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Abstract. We introduce the notion of a degree spectrum of a complete theory

to be the set of Turing degrees that contain a copy of some model of the theory.

We generate examples showing that not all degree spectra of theories are degree
spectra of structures and vice-versa. To this end, we give a new necessary

condition on the degree spectrum of a structure, specifically showing that the

set of PA degrees and the upward closure of the set of 1-random degrees are
not degree spectra of structures but are degree spectra of theories.

1. Introduction

The degree spectrum Spec(M) of a structure M is the set of Turing degrees of
presentations of M . The collection of spectra of structures has long been studied
in computable structure theory. In computable model theory, the main topic is
the relationship between the properties of a first order theory and the difficulty
of computing presentations or properties of its models. With this viewpoint, we
present a new definition. We define the spectrum Spec(T ) of a theory T to be
the collection of Turing degrees of presentations of models of T . We believe that
analyzing spectra of theories will lead to a better understanding of the relationship
between the model theoretic properties of a theory and the computability-theoretic
complexity of its models.

In Section 2, we show that the class of graphs is universal for theory spectra
and show several examples of spectra of theories. In particular, we show that many
familiar structure spectra are also theory spectra, including any upward cone, the
non-computable degrees, the high degrees, the non-low degrees, the array non-
computable degrees, and the hyperimmune degrees. We also show that some more
exotic sets are the degree spectra of theories, including the PA degrees, the upward
closure of the set of 1-random degrees, and certain non-degenerate unions of two
upward cones of degrees. It is known that no non-degenerate union of two upward
cones is the spectrum of a structure, and we show in Section 3 that the PA degrees
and the upward closure of the set of 1-random degrees are not structure spectra.
We also isolate a property of theory spectra in Lemma 2.16 that allows us to show
that some known spectra of structures are not spectra of theories. One example is
the non-hyperarithmetical degrees, which were shown to be a structure spectrum
by Greenberg, Montalbán and Slaman [10].

In Section 4, we see a connection between theory spectra and a model-theoretic
property of the theory. In particular, we show that while the PA degrees, the
upward closure of the set of 1-random degrees, and a non-degenerate union of two
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cones are theory spectra, they are not the spectrum of any atomic theory. This led
us to ask if every atomic theory’s spectrum is a structure spectrum. We also asked
if every ω-stable theory’s spectrum is a structure spectrum. The first question was
answered by Andrews and Knight [2], who recently showed that the collection of
degrees of nonstandard models of true arithmetic is the spectrum of an atomic
theory but not a structure spectrum. The second question was recently answered
by Andrews, Cai, Diamondstone, Lempp, and Miller [1]. They constructed sets A
and B for which the collection of D such that either A ≤T D or B is the range of a
D-computable limitwise-monotonic function is the spectrum of an ω-stable theory
but not the spectrum of any structure. Andrews et al. [1] also showed that the
collection of degrees of nonstandard models of true arithmetic is not the spectrum
of an ω-stable theory.

Throughout, all theories will be assumed to be complete, and languages will
always be assumed to be computable.

2. Spectra of Theories

We begin our study of the spectra of theories by paralleling the development
of spectra of structures. In both cases, spectra are closed upward, except in the
trivial case. A structure A is trivial if there is a tuple of elements ā such that every
permutation of A that fixes ā pointwise is an automorphism. It is easy to see that
the spectrum of a trivial structure consists of a single Turing degree. Knight [13]
proved that the spectrum of a non-trivial structure is closed upward.

Proposition 2.1. If a theory T has a trivial model, then Spec(T ) consists of a
single degree. Otherwise it is closed upward.

Proof. Note that, by definition, Spec(T ) =
⋃
M |=T Spec(M).

First, suppose that T has no trivial model. Since Knight’s theorem guarantees
that Spec(M) is closed upward for each model M of T , so is Spec(T ).

Now, suppose T has a trivial model, and fix A to be such a model of T . Let
ā ∈ A be such that the automorphism group of A acts fully transitively over ā. The
number of n-types in the language with ā named is finite, and thus the number
of n-types in T is finite. Thus A is the unique countable model of T (see [12,
Theorem 6.3.1], the Ryll-Nardzewski theorem). So Spec(T ) = Spec(A), which is a
single degree. �

Hirschfeldt, Khoussainov, Shore, and Slinko [11] proved that the class of graphs
is universal for structure spectra in the sense that every spectrum of a structure is
the spectrum of a graph. We prove the analogous result for theory spectra.

Proposition 2.2. We can translate any theory to the language of graphs, preserv-
ing the spectrum. This translation preserves atomicity, having a saturated model,
stability, superstability, and ω-stability (but does not preserve strong minimality or
ℵ0-categoricity).

Proof. We may assume that the language of the given theory is relationary with
signature {Ri | i ∈ ω} where each Ri is i-ary. Given a structure M , we construct a
graph GM whose theory should have the same spectrum as the theory of M .

In GM , we have three distinguished elements, a, b and c. Attached to a is the
unique 3-loop in GM (that is, there are two further elements a′, a′′ and E(a, a′) ∧
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E(a′, a′′)∧E(a′′, a) holds), attached to b is the unique 5-loop in GM , and attached
to c is the unique 7-loop in GM .

Attached (i.e., edge-connected) to a, we create one element xm for each element
m ∈ M . We refer to the collection of xm as X. For each i-tuple m1, . . . ,mi of
elements from M , we attach an i + k-chain to the element xmk

, so that the last
elements of the chains are equal. If M |= Ri(m̄), we attach this last element to b,
and if M |= ¬Ri(m̄), then we attach this last element to c.

We first argue that if M ≡ N then GM ≡ GN . Let T be the theory of M and
N . Take saturated elementary extensions GM 4 A and GN 4 B of cardinality κ1.
Note that the structures of XA and XB as models of T are definable. So XA and
XB are saturated models of T of size κ. Thus there is an isomorphism taking XA

to XB , and it is easy to see that this isomorphism extends to every element of the
graphs A and B which are connected to XA or XB without going through b or c.
Each remaining element of A or B comes in one of three configurations: a Z-chain,
a collection of κ ω-chains emanating from the same element d where E(d, b) holds,
and a collection of κ ω-chains emanating from the same element d where E(d, c)
holds. Saturation implies that there must be κ of each of these configurations,
so there is a bijection between these configurations in A and B to complete the
isomorphism A ∼= B.

Given a theory T , let T ′ be the theory of GM for any M |= T . From a d-
computable presentation of any model G of T ′, one can effectively construct a
structure whose universe is X ⊆ G and where Ri(x̄) holds if and only if the final
node in the i+k-chains connected to each member of x̄ is connected to b. This gives
a d-computable presentation of a structure M . Since the relations Ri, interpreted
in this way, are definable in T ′, we see that T ′ includes statements guaranteeing
that M models T . Similarly, the construction of GM from M gives an effective way
to construct models of T ′ from models of T . Therefore, Spec(T ) = Spec(T ′). If A
is an atomic model of T , then GA is an atomic model of T ′, and counting types
yields the rest. �

We now give several examples of spectra of theories.

Example 2.3. Given any A ⊆ ω, there is a theory T such that Spec(T ) = {a |
A is a-c.e.}.

Proof. Let M be the graph structure comprised of the disjoint union of one n+ 3-
cycle for each n ∈ A. Certainly, M is computably presentable from any degree
enumerating A. Similarly, if a computably presents a model N ≡ M , then the set
of n for which there exists an n+ 3-cycle in N is Σ0

1[a]. �

Example 2.4. Given any Turing degree d, there is a theory T such that Spec(T )
is the cone above d.

Proof. Fix D ∈ d. Apply the previous example to A = D ⊕ (ω rD). The degrees
a such that A ∈ Σ0

1[a] are exactly the degrees that compute D. �

For the next example, and the proposition following it, we need to define daisy-
graphs. An n-loop is a connected graph A of size n where every element has valence
2. A daisy is a union of loops (n-loops for various n) intersecting in exactly one

1Technically, we are making a set theoretic assumption, but, as usual, this assumption is
removable.
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element c. The element c is called the center of the daisy, and for each loop A of
the daisy, we call Ar {c} a petal. A daisy-graph is a disjoint union of daisies.

Example 2.5. There is a theory T such that Spec(T ) is exactly the non-computable
degrees. In fact, for any degree a, the set of all degrees strictly above a is the
spectrum of a theory.

Proof. Wehner [22] constructed a graph M with only finite connected components
such that Spec(M) is exactly the non-computable degrees. The Wehner graph is
a daisy-graph representing the sets n⊕ F where F is a finite set that is not equal
to Wn. Let M ′ be the union of countably many copies of M . Again, Spec(M ′) is
exactly the non-computable degrees. (It is the set of degrees that uniformly enumer-
ate the set S = {n⊕F | F 6= Wn} with infinite repetitions. The fact that Wehner’s
graph is not computable does not depend on the multiplicity of the connected com-
ponents.) It turns out that there is a computable model of the theory of M ′ (and
of M). For this reason, we extend M ′ to a new structure N such that any model
of the theory of N that has a nonstandard copy of M ′ is very complex. Let N be
the following structure in signature {U(x), E(x, y), R(x, y, z),+(x, y, z), ·(x, y, z)}:

• E(x, y) holds only on pairs (x, y) from UN .
• (UN , EN ) is isomorphic to M ′.
• +, · hold only on triples from (¬U)N .
• ((¬U)N ,+N , ·N ) is isomorphic to (N,+, ·).
• R(x, y, z) holds only on triples (x, y, z) where x, y ∈ UN and z ∈ (¬U)N .
• For each E-connected component C of UN , R is a bijection of C × C to

some initial segment of (¬U)N . (A set X ⊆ N is an initial segment if it is
an initial segment of the linear order (N, <). Since (¬U)N ∼= (N,+, ·), we
refer to the corresponding sets as initial segments of (¬U)N .)
• For each connected component C of M , and each way of bijecting C × C

to an initial segment of N, there are infinitely many copies of C in UN for
which R gives this bijection to an initial segment of (¬U)N .

Let T be the theory of N . It remains to show that Spec(T ) is precisely the
non-computable degrees. From a d-computable presentation of M ′, it is easy to
construct a d-computable presentation of N . Thus Spec(T ) contains every non-
computable degree. Now let N ′ |= T . If the M ′ part of N ′ is standard, i.e., if

UN
′

is isomorphic to M ′, then N ′ must be non-computable. On the other hand,
if the M ′ part of N ′ is nonstandard, then it must contain an infinite E-connected
component C. Fix x ∈ C. It must be the case that R(x,−,−) induces a (partial)

injective function from UN
′

to (¬U)N
′
. This function cannot be cofinal, and it

must be defined (at least) on all of C. Therefore, (¬U)N
′

must be a nonstandard
model of true arithmetic. Feferman [8] proved that a presentation of a nonstan-
dard model of true arithmetic computes every arithmetical set, so once again, N ′

is non-computable.
To prove the relativization, for an arbitrary degree a, take the Wehner graph

relative to a and do a similar construction to the one above, but adding a new
predicate on the copy of N to identify A ⊆ N for some A ∈ a. The proof is
identical, using the fact that a nonstandard model of N with a predicate for A will
compute A(n) for each n ∈ ω. �

Many of the interesting examples of structure spectra given in the literature are
either the set of degrees enumerating a family of finite sets, or the set of degrees
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computing a family of finite sets. This includes the previous example, and we can
extend the method used there provided that the spectrum includes an arithmetical
degree. If X ⊆ ω, we write X [i] = {n | 〈i, n〉 ∈ X} for the ith column of X.
The columns of X form a family of sets, that is, a collection for which multiplicity
matters. We use set notation for families, taking the equality of multiplicities as
understood.

Proposition 2.6. If S is a family of finite sets where each set appears infinitely
often, then {d | ∃X ∈ Σ1(d) [S = {X [i] | i ∈ ω}]} is the spectrum of a theory
if it contains an arithmetical degree. Similarly, for any family S of finite sets,
Q := {d | ∃X ≤T d [S = {X [i] | i ∈ ω}]} is the spectrum of a theory if it contains
an arithmetical degree.

Proof. For the first claim, we use the construction in Example 2.5. In particular,
we define for each F ∈ S the F -daisy comprised of one loop of size n for each n ∈ F .
Then we let W ′ be the graph comprised of countably infinitely many F -daisies for
each F ∈ S. As above, presenting a copy of W ′ is equivalent to being a member
of {d | ∃X ∈ Σ1(d) [S = {X [i] | i ∈ ω}]}. We again want to form a theory whose
prime model is computable in d if and only if W ′ is computable in d, and we want
the non-prime models to only be computable from degrees that are upper bounds
for all arithmetical degrees. Applying the construction in Example 2.5 to the graph
W ′ does exactly this.

To see that the degrees computing a family S of finite sets is the spectrum of a
theory, we need to alter that construction slightly. For each F ∈ S, we construct a
colored daisy DF that has one blue loop of size n+ 3 for every n ∈ F and one red
loop of size n + 3 for every n /∈ F . Let N be the following structure in signature
{U(x), E(x, y), R(x, y, z),+(x, y, z), ·(x, y, z), B(x), R(x)}:

• E(x, y) holds only on pairs (x, y) from UN .
• (UN , EN ) is isomorphic to

⋃
F∈S DF , where B denotes the blue nodes and

R denotes the red nodes (note: this union allows as many copies of DF as
the number of times F appears in S).

• +, · hold only on triples from (¬U)N .
• ((¬U)N ,+N , ·N ) is isomorphic to (N,+, ·).
• R(x, y, z) holds only on triples (x, y, z) where x, y ∈ UN , x is the center of

a daisy, and z ∈ (¬U)N .
• For each DF in UN with center a, Ra := R(a,−,−) is a bijection from the

blue nodes in DF to an initial segment of (¬U)N .
• If x is on a smaller loop in DF than y, then the Ra(x) < Ra(y). If x and y

are neighbors on a petal of DF , then |Ra(x)−Ra(y)| = 1 (where < and −
are understood as given by the isomorphism between ((¬U)N ,+N , ·N ) and
(N,+, ·)).

It is clear that N is computable from exactly the degrees in Q. Suppose that d com-
putes a model N ′ of T . We say that a set F is represented in N ′ if there is a center
a of a daisy in N ′ such that F = {n | there is a blue n+ 3-loop attached to a}. It
should be clear that every F ∈ S is represented in N ′ with at least its multiplicity
in S. If an infinite set F is represented in N ′ at a, then Ra is an injection of an infi-
nite set into a proper initial segment of (¬U)N

′
. So (¬U)N

′
must be a nonstandard

model of true arithmetic. By Feferman [8], d computes all arithmetical degrees,
thus is in Q.
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Now assume that all sets represented in N ′ are finite. If the family of represented
sets is S, then we see that d is in Q. If not, then there is a set represented in N ′

more often than it appears in S. Suppose F is this finite set and it appears k times
in S. Then T includes the statement that if a1, . . . , ak+1 are distinct elements that
have blue petals for each n ∈ F , then at least one has some other blue neighbor.
Taking a1, . . . , ak+1 to be the centers of the daisies representing F in N ′, the extra
blue neighbor cannot be on a finite petal. So there is a blue ω-chain attached to
a daisy in N ′ with center a. But T includes the statement that all blue neighbors
of a are mapped by Ra somewhere in ¬U , as well as the statement that each blue
neighbor of an element mapped somewhere by Ra is also mapped somewhere by
Ra. Thus the entire ω-chain is in the domain of Ra. So Ra is an injection of an
infinite set into a proper initial segment of (¬U)N

′
. As before, this means that

(¬U)N
′

is a nonstandard model of true arithmetic and d is in Q. �

Example 2.7. The hyperimmune degrees, the array non-computable degrees, and
the degrees that are not jump traceable are all degree spectra of theories.

Proof. Csima and Kalimullin [3, Corollary 5.3] show that there is a family of finite
sets so that the degrees that uniformly compute the family are exactly the hyper-
immune degrees. Similarly, Diamondstone, Greenberg and Turetsky [5] construct
a family S of finite sets so that exactly the array non-computable degrees compute
S. They also show that there is a family of finite sets such that the degrees that
uniformly enumerate the family (with repetition) are exactly the degrees that are
not jump traceable. By Proposition 2.6, each of these collections is the spectrum
of a theory. �

The next result gives us jump inversion for theory spectra. We refute transfinite
jump inversion in Remark 2.19.

Lemma 2.8. Suppose that S is the spectrum of a theory. Then {d | d′ ∈ S} is
also the spectrum of a theory.

Proof. We may assume that S is the spectrum of the theory of a graph. We
create a new theory T ′ with the spectrum {d | d′ ∈ S}. To define T ′, we use a
construction that first appeared in Marker [16]. Given a graph A, we define three
extensions: A∀∃, A∃∀, and A∀∃/∃∀. Let A∀∃ be the following structure in signature
{U(x), V (x),W (x), P (x, y, z), Q(x, y, z), R(x, y, z, w)}:

• U , V , and W partition the universe into three infinite sets.
• P ⊆ U2× V gives a partition of V into infinitely many infinite sets defined

by Pa,b = P (a, b,−).
• Q ⊆ U2×W gives a partition of W into infinitely many infinite sets defined

by Qa,b = Q(a, b,−).
• R ⊆ U2 × V ×W .
• There is an identification of U with A so that the following hold:

– If A |= E(a, b), then Ra,b defines a bijection between Pa,b and Qa,b.
– If A |= ¬E(a, b), then there is a single element u ∈ Pa,b so that Ra,b

defines a bijection between Pa,b r {u} and Qa,b.

We define A∃∀ to be B∀∃ where B is the complement graph of A. We define A∀∃/∃∀
to be the structure with signature {U, V1,W1, V2,W2, P1, Q1, R1, P2, Q2, R2} so that

• U, V1,W1, V2,W2 parition the universe,
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• (U, V1,W1, P1, Q1, R1) ∼= A∀∃ and (U, V2,W2, P2, Q2, R2) ∼= A∃∀, and
• A∀∃ and A∃∀ use the same identification of U with A.

For T the theory of a graph G, let T ′ be the theory of G∀∃/∃∀. It is clear that if
A ≡ B, then A∀∃/∃∀ ≡ B∀∃/∃∀, so this is well defined.

If B is a model of T ′, let

E := {(a, b) | ∀x ∈ P1,a,b∃y ∈ Q1,a,b R(a, b, x, y)}
= U r {(a, b) | ∀x ∈ P2,a,b∃y ∈ Q2,a,b R(a, b, x, y)}.

Then (U,E) is a model of T . Since E ∈ ∆2(B), given any degree d ∈ Spec(T ′),
we see that d′ ∈ Spec(T ). Conversely, if d′ ∈ Spec(T ), then we have a model A of
T for which the edge relation is ∆2[d]. Using this, d can build a copy of A∀∃/∃∀,
showing that d ∈ Spec(T ′). �

Using Lemma 2.8, it is easy to see that the high degrees and the non-low degrees
are both spectra of theories, as are many other jump classes.

Example 2.9. For all n,m ∈ ω, both {d | d(n) ≥ 0(m)} and {d | d(n) > 0(m)} are
spectra of theories. Similarly, for any A ⊆ ω and k ≥ 1, the set {d | A ∈ Σ0

k[d]} is
the spectrum of a theory.

Proof. Apply Lemma 2.8 to the cone above 0(m) and to the set of degrees strictly
above 0(m). For the set of all d such that A ∈ Σ0

k[d], apply Lemma 2.8 k− 1 times
to the theory constructed from A in Example 2.3. This gives the set of degrees d
such that A ∈ Σ0

1[d(k−1)], which is equivalent to A ∈ Σ0
k[d]. �

The next three examples give us theory spectra that are impossible for struc-
tures. In each example, we construct a tree E ⊆ 2<ω and then use the following
construction to code E into a theory TE .

Construction 2.10. Given a tree E, we generate a theory TE as follows. For each
σ ∈ 2<ω, our language has a unary relation symbol Uσ. We also have a binary
relation symbol R. We describe a structure in this language. Let U denote the
elements on which Uλ holds, where λ is the empty string. Let W be the complement
of U . Then R ⊆ U ×W . Every element of W is connected by R to exactly one
element of U . Every element of U is connected to at most one element of W . Let
S denote the elements of U connected by R to some element of W . Both S and
U r S are infinite.

If σ /∈ E, then Uσ holds on no elements. If Uσi(x), where i ∈ {0, 1}, then
Uσ(x). On the other hand, if σ ∈ E is not terminal and Uσ(x), then Uσi(x) for
some i ∈ {0, 1}. Finally, if σ, τ ∈ E and σ and τ are incomparable, then the
interpretations of Uσ and Uτ are disjoint. These rules imply that every x ∈ U is
associated to either a terminal node in E or an infinite path in [E]. Each terminal
node has infinitely many elements of S associated to it, and none of U rS. Finally,
if E is infinite above σ, then there are infinitely many elements of both U r S and
S on which Uσ holds.

Everything described so far can be expressed in first-order logic in a straight-
forward way. To see that this theory is complete, see that a model M of T inter-
prets the structure whose universe is U(M) with the extra symbol S(x) defined by
∃yR(x, y). Further, T is bi-interpretable with its reduct T ′ in this new language.
Thus it suffices to show completeness of this T ′. This can be seen by the quantifier
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elimination of T ′. A formula of the form

ϕ(ȳ) := ∃x (Uσ(x) ∧i Uτi(yi) ∧i x 6= yi ∧ ±S(x) ∧i ±S(yi))

is clearly either equivalent to false if E is finite above σ and ¬S(x) is specified, or
is equivalent to ∧iUτi(yi) ∧i ±S(yi) otherwise.

We say that X is an enumeration in 2<ω ∪ 2ω if X ∈ 3ω and for each i, either
X [i] ∈ 2ω or there is a k ∈ ω so that ∀j ≥ kX [i](j) = 2 and X [i]|k ∈ 2<ω.

Lemma 2.11. Let E ⊆ 2<ω be a tree such that the set of terminal nodes in E is
computably enumerable. Then the spectrum of the theory TE is exactly the set of
degrees that compute an enumeration of a subset of 2<ω ∪ 2ω that is comprised of
all terminal nodes in E and a dense set of paths in [E].

Proof. Suppose d computably presents the model M |= TE . Associate to each
a ∈M the set {σ |M |= Uσ(a)}. Using M , d can thus uniformly enumerate these
sets. From the collection of a ∈ U r S, this collection includes a dense set of paths
through E, and the terminal nodes are hit by elements from S.

Suppose that d uniformly enumerates the collection of terminal nodes along with
a dense set of paths in [E]. Let X be such an enumeration so that either X [i] is a
terminal node in E or is a path in [E]. Using this X, we present a d-computable
structure MX , the ith element of which satisfies Uσ if and only if σ is an initial
segment of X [i]. Let M ′X be the d computable structure comprised of countably
many disjoint copies of MX . Lastly, let N be the structure where UN is isomorphic
to M ′X and an element of M ′X is R-connected to some member of WN if it is in
an even numbered copy of MX or is associated with a terminal node. This N is a
model of TE and is d-computable. �

A function f : ω → ω is diagonally non-computable (DNC ) if ∀n [f(n) 6= ϕn(n)],
where {ϕn} is a fixed effective list of all partial computable functions. The PA
degrees are the degrees of elements of DNC2, the Π0

1 class of {0, 1}-valued DNC
functions. More information about DNC functions and PA degrees can be found,
for example, in Downey and Hirschfeldt [6], which is also an excellent reference on
1-random sequences.

Example 2.12. There is a theory T such that Spec(T ) is exactly the PA degrees.

Proof. Take a computable tree E ⊆ 2<ω such that [E] = DNC2. Let T be the theory
TE . From a PA degree, one can uniformly compute paths through nonempty Π0

1

classes, hence every PA degree computes an enumeration that includes all terminal
nodes in E and a dense set of paths in [E]. On the other hand, every path in [E]
has PA degree, so by Lemma 2.11, Spec(T ) is exactly the PA degrees. �

Example 2.13. There is a theory T such that Spec(T ) is exactly the upward
closure of the set of 1-random degrees.

Proof. Let E ⊆ 2<ω be an infinite computable tree such that every element of [E] is
1-random. For example, [E] could be the complement of the first level of a universal
Martin-Löf test. Kučera [14] proved that if X ∈ 2ω is 1-random, then every positive
measure Π0

1 class contains a tail of X. Furthermore, if [E] is nonempty above some
σ ∈ 2<ω, then it must have positive measure above σ, because no 1-random can
be contained in a measure zero Π0

1 class. Therefore, the set of tails of X that are
contained in [E] is dense in [E]. This means that X can compute an enumeration
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that includes all terminal nodes in E and a dense set of paths in [E] by simply
listing its tails for as long as each remains on E, then for initial segments of tails
that leave E, taking the leftmost possible extension until a terminal node is found.
So by Lemma 2.11, Spec(TE) is exactly the upward closure of the set of 1-random
degrees. �

Example 2.14. There is a theory T such that Spec(T ) is a non-degenerate union
of two cones (i.e., the union of two cones where neither cone contains the other).

Proof. Let A and B be incomparable computably enumerable sets. We will con-
struct a theory along the same lines as above, by first defining a tree then coding
that tree into a theory. We first construct a computably enumerable tree E such
that all paths in [E] compute either A or B and such that each of A and B compute

a dense set of paths in [E]. Define E as follows. Put σ of length n = i(i+1)
2 into E

at stage s ≥ n if for each k < i, σ restricted to the interval
[
k(k+1)

2 , k(k+1)
2 + k

]
is

either 0 a (As|k) or 1 a (Bs|k).
First note that the set of terminal nodes in E is computably enumerable. In

particular, σ is a terminal node in E if there is a stage s such that σ ∈ Es, both σ a 0

and σ a 1 are not in Es, and there is an interval of the form
[
k(k+1)

2 , k(k+1)
2 + k

]
on which σ is defined but is not equal to either 0 a (As|k) or 1 a (Bs|k). In other
words, σ is terminal on Es and either A or B has changed to ensure that σ can not
be extended after stage s.

Now let τ be a path in [E]. Because no initial segment of τ is terminal, τ

restricted to
[
k(k+1)

2 , k(k+1)
2 + k

]
must either be 0 a (A|k) or 1 a (B|k). If infinitely

many of these intervals start with a 0, then τ computes A. Otherwise, infinitely
many start with a 1 and τ computes B. By Lemma 2.11, any Z ∈ Spec(TE)
enumerates a path in [E], hence computes A or B.

It remains to show that A and B are in Spec(TE). Let σ ∈ E have length
i(i+1)

2 for some i. Using A, we can uniformly compute a path on E extending σ
by appending strings 0 a (A|k) for k > i, as long as these extensions continue to
be on E. If σ is extendable to a path in [E], then this process will produce such a
path. Otherwise, it will produce a terminal node on E. By starting with all σ ∈ E,
A uniformly enumerates a collection of strings containing all terminal nodes in E
and a dense set of paths in [E]. By Lemma 2.11, A ∈ Spec(TE). In the same way,
B ∈ Spec(TE), so Spec(TE) is the union of the two cones above A and B. �

Corollary 2.15. There is a theory spectrum that is not a structure spectrum.

Proof. Examples 2.12 and 2.13 yield spectra of theories that are not spectra of
structures by Theorem 3.9. Similarly, Example 2.14 yields a theory spectrum that
is not the spectrum of a structure (see Soskov [21]). �

We have seen several examples of spectra of theories, including some spectra
that are possible for structures, and some that are not. It is natural to ask if every
possible structure spectrum is also a theory spectrum, but it turns out that the two
notions are incomparable. To see this, we have to formulate a restriction on the
spectra of theories.
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Lemma 2.16. Let T be a theory and assume that c computes everything computable
from both a(ω) and b(ω). This holds, for example, if c = a(ω) ∧ b(ω). If a,b ∈
Spec(T ), then c ∈ Spec(T ).

Proof. If a,b ∈ Spec(T ), then a(ω) and b(ω) both compute T . Thus c computes
T . By Henkin’s construction, c computes (in fact decides) a model of T . Thus
c ∈ Spec(T ). �

A routine degree-theoretic result will help us apply Lemma 2.16.

Lemma 2.17. Let C ≥T D′. Then there are X and Y such that X ′, Y ′ ≡T C and
X and Y form a minimal pair over D.

Proof. Build X and Y by finite initial segments using the oracle C ≡T C ⊕ D′.
Code D into the even positions of X and Y . To ensure that X ′, Y ′ ≡T C, force the
jump and code C into the jump exactly as in the proof of the (relativized) Friedberg
completeness criterion (for example, see [20, Theorem VI.3.2]). Finally, intersperse
the minimal pair requirements. If we have σ ≺ X and τ ≺ Y , search for σ′ � σ
and τ ′ � τ , both consistent with the coding of D, and n such that ϕσ

′

e (n) 6= ϕτ
′

i (n)
(and both converge). If these exists, then extend to σ′ and τ ′, which ensures that
ϕXe 6= ϕYi . Otherwise, if ϕXe = ϕYi is total, then ϕXe ≤T D. �

Theorem 2.18. There is a structure spectrum that is not a theory spectrum.

Proof. Apply Lemma 2.17 with D = ∅(ω) and C = ∅(ω·2+2) to get X and Y such
that X ′, Y ′ ≡T ∅(ω·2+2) and X and Y form a minimal pair over ∅(ω). There are A
and B such that A(ω) ≡T X and B(ω) ≡T Y (Macintyre [15]).

Goncharov, Harizanov, Knight, McCoy, Miller and Solomon showed that if S is
the spectrum of a structure, then so is {d | d(ω+1) ∈ S} [9, Lemma 5.5]. Since
S = {d | d ≥ 0(ω·2+2)} is a structure spectrum, so is {d | d(ω+1) ≥ 0(ω·2+2)}. This
gives us a structure whose spectrum contains A and B, but not A(ω)∧B(ω) ≡T ∅(ω).
This cannot be the spectrum of a theory by Lemma 2.16. �

Remark 2.19. Let α ≥ ω be a computable ordinal. Using the argument above,
we can refute α-jump inversion for theory spectra. In other words, there is a theory
spectrum S such that S−(α) = {d | d(α) ∈ S} is not a theory spectrum. This stands
in contrast to Lemma 2.8, which implies α-jump inversion for theory spectra and
finite α, and to Lemma 5.5 of [9], which gives α-jump inversion for structure spectra
and computable successor ordinals α.

First assume that α ≥ ω + 1. Let S = {d | d ≥ 0(ω+α+1)} and take A and
B such that A(ω+1) ≡T B(ω+1) ≡T ∅(ω+α+1) and A(ω) ∧ B(ω) ≡T ∅(ω). Then by
Lemma 2.16, S−(α) is not a theory spectrum. Note that S−(ω+1) =

(
S−(1)

)−(ω),
so if ω-jump inversion were possible for theory spectra, then (ω+1)-jump inversion
would also be possible. This proves that ω-jump inversion of theory spectra is not
possible in general.

Greenberg, Montalbán and Slaman [10] showed that there is a structure whose
spectrum is exactly the non-hyperarithmetical degrees. This gives us another ex-
ample of a structure spectrum that is not a theory spectrum.

Theorem 2.20. The collection of non-hyperarithmetical degrees is not the spectrum
of a theory.
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Proof. The proof is similar to the previous theorem. Let C ≥T ∅(ω+1) be non-
hyperarithmetical and apply Lemma 2.17 to get X and Y that form a minimal
pair over ∅(ω) and such that X ′, Y ′ ≡T C. In particular, X and Y are non-
hyperarithmetical sets. Let A and B be such that A(ω) ≡T X and B(ω) ≡T Y . Then
A and B are also non-hyperarithmetical, but A(ω)∧B(ω) ≡T ∅(ω). By Lemma 2.16,
the collection of non-hyperarithmetical degrees is not the spectrum of a theory. �

3. Spectra of Structures

In this section we show that the PA degrees and the upward closure of the
set of 1-random degrees are not spectra of structures. Our proofs filter through
understanding structures with the c.e. extension property, defined below. We show
that if Spec(M) contains the PA degrees, the 1-random degrees, or more generally,
the degrees of any nonempty Π0

1 class, then M has the c.e. extension property.
We then show that the spectrum of any structure with the c.e. extension property
must also contain a degree not computing any member of any special Π0

1 class in
ωω. Recall that a class is special if it contains no computable member.

Definition 3.1. A structure M has the c.e. extension property (ceep) if every ∃-
type of a finite tuple in M is c.e. Equivalently, M has the ceep if for every tuple
ā ∈M , the set of quantifier-free formulas satisfied by finite extensions āb̄ in M is a
c.e. set.

Remark 3.2. In the Russian literature, see for example [7], the c.e. extension
property is referred to as local constructivizability.

Remark 3.3. We will be computing from atomic diagrams of structures. To this
end, we fix an effective bijection between ω and the atomic formulas on tuples from
ω, the universe of the structure. Then an atomic diagram is viewed as the sequence
in 2ω that assigns truth values to each such atomic formula. A finite string decides
finitely many truth values, so it gives a quantifier free formulas on a tuple from ω.
Fix a distinct tuple ā from M, i.e., a tuple of distinct elements. We define E(ā)
to be the set of strings in 2<ω corresponding to formulas σ(0, 1, . . . , n) so that for
some distinct tuple b̄, M |= σ(āb̄). If M has the ceep, E(ā) is a c.e. set of strings.

Richter [17, 18] defined M to have the recursive extension property if every ∃-
type is computable. She showed that if M has the recursive extension property,
then M has a minimal pair of presentations. We extend her result to show that
a stronger conclusion follows from, and in fact is equivalent to, the c.e. extension
property.

Definition 3.4. The sets X and Y form a Σ1-minimal pair if Σ1(X)∩Σ1(Y ) = Σ1,
in other words, if every set computably enumerable in both X and Y is computably
enumerable.

Note that Σ1-minimal pairs are minimal pairs, as every set computable in both
X and Y must be both Σ1 and co-Σ1, thus computable. Note also that if X is
computable, then X and Y always form a Σ1-minimal pair.

Lemma 3.5. M has the ceep if and only if M has a Σ1-minimal pair of presen-
tations.2

2We thank Antonio Montalbán for suggesting the “only if” direction.
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Proof. (⇐) Every ∃-type of a finite tuple in M is Σ1 in both presentations. Thus
every ∃-type of a finite tuple in M is c.e.

(⇒) We show that given any set A there is a presentation B of M that forms
a Σ1-minimal pair with A. We build B by building a bijection between ω and M.
At a given stage, we are committed to a map from an initial segment of ω intoM,
i.e., a distinct tuple ā from M. We want to ensure that if WA

i = WB
e , then WB

e

is c.e. To this aim, we define the set W = {n | ∃τ ∈ E(ā) [n ∈ W τ
e ]}. If there

is an n ∈ W rWA
i , then by passing to a distinct ā′ that extends ā and satisfies

the formula corresponding to τ , we ensure that WA
i 6= WB

e . If W rWA
i = ∅, then

WB
e ⊆W ⊆WA

i , so if the two are equal then they must equal the c.e. set W .
Interspersing these actions with requirements extending the bijection between ω

andM, we ensure that B is a presentation ofM that forms a Σ1-minimal pair with
A. By letting A be any presentation of M in the beginning, we get a Σ1-minimal
pair of presentations of M. �

We now show that if Spec(M) contains either a nonempty Π0
1 class or a set of

degrees of measure 1, then M has the ceep. We will show a strong form of the
statement that any nonempty Π0

1 class contains a Σ1-minimal pair.

Proposition 3.6. Let Y be any set and P be a nonempty Π0
1 class. Then there

exists X ∈ P so that X and Y form a Σ1-minimal pair.

Proof. We may assume that the Π0
1 class P is special. Otherwise, any computable

element of P suffices. We force with nonempty Π0
1 classes, starting with P0 = P .

At stage s we have Ps and we aim to ensure that if WX
e = WY

i , then WX
e is c.e.

Define W = {n | ∀A ∈ Ps [n ∈WA
e ]}. It follows from weak König’s lemma that W

is c.e., and by definition, W ⊆WA
e for any A ∈ Ps. If there exists an n ∈WY

i rW ,
then we pass to Ps+1 = Ps ∩ {A | n /∈WA

e } and we have ensured that WX
e 6= WY

i .
If there is no such n, then WY

i ⊆W ⊆WX
e , so if WX

e = WY
i , then they both equal

the c.e. set W . Then X in
⋂
s Ps suffices. �

Next we show a strong form of the statement that any measure 1 set of degrees
contains a Σ1-minimal pair.

Proposition 3.7. Let Y be any set. Then almost every X forms a Σ1-minimal
pair with Y .

Proof.3 For any non-c.e. set A, the collection of oracles that enumerate A has
measure zero (de Leeuw, Moore, Shannon, and Shapiro [4]). Let C be the collection
of sets that are Y -c.e. but not c.e. Note that C is countable. Therefore, the set of
all X for which no element of C is X-c.e. (i.e., the X that form a Σ1-minimal pair
with Y ) has measure one. �

Now it remains to show that structures with the ceep have presentations that
do not compute a member of any special Π0

1 class in ωω.

Proposition 3.8. LetM be a structure with the ceep. ThenM has a presentation
that does not compute a member of any special Π0

1 class in ωω.

Proof. We will again build the presentation A of M by building a bijection be-
tween ω and M. As there are only countably many special Π0

1 classes and Turing
reductions, it suffices to show how to avoid computing any member of a particular

3We thank the referee for suggesting this proof.
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Π0
1 class P in ωω via a particular Turing reduction Φ. Let P be a special Π0

1 class
in ωω. At stage s when this requirement acts, we are committed to the map from
an initial segment of ω to some tuple ā in M. We first ask if there is a τ in E(ā)

and an i ∈ ω so that Φτ
′
(i) ↑ for every τ ′ � τ in E(ā). If such a τ exists, we pass

to a distinct tuple ā′ that extends ā and satisfies the formula corresponding to τ ,
and we have forced non-totality of Φ. Otherwise, there is a computable sequence
τ1 4 τ2 4 · · · in E(ā) where Φτi(i) ↓. As P is a special Π0

1 class, there is an i such
that Φτi(i) has no extension in P . We choose a distinct tuple ā′ that extends ā
and satisfies the formula corresponding to τi, ensuring that Φ(A) /∈ P . We again
intersperse this with requirements extending the bijection between ω and M. �

Putting together Propositions 3.6 and 3.8, we have the following theorem.

Theorem 3.9. Let P be a nonempty Π0
1 class. If M is a structure that has pre-

sentations computable from every element of P , then M has a presentation that
does not compute a member of any special Π0

1 class in ωω.

The theorem implies that if P is a special Π0
1 class (in Cantor space), then no

structure has a spectrum consisting of exactly the upward closure of the degrees of
members of P . Recall that the elements of the special Π0

1 class DNC2 are exactly
the PA degrees. Furthermore, the DNC functions form a special Π0

1 class in ωω,
giving us the following corollary.

Corollary 3.10. The class of PA degrees is not the spectrum of any structure.
Furthermore, any structure spectrum containing at least the PA degrees contains a
member of non-DNC degree, i.e., one that does not compute a DNC function.

We could similarly apply the theorem to show that the upward closure of the
set of 1-random degrees is not the spectrum of a structure, but a stronger result is
possible. The second author showed that if the degree spectrum of a structure has
measure 1, then it contains a non-DNC degree (unpublished). We show that now
as a consequence of the above.

Theorem 3.11 (Miller). If M has presentations computable from almost every
degree, then it has a presentation of non-DNC degree.

Proof. By Propositions 3.7, Spec(M) contains a Σ1-minimal pair. Now apply
Lemma 3.5 and Proposition 3.8. �

This answers Question 5.2 in Shinoda and Slaman [19]. They produced a count-
able structure with co-meager spectrum such that every presentation computes a
1-generic. They asked if the same is possible with category replaced by measure.
By the previous result, if the spectrum of M has measure one, then there is a pre-
sentation of non-DNC degree. Kučera [14] proved that every 1-random computes a
DNC function, so such a presentation cannot compute a 1-random.

4. Spectra of Atomic Theories

Note that Examples 2.4, 2.5, 2.7, and 2.9 above are constructed using atomic
theories, but Examples 2.12, 2.13, and 2.14 are constructed using non-atomic theo-
ries. We now show that these last three examples could not have been achieved with
atomic theories. This contrasts with the recent example of Andrews and Knight
[2], who gave an atomic theory spectrum that is not the spectrum of any structure.
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For the PA degrees and the upward closure of the set of 1-random degrees, we once
again use the ceep.

Proposition 4.1. If T is an atomic theory and Spec(T ) contains a Σ1-minimal
pair, then the prime model of T has the ceep.

Proof. Take A and B to be presentations of models of T that form a Σ1-minimal
pair. Any ∃-type p that is realized in the prime model of T is also realized in A
and in B. Thus p is Σ1(A) and Σ1(B). Therefore, p is c.e. �

Combining the results in the last section with the above proposition, we get the
following theorem.

Theorem 4.2. Let P be a nonempty Π0
1 class. If T is an atomic theory and

P ⊆ Spec(T ), then Spec(T ) contains a degree that does not compute a member of
any special Π0

1 class in ωω.

Corollary 4.3. Neither the class of PA degrees nor the upward closure of the
class of 1-random degrees is the spectrum of any atomic theory. Furthermore, any
spectrum of an atomic theory that contains at least the PA degrees or 1-random
degrees also contains a member of non-DNC degree.

We also get the analogous statement for spectra containing almost every degree.

Corollary 4.4. If T is an atomic theory and Spec(T ) has measure 1, then Spec(T )
contains a degree that computes no member of a special Π0

1 class in ωω.

Proof. By Proposition 3.7, we know that Spec(T ) contains a Σ1-minimal pair.
Proposition 4.1 tells us that the prime model of T has the ceep. Thus by Propo-
sition 3.8, we see that Spec(T ) contains a degree that computes no member of a
special Π0

1 class in ωω. �

Similarly, Example 2.14 cannot be attained using an atomic theory:

Theorem 4.5. Assume that a and b are Turing incomparable and T is an atomic
theory. Then Spec(T ) 6= {d | a ≤ d or b ≤ d}.

Proof. Fix sets A ∈ a and B ∈ b. Suppose that T is an atomic theory such that
A,B ∈ Spec(T ). We will construct a presentation X of the prime model M of
T that does not compute A or B. We again build the presentation by building a
bijection between ω and M. At a given stage, we are committed to a map from
an initial segment of ω to a distinct tuple ā from M. We want to ensure that
X computes neither A nor B. Consider one requirement, say ΦX 6= B. We will
use the A-ceep property of M to diagonalize against X computing B. As Spec(T )
contains A, we see that M has the ceep relative to A, as in Proposition 4.1. We
ask whether there exists a τ ∈ E(ā) and an i ∈ ω so that Φτ (i) ↓6= B(i). If so, we
pass to a distinct tuple ā′ that extends ā and satisfies the formula corresponding
to τ , and have successfully ensured that ΦX 6= B. If not, then since E(ā) is A-c.e.
and B 6≤T A, we know that ΦX will be partial. So, we need to perform no action
to ensure ΦX 6= B. Reversing the roles of A and B, requirements of the form
ΦX 6= A are satisfied in the same way. Again, we intersperse such requirements
with requirements extending the bijection between ω and M. �

In fact, the same proof works for any non-degenerate union of at least two and
at most countably many cones.



SPECTRA OF THEORIES AND STRUCTURES 15

References

[1] Uri Andrews, Mingzhong Cai, David Diamondstone, Steffen Lempp, and Joseph S. Miller.
Theory spectra and classes of theories. To appear.

[2] Uri Andrews and Julia F. Knight. Spectra of atomic theories. J. Symbolic Logic, 78(4):1189–

1198, 2013.
[3] Barbara F. Csima and Iskander S. Kalimullin. Degree spectra and immunity properties. Math.

Log. Q., 56(1):67–77, 2010.

[4] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by probabilis-
tic machines. In Automata studies, Annals of mathematics studies, no. 34, pages 183–212.

Princeton University Press, Princeton, N. J., 1956.
[5] David Diamondstone, Noam Greenberg, and Daniel Turetsky. Natural large degree spectra.

Computability, 2(1):1–8, 2013.

[6] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity. The-
ory and Applications of Computability. Springer, New York, 2010.

[7] Yuri L. Ershov. Definability and computability. Siberian School of Algebra and Logic. Con-

sultants Bureau, New York, 1996.
[8] Solomon Feferman. Arithmetically definable models of formalized arithmetic. Not. Amer.

Math. Soc., 5:679, 1958.

[9] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller,
and Reed Solomon. Enumerations in computable structure theory. Ann. Pure Appl. Logic,

136(3):219–246, 2005.

[10] Noam Greenberg, Antonio Montalbán, and Theodore Slaman. Relative to any non-
hyperarithmetic set. J. Mathematical Logic, 13(01):1250007, 2013.

[11] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and Arkadii M. Slinko.
Degree spectra and computable dimensions in algebraic structures. Ann. Pure Appl. Logic,

115(1-3):71–113, 2002.

[12] Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.
[13] Julia F. Knight. Degrees coded in jumps of orderings. J. Symbolic Logic, 51(4):1034–1042,

1986.
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