3,—-2) U (—%,00)
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4. (a) (fo f)(x) = |z] (c) (go f)(z) = —a?
Domain: [—3, 3] Domain: [-3,3
(b) (gog)(x) =z* — 1822 4+ 72 (d) (fog)(w)=+v—2%+ 1822 - 72
Domain: (—o0,00) Domain: [—v/12, —/6] U [v/6,/12]°
5. (a) (fog)3)=/f(9(3))=[f(2)=4 (h) (9o f)(=2) =9(f(=2)) =9(2) =1
(b) f(g9(=1)) = f(—4) which is undefined (i) 9(f(9(0))) = g(£(0)) = g(1) = =3
(©) (fe£)0)=f(f(0))=f(1)=3 (3 fU(=1)) = f(f(0)) =f(1) =3
(@) (Fog)(=3)=[9(=3)) == =2 () FFFSEDN) = FUETTE)) =
(e) (g0 f)B) =g(f(3)) =g(-1) = —4 FUS D) = F(F(0) = F(1) =3
(f) g(f(—3)) = g(4) which is undefined n times
(8) (909)(=2) =g(9(=2)) = 9(0) =0 () (gege---0g)(0)=0

6. F(z) =3v—2+2—-4=k((f(h(g(2)))))

7. One possible solutlon is F(z) = =322 —7)3+1 = k(j(f(h(g(z))))) where g(z) = 2z, h(z) =
x—7,j(x) = —1z and k(z) = 2 + 1. You could also have F(z) = H(f(G(z))) where
G(x) :2x—7and H(z) = —fz+1.

8. (a) h(x) = (gof) (x) where f(z) =22 -1 (c) F(z) = (9o [)(z) where f(z) = 2* -1

and g(x) = /x and g(x) = 23
(b) r(z) = (go f)(x) where f(z) =5z +1 (d) R(z) = (go f)(x) where f(z) = 23 and
2 2z 41
and g(z) = — 9(@) ="
3 x
0. F(a) = |/ S = (hg(/(@)) where f(r) =%, g() =~ and h(z) = V&

10. V(z) =23 so V(z(t)) = (t +1)3

11. (a) R(z) =2z

(b) (Rowx)(t) = —8t2 + 40t + 184, 0 < t < 4. This gives the revenue per hour as a function
of time.

(¢) Noon corresponds to t = 2, so (Rox)(2) = 232. The hourly revenue at noon is $232
per hour.

5The quantity —z* + 1822 — 72 is a ‘quadratic in disguise’ which factors nicely. See Example ?? is Section ??.
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1.7 INVERSE FUNCTIONS

Thinking of a function as a process like we did in Section 77, in this section we seek another function
which might reverse that process. As in real life, we will find that some processes (like putting on
socks and shoes) are reversible while some (like cooking a steak) are not. We start by discussing a
very basic function which is reversible, f(x) = 3z + 4. Thinking of f as a process, we start with an
input x and apply two steps, as we saw in Section 77

1. multiply by 3

2. add 4

To reverse this process, we seek a function g which will undo each of these steps and take the
output from f, 3x + 4, and return the input z. If we think of the real-world reversible two-step
process of first putting on socks then putting on shoes, to reverse the process, we first take off the
shoes, and then we take off the socks. In much the same way, the function g should undo the second
step of f first. That is, the function g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) = ”’63;4. Let’s check to see if the function g does the

job. If x = 5, then f(5) = 3(5) +4 = 15+ 4 = 19. Taking the output 19 from f, we substitute

it into g to get ¢g(19) = % = 1—35 = 5, which is our original input to f. To check that g does
the job for all z in the domain of f, we take the generic output from f, f(z) = 3z + 4, and
substitute that into g. That is, g(f(x)) = g(3xz +4) = w = 3 — g, which is our original

input to f. If we carefully examine the arithmetic as we simplify g(f(z)), we actually see g first
‘undoing’ the addition of 4, and then ‘undoing’ the multiplication by 3. Not only does g undo
f, but f also undoes g. That is, if we take the output from g, g(z) = %747 and put that into
f, we get f(g(x)) = f (%‘4) =3 (%;4) +4 = (r—4)+4 = z. Using the language of function
composition developed in Section ??, the statements g(f(z)) = = and f(g(z)) = x can be written
as (go f)(x) = x and (f o g)(x) = x, respectively. Abstractly, we can visualize the relationship
between f and g in the diagram below.
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#1

The main idea to get from the diagram is that g takes the outputs from f and returns them to
their respective inputs, and conversely, f takes outputs from g and returns them to their respective
inputs. We now have enough background to state the central definition of the section.

DEFINITION 1.8. Suppose f and g are two functions such that

1. (go f)(z) = x for all z in the domain of f and

2. (fog)(x) =z for all x in the domain of g.

Then f and g are said to be inverses of each other. The functions f and g are said to be
invertible.

Our first result of the section formalizes the concepts that inverse functions exchange inputs
and outputs and is a consequence of Definition 7?7 and the Fundamental Graphing Principle for
Functions.
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THEOREM 1.9. Properties of Inverse Functions: Suppose f and g are inverse functions.

e The range® of f is the domain of g and the domain of f is the range of g
e f(a) =0 if and only if g(b) = a

e (a,b) is on the graph of f if and only if (b, a) is on the graph of g

“Recall this is the set of all outputs of a function.

The third property in Theorem 77 tells us that the graphs of inverse functions are reflections

about the line y = x. For a proof of this, we refer the reader to Example 77 in Section ??7. A plot

of the inverse functions f(x) = 3z + 4 and g(z) = IT_A‘ confirms this to be the case.

#2

If we abstract one step further, we can express the sentiment in Definition 77 by saying that
f and ¢ are inverses if and only if go f = I, and f o g = I, where I, is the identity function
restricted! to the domain of f and I, is the identity function restricted to the domain of g. In other
words, I,(z) = z for all z in the domain of f and I,(z) = z for all z in the domain of g. Using
this description of inverses along with the properties of function composition listed in Theorem 77,
we can show that function inverses are unique.? Suppose g and h are both inverses of a function
f. By Theorem 7?7, the domain of g is equal to the domain of A, since both are the range of f.
This means the identity function I, applies both to the domain of h and the domain of g. Thus
h=hol,=ho(fog)=(hof)og=1I 0g=g,asrequired.> We summarize the discussion of the
last two paragraphs in the following theorem.?

!The identity function I, which was introduced in Section ?? and mentioned in Theorem ??, has a domain of all
real numbers. In general, the domains of f and g are not all real numbers, which necessitates the restrictions listed
here.

2In other words, invertible functions have exactly one inverse.

31t is an excellent exercise to explain each step in this string of equalities.

“In the interests of full disclosure, the authors would like to admit that much of the discussion in the previous
paragraphs could have easily been avoided had we appealed to the description of a function as a set of ordered pairs.
We make no apology for our discussion from a function composition standpoint, however, since it exposes the reader
to more abstract ways of thinking of functions and inverses. We will revisit this concept again in Chapter 77.



1.7. INVERSE FUNCTIONS 93

THEOREM 1.10. Uniqueness of Inverse Functions and Their Graphs : Suppose f is an
invertible function.

e There is exactly one inverse function for f, denoted f~! (read f-inverse)

e The graph of y = f~!(x) is the reflection of the graph of y = f(x) across the line y = .

The notation f~! is an unfortunate choice since you've been programmed since Elementary

Algebra to think of this as % This is most definitely not the case since, for instance, f(z) = 3z +4

has as its inverse f~!(z) = %74, which is certainly different than ﬁ = ﬁ. Why does this
confusing notation persist? As we mentioned in Section 7?7, the identity function I is to function
composition what the real number 1 is to real number multiplication. The choice of notation f~!
alludes to the property that f~' o f = I; and fo f~! = I», in much the same way as 37! -3 =1

and 3-37! =1.

Let’s turn our attention to the function f(x) = z2. Is f invertible? A likely candidate for
the inverse is the function g(z) = /. Checking the composition yields (g o f)(z) = g(f(z)) =
Va2 = |z|, which is not equal to z for all z in the domain (—oo,c0). For example, when z = —2,
f(=2) = (=2)? = 4, but g(4) = V4 = 2, which means g failed to return the input —2 from its
output 4. What ¢ did, however, is match the output 4 to a different input, namely 2, which
satisfies f(2) = 4. This issue is presented schematically in the picture below.

#3

We see from the diagram that since both f(—2) and f(2) are 4, it is impossible to construct
a function which takes 4 back to both x = 2 and x = —2. (By definition, a function matches
a real number with exactly one other real number.) From a graphical standpoint, we know that
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if y = f~!(x) exists, its graph can be obtained by reflecting y¥ = 22 about the line y = z, in
accordance with Theorem ?7. Doing so produces

#5

#4 reflect across y = =

y=f(z)= z? switch  and y coordinates Yy = fﬁl(w) ?

We see that the line x = 4 intersects the graph of the supposed inverse twice - meaning the
graph fails the Vertical Line Test, Theorem 7?7, and as such, does not represent y as a function of
x. The vertical line x = 4 on the graph on the right corresponds to the horizontal line y = 4 on the
graph of y = f(x). The fact that the horizontal line y = 4 intersects the graph of f twice means
two different inputs, namely x = —2 and z = 2, are matched with the same output, 4, which is
the cause of all of the trouble. In general, for a function to have an inverse, different inputs must
go to different outputs, or else we will run into the same problem we did with f(z) = 2. We give
this property a name.

DEFINITION 1.9. A function f is said to be one-to-one if f matches different inputs to different
outputs. Equivalently, f is one-to-one if and only if whenever f(c) = f(d), then ¢ = d.

Graphically, we detect one-to-one functions using the test below.

THEOREM 1.11. The Horizontal Line Test: A function f is one-to-one if and only if no
horizontal line intersects the graph of f more than once.

We say that the graph of a function passes the Horizontal Line Test if no horizontal line
intersects the graph more than once; otherwise, we say the graph of the function fails the Horizontal
Line Test. We have argued that if f is invertible, then f must be one-to-one, otherwise the graph
given by reflecting the graph of y = f(z) about the line y = = will fail the Vertical Line Test. It
turns out that being one-to-one is also enough to guarantee invertibility. To see this, we think of f
as the set of ordered pairs which constitute its graph. If switching the z- and y-coordinates of the
points results in a function, then f is invertible and we have found f~!. This is precisely what the
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Horizontal Line Test does for us: it checks to see whether or not a set of points describes = as a
function of y. We summarize these results below.

THEOREM 1.12. Equivalent Conditions for Invertibility: Suppose f is a function. The
following statements are equivalent.

e f is invertible.
e f is one-to-one.

e The graph of f passes the Horizontal Line Test.

We put this result to work in the next example.

ExXAMPLE 1.7.1. Determine if the following functions are one-to-one in two ways: (a) analytically
using Definition ?? and (b) graphically using the Horizontal Line Test.

1 f(x):1—52w 3. h(z) =2% -2z +4

2
2. g) = T 4 F={(-1,1),(0,2),(2,1)}
SOLUTION.

1. (a) To determine if f is one-to-one analytically, we assume f(c¢) = f(d) and attempt to
deduce that ¢ = d.

fle) = f(d)
1-2c  1-2d
5 N 5
1—-2¢c = 1-2d
—2c = -2d
c = dVv

Hence, f is one-to-one.

(b) To check if f is one-to-one graphically, we look to see if the graph of y = f(x) passes the
Horizontal Line Test. We have that f is a non-constant linear function, which means its
graph is a non-horizontal line. Thus the graph of f passes the Horizontal Line Test as
seen below.

2. (a) We begin with the assumption that g(c) = g(d) and try to show ¢ = d.
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9(c)

2c
1—c¢
2¢(1 —d)
2c — 2cd
2c

We have shown that ¢ is one-to-one.
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= g(d)
2d
1-d
= 2d(1—c¢)
= 2d— 2dc
= 2

dv

e can graph ¢ using the six step procedure outlined in Section ?7?7. We get the sole
b) Wi h ing the six st d tlined in Section ??. We get the sol
intercept at (0,0), a vertical asymptote x = 1 and a horizontal asymptote (which the
graph never crosses) y = —2. We see from that the graph of g passes the Horizontal

Line Test.

#6

y=[f(z)

#7

y=g()

3. (a) We begin with h(c) = h(d). As we work our way through the problem, we encounter a
nonlinear equation. We move the non-zero terms to the left, leave a 0 on the right and

factor accordingly.

h(c)
2 —2c+4 =
-2 =
2 —d?—2c+2d
(c+d)(c—d)—2(c—d)
(c—=d)((c+d)—2)
c—d=0 or

c=d or

h(d)

d?> —2d + 4

d? —2d

0

0

0 factor by grouping
c+d—2=0

c=2-—d

We get ¢ = d as one possibility, but we also get the possibility that ¢ = 2 — d. This
suggests that f may not be one-to-one. Taking d = 0, we get ¢ = 0 or ¢ = 2. With
f(0) = 4 and f(2) = 4, we have produced two different inputs with the same output

meaning f is not one-to-one.
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(b) We note that h is a quadratic function and we graph y = h(z) using the techniques
presented in Section ??. The vertex is (1,3) and the parabola opens upwards. We see
immediately from the graph that h is not one-to-one, since there are several horizontal
lines which cross the graph more than once.

4. (a) The function F' is given to us as a set of ordered pairs. The condition F(c) = F(d)
means the outputs from the function (the y-coordinates of the ordered pairs) are th.
same. We see that the points (—1,1) and (2,1) are both elements of F' with F(—1) =1
and F'(2) = 1. Since —1 # 2, we have established that F' is not one-to-one.

@

(b) Graphically, we see the horizontal line y = 1 crosses the graph more than once. Hence,
the graph of F' fails the Horizontal Line Test.

#9
y=F(z)
#8 O
=h
We have shown THat th(g )tunctions f and ¢ in Example 7?7 are one-to-one. This means they
are invertible, so it is natural to wonder what f~!(z) and g~'(z) would be. For f(z) = 132,

we can think our way through the inverse since there is only one occurrence of x. We can track
step-by-step what is done to x and reverse those steps as we did at the beginning of the chapter.
The function g(z) = {2 is a bit trickier since « occurs in two places. When one evaluates g(z) for
a specific value of z, which is first, the 2z or the 1 — 2?7 We can imagine functions more complicated
than these so we need to develop a general methodology to attack this problem. Theorem 77 tells

us equation y = f~1(x) is equivalent to f(y) = x and this is the basis of our algorithm.

Steps for finding the Inverse of a One-to-one Function

1. Write y = f(x)
2. Interchange = and y

3. Solve x = f(y) for y to obtain y = f~(x)

Note that we could have simply written ‘Solve x = f(y) for ¥’ and be done with it. The act of
interchanging the z and y is there to remind us that we are finding the inverse function by switching
the inputs and outputs.
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ExaMPLE 1.7.2. Find the inverse of the following one-to-one functions. Check your answers ana-
lytically using function composition and graphically.
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_1—2:6 2z

L f@) = —

SOLUTION.

1. As we mentioned earlier, it is possible to think our way through the inverse of f by recording
the steps we apply to = and the order in which we apply them and then reversing those steps
in the reverse order. We encourage the reader to do this. We, on the other hand, will practice
the algorithm. We write y = f(x) and proceed to switch x and y

y = f(z)
o 1-2z

Y= 73
x = 1—523/ switch x and y
Sr = 1-—2y

or—1 = =2y

5xr — 1

-9 =Y

y = —jrty

We have f~1(x) = —gm+%. To check this answer analytically, we first check that (f_l o f) (x) =
x for all x in the domain of f, which is all real numbers.

(ftof)@) = fH(f2)

1-2
5 1
()
= —i(1-22)+1
—1+z+1
TV

We now check that ( fof *1) (z) = « for all x in the range of f which is also all real numbers.
(Recall that the domain of f~1) is the range of f.)
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1-2fYa)

N 5

_ 1-2(=3z+3)
B 1+5x—-1
s

5

= zV

To check our answer graphically, we graph y = f(x) and y = f~!(z) on the same set of axes.’

They appear to be reflections across the line y = x.

#10

2. To find g~ !(z), we start with y = g(x). We note that the domain of g is (—o0,1) U (1, c0).

y = g()
2x
o= 11—z
r = 12_yy switch = and y
z(l-y) = 2y
T—xy = 2y
r = xy+2y
x = ylz+2) factor
x
y= x4+ 2

®Note that if you perform your check on a calculator for more sophisticated functions, you’ll need to take advantage
of the ‘ZoomSquare’ feature to get the correct geometric perspective.
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We obtain g~ !(z) = +15- To check this analytically, we first check (97tog)(z)=xforallz

in the domain of g, that is, for all = # 1.

(97 og) (@) = g ' g(x))
- g_1<12_x$>
()
(12_2)”
(2) s
()

clear denominators

_ 2z

- 22+2(1-2)
_ 2x

2 42-—22
_ 2z

2

= zV

Next, we check g (g‘l(a:)) = z for all z in the range of g. From the graph of g in Example

7?7, we have that the range of g is (—o0, —2) U(—2, 00). This matches the domain we get from

the formula g~ (z) = +15, as it should.
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(gog™)(x) = g(97(x))

2
= . ) clear denominators
T+ 2

Graphing y = g(z) and y = g~ !(z) on the same set of axes is busy, but we can see the sym-

metric relationship if we thicken the curve for y = g~!(x). Note that the vertical asymptote
x = 1 of the graph of ¢ corresponds to the horizontal asymptote y = 1 of the graph of g~ !,
as it should since = and y are switched. Similarly, the horizontal asymptote y = —2 of the

graph of g corresponds to the vertical asymptote & = —2 of the graph of g~ '.
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#11

y=g(x) and y = g~ (x)

O]

We now return to f(z) = 22. We know that f is not one-to-one, and thus, is not invertible.

However, if we restrict the domain of f, we can produce a new function g which is one-to-one. If
we define g(z) = 22, > 0, then we have

#12 #13

restrict domain to z > 0

y = f(z) =a? =g(z)=2%2>0

The graph of g passes the Horizontal Line Test. To find an inverse of g, we proceed as usual

= g(z)

= 22, >0

y?, y>0 switch z and y
- +7

= Jz since y > 0

S SIS
I
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We get g~ '(z) = /z. At first it looks like we’ll Tun into the same trouble as before, but
when we check the composition, the domain restriction on g saves the day. We get (g_l o g) (z) =
g () = g7t (2?) = Va2 = |z| = x, since > 0. Checking (gog™) (@) = g(g7 () =
g (V) = (\/5)2 = x. Graphing® g and ¢g~! on the same set of axes shows that they are reflections
about the line y = x.

#14

Our next example continues the theme of domain restriction.

ExaMPLE 1.7.3. Graph the following functions to show they are one-to-one and find their inverses.
Check your answers analytically using function composition and graphically.

1. j(x) =2? -2z +4, 2 < 1. 2. k(z) =vor+2-1
SOLUTION.

1. The function j is a restriction of the function h from Example ??7. Since the domain of j
is restricted to z < 1, we are selecting only the ‘left half’ of the parabola. We see that the
graph of j passes the Horizontal Line Test and thus j is invertible.

#15

y = j(x)

SWe graphed y = v/ in Section ??.
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We now use our algorithm to find j~!(z).

y j(x)
y = 22—2zx+4, <1
r = y*—2y+4, y<1 switch = and y
0 = y>2-2y+4d—2z
24 /(-2)2—-4(1)4 —
y = \/( )2(1) (1)( ?) quadratic formula, c =4 — x
24 dr —12
Yy = - 9
24 /4(x - 3)
Yy = - 9
24+2y/zx—3
Yy = - 9
2(1++vz-3)
y = 5
y = 1++/z—-3
y = 1—+z—-3 since y < 1.

We have j~1(z) = 1 — /z — 3. When we simplify (j_l Oj) (), we need to remember that
the domain of j is x < 1.

(i7ted) (@) = j'(i(2))
= j_l(x2—2x+4), r<1
= 1—/(z2-2r+4) -3

B g P |

= 1—/(x—1)2

= 1—|z—1]

= 1—(—(z—-1)) since x < 1
z v

Checking j o j =1

, we get

(Goi™) (@) = j( ()

= j(1-vz-3

- (1-vz—=3)"-2(1-vz—3)+4

= 1-2yz -3+ (Va3 —2+2/7—3+4
= 34+zxz—-3
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We can use what we know from Section ?? to graph y = j~1(x) on the same axes as y = j(z)
to get

#16

2. We graph y = k(z) = v/x + 2—1 using what we learned in Section ?? and see k is one-to-one.

#17

y = k(x)

We now try to find k=1

y = k)
y = Vo+2-1
T = Jy+2-—1 switchz andy
r+1 = y+2
x+1)? = (Vy+2)°
2?42 +1 = y+2
y = 224221

We have k~!(z) = 2%+ 2x — 1. Based on our experience, we know something isn’t quite right.
We determined k! is a quadratic function, and we have seen several times in this section
that these are not one-to-one unless their domains are suitably restricted. Theorem 77 tells
us that the domain of k~! is the range of k. From the graph of k, we see that the range
is [~1,00), which means we restrict the domain of k~! to > —1. We now check that this
works in our compositions.
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(k1o k) (x) k= (k())
= k'(Vo+2-1), 2> -2
= (Ver2-1)*+2(Va+r2-1)-1
= (Vet2)-2vz+2+1+2yz+2-2-1
= x+2-2

x v
and
(kok™') () = k(z*+22-1) 2> -1

= J(@E2+22-1)+2-1
= Vai+2z+1-1

= (x+1)2-1
|lr+1|—1

= z+1-1 since x > —1
x Vv

Graphically, everything checks out as well, provided that we remember the domain restriction
on k~! means we take the right half of the parabola.

#18

Our last example of the section gives an application of inverse functions.

ExaMPLE 1.7.4. Recall from Section 7?7 that the price-demand equation for the PortaBoy game
system is p(z) = —1.52 + 250 for 0 < = < 166, where x represents the number of systems sold
weekly and p is the price per system in dollars.

1. Explain why p is one-to-one and find a formula for p~!(x). State the restricted domain.
2. Find and interpret p~*(220).

3. Recall from Section 77 that the weekly profit P, in dollars, as a result of selling x systems is
given by P(z) = —1.52% + 170z — 150. Find and interpret (Pop~') (z).
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4. Use your answer to part 3 to determine the price per PortaBoy which would yield the maxi-
mum profit. Compare with Example 77.

SOLUTION.

1. We leave to the reader to show the graph of p(z) = —1.5z + 250, 0 < = < 166, is a line
segment from (0,250) to (166, 1), and as such passes the Horizontal Line Test. Hence, p is
one-to-one. We find the expression for p~!(x) as usual and get p~!(z) = %. The domain
of p~! should match the range of p, which is [1,250], and as such, we restrict the domain of
p~!to 1<z < 250.

2. We find p~1(220) = %(220) = 20. Since the function p took as inputs the weekly sales and
furnished the price per system as the output, p~! takes the price per system and returns the
weekly sales as its output. Hence, p~!(220) = 20 means 20 systems will be sold in a week if
the price is set at $220 per system.

3. We compute (P op™) (z) = P (p~(z)) = P (30%22) = —1.5 (500-22)% | 170 (50022 _ 150,
After a hefty amount of Elementary Algebra,” we obtain (P ) p‘l) (z) = —%3:2 +220x — 404qu
To understand what this means, recall that the original profit function P gave us the weekly
profit as a function of the weekly sales. The function p~! gives us the weekly sales as a
function of the price. Hence, P op~! takes as its input a price. The function p~! returns the
weekly sales, which in turn is fed into P to return the weekly profit. Hence, (P o pil) (x)
gives us the weekly profit (in dollars) as a function of the price per system, x, using the weekly
sales p~!(x) as the ‘middle man’.

4. We know from Section 7?7 that the graph of y = (P ) p‘l) () is a parabola opening down-
wards. The maximum profit is realized at the vertex. Since we are concerned only with the
price per system, we need only find the z-coordinate of the vertex. Identifying a = —% and
b = 220, we get, by the Vertex Formula, Equation 7?7, x = —% = 165. Hence, weekly profit
is maximized if we set the price at $165 per system. Comparing this with our answer from
Example 77, there is a slight discrepancy to the tune of $0.50. We leave it to the reader to
balance the books appropriately. O

It is good review to actually do this!



1.7. INVERSE FUNCTIONS 109

1.7.1
1.

EXERCISES

Show that the following functions are one-to-one and find the inverse. Check your answers
algebraically and graphically. Verify the range of f is the domain of f~! and vice-versa.

(a) f(x)=6x—2 G) flx)=4a?+4x+1, 2 < —1
(b) f(xz)=>5x—3 3
(k) flz) =

(© fla)=1- L2 e
(d) f(a) =V —5+2 W@ =15
(e) flx)=v3z—1+5 :235_1

v (m) f() = 221
(f) f(x) =3z -1 4x+2
() f(z)=a*— 10z, 2> 5 (n) f(z) = 3?:6
(h) f(z)=3(x+4)?%-5 <-4 89
() f(x)=2?—6x+5, <3 (o) f(:z):m

. Show that the Fahrenheit to Celsius conversion function found in Exercise ?? in Section 77

is invertible and that its inverse is the Celsius to Fahrenheit conversion function.

. Analytically show that the function f(z) = 23 + 3z +1 is one-to-one. Since finding a formula

for its inverse is beyond the scope of this textbook, use Theorem ??7 to help you compute

fHY), £715), and f7H(=3).

. With the help of your classmates, find a formula for the inverse of the following.

(a) f(z) =az+b, a#0 (0) flz) =22 a#0,b#0,c#0,d#0
(b) f(z)=avez—h+k a#0,2>h (d) f(x):aa:2+bx+cwherea7é0,x2—%.

. Let f(z) = ng . Using the techniques in Section ??, graph y = f(x). Verify f is one-

I
to-one on the interval (—1,1). Use the procedure outlined on Page ?? and your graphing

calculator to find the formula for f~!(z). Note that since f(0) = 0, it should be the case that
f71(0) = 0. What goes wrong when you attempt to substitute x = 0 into f~!(z)? Discuss
with your classmates how this problem arose and possible remedies.

. Suppose f is an invertible function. Prove that if graphs of y = f(z) and y = f~!(z) intersect

at all, they do so on the line y = .

. With the help of your classmates, explain why a function which is either strictly increasing

or strictly decreasing on its entire domain would have to be one-to-one, hence invertible.

. Let f and g be invertible functions. With the help of your classmates show that (f o g) is

one-to-one, hence invertible, and that (f o g)~(z) = (¢~ ' o f~1)(2).

. What graphical feature must a function f possess for it to be its own inverse?
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1.7.2 ANSWERS

L) S =T () /1 (2) =3— Vo ¥ d

(b) ffl( )_$+3 ) f_1($)=—\/52+1,x>1
’ () F7H (@) = 2=

© £ @) = <o+ ok

d) fHz)=(z—2)2+5, z<2 O @) =577

(©) 77w = sl =g w25 (m) f(@) = 22t

() f7H (@) = 52"+ 3 L 6z

(8) fH2)=5+Va+25 () @) = 37—

(B) [T @) = =/ 5 — 4 (0) F M) = _ji_;

3. Given that f(0) = 1, we have f~1(1) = 0. Similarly f~1(5) =1 and f~1(-3) = -1
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