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TWO NOTES ON SUBSHIFTS
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Abstract. We prove two unrelated results about subshifts. First, we give

a condition on the lengths of forbidden words that is sufficient to guarantee

that the corresponding subshift is nonempty. The condition implies that, for
example, any sequence of binary words of lengths 5, 6, 7, . . . is avoidable. As

another application, we derive a result of Durand, Levin and Shen [2, 3] that

there are infinite sequences such that every substring has high Kolmogorov
complexity. In particular, for any d < 1, there is a b ∈ N and an infinite

binary sequence X such that if τ is a substring of X, then τ has Kolmogorov

complexity greater than d |τ | − b.
The second result says that from the standpoint of computability theory,

any behavior possible from an arbitrary effectively closed subset of nN (i.e.,

a Π0
1 class) is exhibited by an effectively closed subshift. In technical terms,

every Π0
1 Medvedev degree contains a Π0

1 subshift. This answers a question of

Simpson [10].

1. Preliminaries

We use N = {0, 1, 2, . . . } for the natural numbers. For n > 0, let nN denote the
set of infinite sequences over the alphabet n = {0, . . . , n − 1}. We write n<N for
the set of finite strings (or words) over the same alphabet and use λ for the empty
string. The length of σ ∈ n<N is |σ|. If X ∈ nN, we write X �m for the initial
segment of X of length m ∈ N.

Fix n > 1. For S ⊆ n<N, we say that X ∈ nN avoids S if no σ ∈ S is a substring
of X. The class QS ⊆ nN of all sequences that avoid S is called a subshift (or a
shift space) and the elements of S are called forbidden words. See Lind and Marcus
[5] for an introduction to subshifts.

Section 3 uses notions from computability theory (also called recursion theory).
An introduction to computability theory can be found in the first part of Soare
[11] or in the first chapter of Nies [7]. We quickly review the definitions that we
need. A sequence X ∈ nN is computable if, viewing X as a function N → n, there
is an algorithm (or computer program) that implements X. A subset of n<N is
computably enumerable (c.e.) if there is an algorithm that lists its elements (in no
particular order). If W ⊆ n<N is c.e., then the set P ⊆ nN of sequences with no
initial segment in W is called a Π0

1 class. Note that every Π0
1 class is closed with
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respect to the product topology on nN; they should be viewed as the “effective
closed” subsets.

Given X,Y ∈ nN, we want to define what it means for Y to be computable
from X. Assume that Ψ ⊆ n<N × n<N is c.e. We call Ψ a Turing functional if
whenever 〈σ0, τ0〉, 〈σ1, τ1〉 ∈ Ψ and σ0 and σ1 are compatible (i.e., one is an initial
segment of the other), τ0 and τ1 are compatible. For any X ∈ nN, we define
Ψ(X) =

⋃
n∈N

⋃
〈X �n,τ〉∈Ψ τ (where a union of compatible strings is the shortest

string or sequence having all of them as initial segments). If Ψ(X) is an infinite
sequence, we say that Ψ(X) converges and that Y = Ψ(X) is (Turing) computable
from X. Note that Y is computable from X exactly if there is an algorithm that
implements Y given a “black box” implementation of X.

Let P,Q ⊆ nN. We say that P is Medvedev (or strongly) reducible to Q and
write P ≤s Q if there is a Turing functional Ψ such that if A ∈ Q, then Ψ(A) ∈ P
[6]. In other words, P ≤s Q if there is a uniform algorithm to transform any
element of Q to an element of P. Medvedev reducibility gives us a way to divorce
the combinatorial structure of a class from the effective content of its members.
As expected, we write P ≡s Q to mean that P ≤s Q and Q ≤s P and call the
equivalence classes Medvedev degrees.

Note that the least Medvedev degree, referred to as zero, consists exactly of the
classes that contain computable sequences. To see this, assume that X ∈ P is
computable. Consider the Turing functional Ψ containing 〈σ, τ〉 exactly when τ is
a prefix of X. Since Ψ(A) = X ∈ P, for all A, this Ψ witnesses the fact that P is
Medvedev reducible to every other class. On the one hand, everything below a class
with a computable member must also have a computable member. So anything in
the least degree must have this property.

See Rogers [8] for other basic facts about the Medvedev degrees.

2. A sufficient condition for a subshift to be nonempty

The fact that there is an explicit sequence of lengths such that any sequence of
binary words with those lengths gives a nonempty subshift was proved by Cenzer,
Dashti and King [1, Theorem 3.2]. The sequence of lengths they give is 6 · 22i(i+3),
for i ∈ N. While they had no need to be efficient, it is interesting to note that, in
fact, any sequence of binary words of lengths 5, 6, 7, . . . is avoidable. This follows
from a simple condition on the lengths of strings in S ⊆ n<N that guarantees that
QS is nonempty.

Proposition 2.1. Let S ⊆ n<N. If λ /∈ S and there is a c ∈ (1/n, 1) such that∑
τ∈S

c|τ | ≤ nc− 1,

then there is an X ∈ nN that avoids S.

Proof. Fix c ∈ (1/n, 1). Let p =
∑
τ∈S c

|τ | and assume that p ≤ nc − 1. For each
σ ∈ n<N, let w(σ) =

∑
τ∈S

∑
{c|ρ| : |ρ| < |τ | and σρ ends in τ}. Think of w(σ) as

a measure of the pending threats to an extension of σ ending in an element of S.
Note that w(λ) = 0. Our goal is to build a sequence X ∈ nN, one digit at a time, so
that the weight stays below 1. Such an X avoids S because as long as w(σ) < 1, we
know that σ itself does not end in an element of S. Say that we currently have σ
such that w(σ) < 1. It is not hard to see that

∑
0≤i<n w(σi) = w(σ)/c+ p/c. This
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is because every threat counted on the left must either have been a pending threat
to σ (in which case its weight has gone up by a factor of 1/c) or it is a new threat
(and the weight of all possible new threats is p/c). Since w(σ) + p < 1 + p ≤ nc,
we have

∑
0≤i<n w(σi) < n. Therefore, w(σi) < 1 for some 0 ≤ i < n, allowing us

to continue the construction. �

Note that c > 1/n is not used in the proof, only that c > 0. But if S is
nonempty and c > 0, then nc − 1 must be positive for the hypothesis to hold.
Therefore, c > 1/n is not an additional restriction. Also note that if n = 2, then
we do not have to explicitly assume that λ /∈ S in the result above. This is because
2c − 1 < 1, so the bound on the sum already implies that S does not contain the
empty string.

The condition given in Proposition 2.1 does not characterize avoidability. This
is hardly surprising because it is only a condition on the lengths (with multiplicity)
of the members of S, and whether S is avoidable depends on more than just the
lengths of its elements. For example, S0 = {00, 11, 10} is not avoidable, but S1 =
{01, 11, 10} is avoided by 0N.

The next natural question is whether the condition characterizes the multisets
of lengths that guarantee avoidability. Unfortunately, this is not the case; there
is a multiset of lengths that does not satisfy the condition but such that every
realization is avoidable. Specifically, any set S consisting of two binary strings of
length 2 is avoidable, but there is no c ∈ (1/2, 1) such that 2c2 ≤ 2c − 1. Both
claims are easily verified.

Corollary 2.2. Assume that S ⊆ n<N contains at most one string of each length
and let L = {|σ| : σ ∈ S}. If

(a) n = 2 and L ⊆ {5, 6, 7, . . . }, or
(b) n = 2 and L ⊆ {4, 6, 8, . . . }, or
(c) n = 3 and L ⊆ {2, 3, 4, . . . }, or
(d) n = 4 and L ⊆ {1, 2, 3, . . . },

then there is an X ∈ nN that avoids S.

Proof. In (a) and (b) we can apply the proposition with c =
√

5−1
2 , the inverse of

the golden ratio. For (c) and (d) we can use c = 1/2. Also note that (d) follows
easily from (c) because a string of length 1 simply eliminates a digit. �

Remark 2.3. One might wonder if the corollary could be improved to allow lengths
L ⊆ {4, 5, 6, . . . } when n = 2. We can refute this with an example. Let

S = {1000, 10011, 100101, 1011111, 10111101, 101110101,
1011101101, 10110101101, 101101010101, 1011010101101,

0m, 1m, (100)m, (1110)m, (110)m, (10)m},

where m ∈ N is large. Assume that X ∈ 2N avoids S. Because 0m, 1m ∈ S, we
know that X contains a substring of the form 10. By taking a tail of X, we can
assume without loss of generality that it begins with 10. Since X avoids 1000,
no more than two zeros occur together. If 1001 is a substring of X, then because
10011, 100101 ∈ S, we know that X must end in (100)N. But X avoids (100)m, so
this is impossible. Therefore, X avoids 1001. As a consequence, it avoids 100; all
zeros in X occur in isolation.
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Since 1011111, 10111101 ∈ S, no more than three ones occur in succession in
X. But X avoids 101110101 and 1011101101, so if 111 ever occurs, then X ends
in (1110)N. This is impossible because (1110)m ∈ S. Therefore, no more than two
ones occur together in X. Now since S also contains 10110101101, 101101010101
and 1011010101101, if 11 is ever a substring of X, then X must end in (110)N.
But (110)m ∈ S eliminates this possibility, so all ones in X occur in isolation too.
Therefore X = (10)N, contradicting the fact that (10)m ∈ S.

The next application of Proposition 2.1 involves prefix-free (Kolmogorov) com-
plexity, a notion from effective randomness. Prefix-free complexity is a function
K : 2<N → N that measures, in a certain sense, the complexity of finite binary
strings. The intended interpretation is that τ contains K(τ) bits of information.
The only technical fact we need below is Kraft’s inequality :

∑
τ∈2<N 2−K(τ) ≤ 1.

For an introduction to Kolmogorov complexity, see Li and Vitányi [4] or Nies [7].
Schnorr proved that X ∈ 2N is Martin-Löf random if and only if K(X �n) ≥

n − O(1). Almost every infinite sequence is Martin-Löf random, so we know that
almost every sequence’s initial segments have high complexity. What about the
complexity of substrings? Here things look different; almost every infinite sequence
has arbitrarily long runs of zeros, which have low complexity. Even so, Durand,
Levin and Shen [2, 3] showed that we can find sequences such that every sub-
string has fairly high complexity. We give another proof of their result. (See also
Rumyantsev and Ushakov [9], who give a proof using the Lovász local lemma.)

Note that we are limited by the fact that if X avoids any string τ ∈ 2<N, then
lim supK(X �n)/n < 1. In other words, the following result would fail for d = 1.

Corollary 2.4 (Durand, Levin and Shen [2, 3]). Let d < 1. There is an X ∈ 2N

such that if τ ∈ 2<N is a substring of X, then K(τ) > d |τ | −O(1).

Proof. Fix d ∈ (0, 1) and let b = − log(1 − d) + 1 (where log denotes the base 2
logarithm). Let S = {τ ∈ 2<N : K(τ) ≤ d |τ | − b}. To apply Proposition 2.1, we let
c = 2−d. Then∑

τ∈S
c|τ | =

∑
τ∈S

2−d|τ | ≤
∑
τ∈S

2−K(τ)−b ≤ 2−b
∑
τ∈2<N

2−K(τ) ≤ 2−b,

where the last step is Kraft’s inequality. It is easy to show that 2−b = (1− d)/2 <
21−d − 1 = 2c− 1, for d ∈ (0, 1). �

Prefix-free complexity is not the only form of Kolmogorov complexity, and in
fact, it is not the version originally, and independently, introduced by Solomonoff
and Kolmogorov. But the common variants of Kolmogorov complexity differ from
K(σ) by O(log |σ|), and Corollary 2.4 is clearly true for any such variant.

Finally, we note that Rumyantsev and Ushakov [9] derived Corollary 2.4 from
a closely related statement that does not mention Kolmogorov complexity. Their
result also follows from Proposition 2.1.

Corollary 2.5 (Rumyantsev and Ushakov [9]). Fix α ∈ [0, 1). There is a d ∈ N
such that if S ⊆ n<N contains at most nαm strings of length m, for each m ≥ d,
and none of length less than d, then there is an X ∈ nN that avoids S.

Proof. Fix β ∈ (α, 1) and let c = n−β . Then cn − 1 > 0 and
∑
m∈N n

αmcm =∑
m∈N n

(α−β)m converges. So if d ∈ N is sufficiently large, then
∑
m≥d n

αmcm <
cn− 1. Therefore, we can apply Proposition 2.1. �
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3. Every Π0
1 Medvedev degree contains a Π0

1 subshift

Simpson [10] proved that every Π0
1 Medvedev degree contains a 2-dimensional

subshift of finite type, i.e., one for which the set of forbidden 2-dimensional words
is finite. This does not hold for 1-dimensional subshifts, the type considered in the
present paper. Every nonempty (1-dimensional) subshift of finite type contains pe-
riodic sequences, so they all have Medvedev degree zero. On the other hand, Cenzer,
Dashti and King [1] produced a Π0

1 subshift that contains no computable sequences,
hence has nonzero Medvedev degree. Simpson [10] asked if every Medvedev degree
containing a Π0

1 class actually contains a Π0
1 subshift. We give a positive answer.

If S is a computably enumerable (c.e.) set, then QS is a Π0
1 class. Conversely,

it is not hard to see that if Q is a Π0
1 subshift, then the set S of all strings that

appear in no element of Q is c.e. This is because S is also the set of strings that
cannot be extended to an element of Q. Since Q = QS , we see that Π0

1 subshifts
are exactly the subshifts defined by c.e. sets of forbidden words. We will show
that from a computability-theoretic perspective, Π0

1 subshifts can exhibit all of the
behavior possible from arbitrary Π0

1 subclasses of nN. By coding elements of nN in
binary, it is easy to see that every Π0

1 subclass of nN is Medvedev equivalent to a
Π0

1 subclass of 2N. So for what follows, we restrict ourselves to binary sequences.

Proposition 3.1. If P is a Π0
1 class, then there is a Π0

1 subshift Q such that
P ≡s Q.

Proof. The key feature of the coding we use is that a sequence Y ∈ P is coded by
another sequence X in such a way that every tail of X also codes Y , where the
method of decoding does not depend on Y or on which tail of X we are given. To
do this, we code every bit of Y throughout all of X. First, we define collections of
strings {aσ}σ∈2<N and {bσ}σ∈2<N . Let aλ = 0 and bλ = 1. For σ ∈ 2<N, let

aσ0 = bσaσaσ, bσ0 = bσaσaσaσ,

aσ1 = aσbσbσ, and bσ1 = aσbσbσbσ.

Define Sσ = {aσaσaσaσ, bσbσbσbσ, aσaσbσbσ, bσbσaσaσ, aσbσaσbσ, bσaσbσaσ} and
let S =

⋃
σ∈2<N Sσ. It is not hard to see that if X ∈ 2N avoids Sλ, then (except for

at most three initial bits) X is either formed from a0 and b0 or from a1 and b1. In
other words, there is a unique way to decompose X (ignoring at most three initial
bits) into a sequence of a0’s and b0’s or a sequence of a1’s and b1’s, but not both.
Moreover, if a tail of X is formed from a0 and b0, then there is no occurrence of a1

or b1, even using the initial bits. The same holds with 0 and 1 reversed.
Let us assume, without loss of generality, that X can be decomposed as a se-

quence of a0’s and b0’s. Because X avoids S0, the same analysis shows that (except
for at most three initial bits and at most three copies of either a0 or b0) X is either
formed from a00 and b00 or from a01 and b01. In the first case, there is no occurrence
of a01 or b01 in X, and similarly for the second case.

In this way, we can see by induction that if X avoids S, then for each n ∈ N
there is a unique σ ∈ 2n such that X is formed from aσ and bσ (again, possibly
disregarding an initial segment) and no aτ or bτ can occur in X unless σ and
τ are comparable. On the other hand, for any Y ∈ 2N, the infinite sequence
Ψ(Y ) =

⋃
n>0 aY �n avoids S. To see that Ψ(Y ) is well defined we observe that aσ

is a prefix of both aσ0 and aσ1 as long as σ 6= λ. The latter is immediate. For the
former, note that σ 6= λ implies that aσ is a prefix of bσ and hence of aσ0.
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Let W ⊆ 2<N be a c.e. set of strings such that P is exactly the set of sequences
with no initial segment in W . Let T = S ∪ {aσ : σ ∈ W}. Then T is a c.e. set
of strings, so the induced subshift QT is a Π0

1 class. Moreover, Ψ is an effective
reduction of elements of P to elements of QT ; hence QT ≤s P. For the other
direction, let Φ(X) =

⋃
{σ ∈ 2<N : aσ is a substring of X} and assume that Φ(X)

stops converging as soon as an incompatibility is found. Clearly Φ is total on any
X that avoids S. If we additionally assume that X avoids T , then Φ(X) ∈ P. Thus
P ≤s QT . �
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