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Abstract

We consider the question of randomness of the probability ΩU [X] that an optimal
Turing machine U halts and outputs a string in a fixed set X. The main results are as
follows:

• ΩU [X] is 1-random whenever X is Σ0
n-complete or Π0

n-complete for some n ≥ 2.

• However, for n ≥ 2, ΩU [X] is not n-random when X is Σ0
n or Π0

n.
Nevertheless, there exists ∆0

n+1 sets such that ΩU [X] is n-random.

• There are ∆0
2 sets X such that ΩU [X] is rational. Also, for every n ≥ 1, there exists

a set X which is ∆0
n+1 and Σ0

n-hard such that ΩU [X] is not random.

We also look at the range of ΩU as an operator. We prove that the set {ΩU [X] : X ⊆ 2<ω}
is a finite union of closed intervals. I follows that for any optimal machine U and any
sufficiently small real r, there is a set X ⊆ 2<ω recursive in ∅′ ⊕ r, such that ΩU [X] = r.
The same questions are also considered in the context of infinite computations, and lead
to similar results.

1 Introduction

1.1 Notations

We denote by 2<ω the set of all finite words on the alphabet {0, 1} and by 2≤n the set of
all words up to size n. The empty word is denoted by λ and the length of a word a by |a|.
We denote by #X the number of elements of the finite set X. We use µ(X ) to denote the
Lebesgue measure of a subset X of the Cantor space 2ω of all infinite binary words of length
ω.

We commit to prefix Turing machines, which are exactly the partial recursive functions
with prefix-free domain. We assume Martin-Löf’s definition of randomness (or its equivalent
counterpart in terms of program-size complexity). As usual, for n ≥ 1, n-randomness is
randomness relative to oracle ∅(n−1) (so 1-randomness is just randomness).

If M is a prefix Turing machine, we define KM (x) as the length of the shortest description
of x using machine M , i.e. KM (x) = min{|p| : M(p) = x} and KM (x) = +∞ in case
x /∈ range(M).

1.2 A conjecture on randomness

Definition 1.1. Let U : 2<ω → 2<ω denote a prefix Turing machine. For X ⊆ 2<ω, let
U−1(X) = {p ∈ 2<ω : U(p) ∈ X} and define

ΩU [X] =
∑

p∈U−1(X)

2−|p| = µ(U−1(X)2ω)

The third author has put forward the following conjecture on randomness, in the spirit of
Rice’s theorem for computability. It involves the notion of optimal prefix Turing machine as
defined in the theory of program-size complexity (cf. Definition 3.1).

Conjecture 1.2. For any nonempty X ⊆ 2<ω, the probability ΩU [X] that an optimal prefix
Turing machine U on an arbitrary input halts and gives an output in X is random. Moreover,
if X is Σ0

n-hard then this probability is n-random (i.e. random in ∅(n−1)).
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It turns out that the notion of optimality considered is decisive in this conjecture. Also, the
conjecture is false as stated: hardness is not sufficient and n-randomness is too much. The
following two theorems gather known negative and positive results about the conjecture with
some of the main results of this paper.

Theorem 1.3 (Negative results).
1. There are optimal machines U for which

i. ΩU [X] is rational (hence not 1-random) for any finite set X,

ii. ΩU [X] is not normal (hence not 1-random) for some infinite Π0
1 set X.

Cf.Proposition 4.1 and also [12] 2005, Corollary 4.2 and Remark 4.3.

2. For any optimal machine U ,

i. There is a ∆0
2 set X such that ΩU [X] is rational. Cf. Theorems 4.7, 6.2

ii. (Hardness is not sufficient). For any A ⊆ N, there is a ∆0,A
2 set X which is Σ0,A

1 -
hard and such that ΩU [X] is not normal (hence not 1-random). In particular, if n ≥ 1
then there is a ∆0

n+1 set which is Σ0
n-hard and such that ΩU [X] is not 1-random. Cf.

Theorem 4.8.

3. (n-randomness is too much). For any optimal machine U and any A ⊆ N such that
∅′ ≤T A, if X is Σ0,A

1 or Π0,A
1 then ΩU [X] is not random in A.

In particular, if n ≥ 2 and X is Σ0
n or Π0

n then ΩU [X] is not n-random. Cf. Theorem 4.9.

Nevertheless, the conjecture holds under some particular or some stronger hypotheses.
The first result supporting the conjecture is Chaitin’s [5] random real Ω, and corresponds
to the case ΩU [X] where X = 2<ω. The real Ω depends on U , the optimal machine, but
independently of the optimal machine U used in the definition, each ΩU is random.

Theorem 1.4 (Positive results).
1. Let U be any optimal machine. If X ⊆ 2<ω is infinite and Σ0

1 then ΩU [X] is 1-random.
Cf. Chaitin [4], 19881.

2. If U is optimal by adjunction (see Def. 3.1) and X is finite not empty then ΩU [X] is
1-random. Cf. [1], 2005.

3. Let U be any optimal machine. If A ⊆ N is such that ∅′ ≤T A and X is Σ0,A
1 -complete or

Π0,A
1 -complete then ΩU [X] is random.

In particular, if n ≥ 2 and X is Σ0
n-complete or Π0

n-complete then ΩU [X] is 1-random. Cf.
Theorem 5.2

4. Let U be any optimal machine. If A ⊆ N is such that ∅′ ≤T A then there is a ∆0,A
2 set

X such that ΩU [X] is random in A. In particular, if n ≥ 1 then there is a ∆0
n+1 set X such

that ΩU [X] is n-random. Cf. Corollary 6.4.

Open problems

1. If n ≥ 3 and X is Σ0
n-complete or Π0

n-complete, is ΩU [X] (n− 1)-random?

2. Are there Π0
1 sets X such that ΩU [X] is 1-random?

1Stated without proof in [4], last assertion of Note p.141.
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1.3 Road map

The sense in which ΩU [X] is a genuine probability is considered in §2.
§3 is devoted to the notion of optimal machine and introduces some particularizations.
In §4 we study different cases where Conjecture 1.2 fails. Theorem 4.7 proves that there are

∆0
2 sets that do not lead to randomness, whatever be the optimal machine. Improvement with

hardness condition is given in Theorem 4.8. Also, Σ0
n sets cannot be n-random (Theorem 4.9).

§4 gives positive instances of Conjecture 1.2. Theorem 5.2 proves that the conjecture
holds for Σ0

n-complete sets and Σ0
n-complete sets with 1-randomness, whatever be the optimal

machine.
In §6 and §7 we consider the following question related to the converse of the Conjecture:

given a real r ∈ [0, 1], is there some optimal machine U and a set X ⊆ 2<ω such that
r = ΩU [X]? And if so, what are such pairs (U,X) ?

Theorem 6.2 proves that for any optimal machine U and any sufficiently small real r, there
is a set X ⊆ 2<ω recursive in ∅′ ⊕ r, such that ΩU [X] = r. In particular, this result asserts
that for any optimal machine U there are ∆0

2 sets X such that ΩU [X] is a rational number,
the farthest to be random that it can be. This also yields that the range {ΩU [X] : X ⊆ 2<ω}
is a finite union of closed intervals.

Theorem 7.1 shows that for any given computably enumerable random real r, and for any
given recursively enumerable set X, there is an optimal machine U such that r = ΩU [X].

In §8 we study the version of Conjecture 1.2 for infinite computations on monotone ma-
chines, a landscape where more positive instances have been obtained.

2 Uniform probability on (2<ω,≤prefix) and ΩU [X]

As done in the above Conjecture 1.2, it is usual to consider ΩU [X] as the probability that
U halts and produces output in X. In which precise sense is this real ΩU [X] a probability?
The function u 7→ 2−|u| induces the usual uniform probability on the set 2n of words of fixed
length n, for any n. However, as concerns the whole space of words 2<ω, it induces a measure
which takes value +∞ on 2<ω, hence is not a probability.

There are two ways to look at ΩU [X] as a probability. Using the fact that U−1(X) is
prefix-free (as is the domain of U), a first simple solution is to embed finite inputs into
infinite ones and to consider the usual Lebesgue measure on 2ω. This amounts to the equality
stated in Definition 1.1:

ΩU [X] =
∑

p∈U−1(X)

2−|p| = µ(U−1(X)2ω).

Another solution, which keeps within the space of finite words, is to consider a notion of
probability on ordered sets for which the additivity axiom p(A ∪ B) = p(A) + p(B) is not
supposed for general disjoint events A,B ⊆ 2<ω but only for incompatible ones with respect
to the ordering. In case of (2<ω,≤prefix), this means A2<ω ∩B2<ω = ∅.

Proposition 2.1. For all A ⊆ 2<ω,

µ(A2ω) = lim
n→∞

#(A2<ω ∩ 2n)
2n

= lim
n→∞

#(A2<ω ∩ 2≤n)
2n+1 − 1
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Proof. Let minA be the prefix-free set of minimal elements of A relative to the prefix order-
ing. Then µ(A2ω) =

∑
u∈min A 2−|u| and, for every n,

A2<ω ∩ 2n =
⋃

u∈(min A)∩2≤n

u2n−|u| ,
#(A2<ω ∩ 2n)

2n
=

∑
u∈(min A)∩2≤n

2−|u|

This proves that #(A2<ω∩2n)
2n is monotone increasing in n with limit µ(A2ω).

Also,

#(A2<ω ∩ 2≤n)
2n+1

=
#(A2<ω ∩ 2≤k)

2n+1
+

∑
k<m≤n

#(A2<ω ∩ 2m)
2m

2−(n−m+1) = α+ β

Given ε > 0, fix k such that 0 ≤ µ(A2ω) − #(A2<ω∩2m)
2m ≤ ε/3 for all m ≥ k. Then, for

n ≥ k + log(3/ε),

α ≤ 2k+1 − 1
2n+1

≤ 2−(n−k) ≤ ε/3

and

µ(A2ω)− β = µ(A2ω)2−(n−k) + µ(A2ω)
∑

k<m≤n

2−(n−m+1)

−
∑

k<m≤n

#(A2<ω ∩ 2m)
2m

2−(n−m+1)

|µ(A2ω)− β| ≤ 2−(n−k) +
∑

k<m≤n

|µ(A2ω)− #(A2<ω ∩ 2m)
2m

| 2−(n−m+1)

≤ ε/3 + ε/3

Whence |µ(A2ω)− #(A2<ω∩2≤n)
2n+1 | ≤ α+ |µ(A2ω)− β| ≤ ε. This proves that #(A2<ω∩2≤n)

2n+1 also
tends to µ(A2ω) when n→ +∞.

Definition 2.2. We let π : P (2<ω) → [0, 1] be the function such that, for all A ⊆ 2<ω,

π(A) = lim
n→∞

#(A2<ω ∩ 2n)
2n

A straightforward application of Proposition 2.1 shows that π is a probability on the
ordered set (2<ω,≤prefix).

Proposition 2.3. In the sense of the ordered set (2<ω,≤prefix), π is a probability, i.e. π(∅) =
0, π(2<ω) = 1 and, for all A,B ⊆ 2<ω

π(A ∪B) ≤ π(A) + π(B)
π(A ∪B) = π(A) + π(B) ⇔ A2<ω ∩B2<ω = ∅

Also, π(A) = π(min(A)) = π(A2<ω) and, if A is prefix-free then π(A) =
∑

u∈A 2−|u|.

Since domain(U) is prefix-free, we see that ΩU [X] is the probability of U−1(X) relative
to π.

Proposition 2.4. Let U : 2<ω → 2<ω be a prefix Turing machine and X ⊆ 2<ω. Then,
ΩU [X] = π(U−1(X)).
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3 On the notion of optimality

Since for some sets the validity of Conjecture 1.2 depends on the machine U used to define
ΩU , we shall consider the usual notion of optimality and also a refinement that we name
optimality by adjunction.

Let (Me)e∈N be a recursive enumeration of all prefix Turing machines.

Definition 3.1 (Optimality and optimality by adjunction). Let U : 2<ω → 2<ω be a prefix
Turing machine.

1. U is optimal if and only if

∀e ∃ce ∀p ∃σe,p (U(σe,p) = Me(p) ∧ |σe,p| ≤ |p|+ ce).

U is effectively optimal if there is a total recursive function c : N×2<ω → 2<ω such that
we can take σe,p = c(e, p).

2. U is optimal by adjunction if and only if

∀e ∃σe ∀p U(σep) = Me(p).

Hence, in this case, ce = |σe| and σe,p = σep (concatenation of words σe and p).

U is effectively optimal by adjunction if there is a total recursive function g : N → 2<ω

such that we can take σe = g(e).

Clearly, U is optimal if and only if it satisfies the Invariance Theorem (of program-size
complexity) which states that for all e there is a constant ce such that KU (y) ≤ KMe(y) + ce
for all y.

Optimality by adjunction can be obtained from effective optimality plus some extra con-
ditions on the coding function c.

Proposition 3.2. Let V be effectively optimal such that the associated c : N× 2<ω → 2<ω is
injective and has recursive range. Then there exists U optimal by adjunction such that

∀x ∈ 2<ω ΩU [{x}] = ΩV [{x}] (1)

Proof. 1. Since V is optimal, ΩV [2<ω] is random, hence 6= 1, so that there exists k such that
ΩV [2<ω] < 1 − 2−k. Fix such a k. The idea of the proof is as follows. First, define U on a
prefix-free subset of 0k+12<ω in a way that insures that U is optimal by adjunction. Then
define U on a prefix-free subset of 0≤k12<ω so that to get condition (1).

2. For (e, p) such that c(e, p) ∈ domain(V ), and γ ∈ N such that |c(e, p)| ≤ |p|+ γ, we set

U(0k+1+γ 1e+1 0 p) = V (c(e, p)) (2)

Since V (c(e, p)) = Me(p) we see that U(0k+1+γ1e+10p) = Me(p) for all γ ≥ |c(e, p)| − |p|.
The optimality of V insures that there exists ce such that |c(e, p)| ≤ |p| + ce for all p. Then
U(0k+1+ce1e+10p) = Me(p) for all p. This proves that U is optimal by adjunction with
σe = 0k+1+ce1e+10.
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3. Observe that, for given e and p,∑
γ≥max(0,|c(e,p)|−|p|)

2−|0
k+1+γ1e+10p| = 2−(k+e+3)

∑
γ≥max(0,|c(e,p)|−|p|)

2−(γ+|p|)

= 2−(k+2+e+max(|p|,|c(e,p)|))

Let Qe,p be the finite subset of N such that∑
j∈Qe,p

2−j = 2−|c(e,p)| − 2−(k+2+e+max(|p|,|c(e,p)|))

Let (vi)i∈N be a recursive enumeration of domain(V ) without repetitions.
To define U on

⋃
`≤k 0γ12<ω, we introduce the following Kraft-Chaitin set

KC = {(j, V (c(e, p))) : (e, p) ∈ domain(V ◦ c), j ∈ Qe,p}
∪ {(|v|, V (v)) : v ∈ domain(V ) \ range(c)}

Since the range of c is recursive, there is a recursive enumeration (ln, yn)n∈N of KC. Let’s
show that KC is indeed a Kraft-Chaitin set.∑

n∈N
2−ln =

∑
(e,p)∈domain(V ◦c)

∑
j∈Qe,p

2−j +
∑

v∈domain(V )\range(c)

2−|v|

≤
∑

(e,p)∈domain(V ◦c)

2−|c(e,p)| +
∑

v/∈range(c)

2−|v|

≤
∑

v∈domain(V )∩range(c)

2−|v| +
∑

v∈domain(V )\range(c)

2−|v|

< 1− 2−k

A straightforward extension of the Kraft-Chaitin theorem shows that there exists a recursive
injective sequence (rn)n∈N such that {rn : n ∈ N} is a prefix-free subset of 0≤`12<ω and
|rn| = ln for all n. We complete the definition of U on 0≤`12<ω by setting for all n

U(rn) = yn (3)

Observe that U , as defined by (2) and (3), has prefix-free domain. Also, for x ∈ 2<ω, we have

ΩV [{x}] =
∑

{2−|v| : v ∈ domain(V ) ∩ range(c) ∧ V (v) = x} (4)

+
∑

{2−|v| : v ∈ domain(V ) \ range(c) ∧ V (v) = x} (5)

Since c is injective, for any v ∈ range(c), there is a unique pair (e, p) such that v = c(e, p).
Thus, the sum (4) is exactly

∑
{2−|c(e,p)| : V (c(e, p)) = x}. Due to (2), the definition of Qe,p

and (3), this is exactly
∑

{2−|c(e,p)| : U(c(e, p)) = x}. Also, (3) insures that the sum (5) is
equal to

∑
{2−|v| : v ∈ domain(U) \ range(c) ∧ U(v) = x}. Thus, ΩU [{x}] = ΩV [{x}]

Remark 3.3. In the theorem above, the condition that c has recursive image is used to see
that KC is r.e. This condition can be replaced by the r.e. character of domain(V ) \ range(c).
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4 Negative results about the Conjecture

4.1 Failure for finite sets with particular optimal machines

Proposition 4.1. Every prefix Turing machine M has a restriction M ′ to some recursively
enumerable set such that KM = KM ′ (hence M ′ is optimal whenever M is) and ΩM ′ [X] is
rational (hence not random), for every finite set X ⊆ 2<ω.

Proof. Let (pi, yi)i∈N be a recursive enumeration of the graph of M . Define a total recursive
function f : N → N such that f(i) is the smallest j ≤ i satisfying

yj = yi , |pj | = min{|pk| : k ≤ i, yk = yi}

Let M ′ be the prefix machine with graph {(pf(i), yf(i)) : i ∈ N}. Clearly, M ′ is a restriction of
M to some recursively enumerable set. Also, for every x ∈ 2<ω, if j is least such that x = yj

and |pj | = KM (x) then f(i) = j for all i ≥ j such that yi = x. Therefore, M ′−1({x}) is finite,
hence ΩM ′ [{x}] =

∑
q∈M ′−1(x) 2−|q| is a finite sum of rational numbers, hence is rational. The

same is true for finite sets X ⊆ 2<ω.

Applying the above Proposition to an optimal machine U , we get the following straight-
forward corollary, first obtained in [12] with a different proof.

Corollary 4.2. There is an optimal Turing machine U such that for every finite set X ⊆ 2<ω

the real ΩU [X] is rational, hence not random.

Remark 4.3. Using Proposition 4.1 it is easy to construct an infinite Π0
1 set X such that

ΩU [X] is not normal, hence not random. In fact, in [12] it was proven that there is an infinite
Π0

1 set X such that ΩU [X] is neither c.e. nor random.

4.2 Failure for ∆0
2 sets with all optimal machines

We recall some results of [5] which will be used in the proofs.

Lemma 4.4. Let U be optimal.

1. Coding Theorem: ∃c1 ∀σ 2−KU (σ) ≤ ΩU [{σ}] ≤ 2−KU (σ)+c1

2. Maximal complexity of finite strings:

∃c2 ∀σ KU (σ) < |σ|+KU (|σ|) + c2

∃c3 #{σ ∈ 2m : KU (σ) < m+KU (m)− k} ≤ 2m−k+c3

The next lemma can be found in unpublished work of Solovay [9, IV-20]. We include the
proof because Solovay’s notes are not universally available.

Lemma 4.5. If U is optimal then ∃c4 ∀n ∃m ≤ n (n ≤ m+KU (m) ≤ n+ c4).

Proof. Choose c4 ∈ N such that c4 > KU (0) and KU (m+1) ≤ KU (m)+c4−1, for all m ∈ N.
Given n ∈ N, let m ∈ N be the least number satisfying n ≤ m+KU (m), which clearly holds for
some m ≤ n. We claim that m+KU (m) < n+c4. This holds because 0+KU (0) < c4 ≤ n+c4
and, since m− 1+KU (m− 1) < n, then m+KU (m) ≤ m− 1+KU (m− 1)+ c4 < n+ c4.

8



Putting these two lemmas together, we get the following result.

Lemma 4.6. If U is optimal then ∃d ∀n ∃σ (2−n−d ≤ ΩU [{σ}] ≤ 2−n+d). In fact, for some
constant d′ there are at least 2n/(d′ n2) strings σ ∈ 2<ω satisfying the inequalities.

Proof. Let c1, c2, c3, c4 be constants as in Lemma 4.4 and Lemma 4.5. Then #{σ ∈ 2m :
KU (σ) < m +KU (m) − (c3 + 1)} ≤ 2m−1, for all m ∈ N. For n + c3 + 1, there is an m ≤ n
such that n + c3 + 1 ≤ m + KU (m) ≤ n + c3 + 1 + c4. In particular, all strings in σ ∈ 2m

satisfy KU (σ) ≤ m+KU (m) + c2 ≤ n+ c2 + c3 + c4 + 1.
Now, there are at least 2m−1 strings σ ∈ 2m such that KU (σ) ≥ m + KU (m) − (c3 + 1)

hence such that KU (σ) ≥ n + c3 + 1 − (c3 + 1) = n. For such strings, we then have n ≤
KU (σ) ≤ n+ c2 + c3 + c4 + 1. Therefore, for d = max(c1, c2 + c3 + c4 + 1), there are at least
2m−1 strings σ such that 2−n−d ≤ ΩU [{σ}] ≤ 2−n+d. Finally, note that

m− 1 ≥ n+ c3 −KU (m) ≥ n− 2 log(m)−O(1)

Therefore, at least O(1)2n/n2 strings σ ∈ 2<ω satisfy 2−n−d ≤ ΩU [{σ}] ≤ 2−n+d.

With this lemma we can prove that Conjecture 1.2 fails for ∆0
2 sets.

Theorem 4.7. For every optimal U there is a ∆0
2 set X ⊆ 2<ω such that ΩU [X] is not

random.

Proof. Let d, d′ ∈ N be the constants from Lemma 4.6 and let k be such that i < 2i/(d′ i2)
for i ≥ k. Letting c = k+d, Lemma 4.6 insures the existence of a sequence (σi)i∈N of distinct
strings such that 2−i−c−1 < ΩU [{σi}] ≤ 2−i+c, for all i ∈ N. Note that ∅′ can compute such a
sequence (and even compute the set of strings in the sequence). Indeed, denoting by Us the
computable approximation of U obtained with s computation steps, ΩUs [{τ}] =

∑
Us(p)=τ 2−|p|

is nondecreasing in s and tends to ΩU [{τ}] when s→∞. Thus, for any rational r, ΩU [{τ}] > r
iff ∃s ΩUs [{τ}] > r. Hence it is decidable in ∅′ whether ΩU [{τ}] > r or not.

We build a ∆0
2 set X in stages {Xs}s∈N. At stage s+1 we determine if σs is in X in order

to ensure that the block of bits of ΩU [X] from s− c to s+ c+ 1 is not all zeros.

Stage 0. Let X0 = ∅.

Stage s + 1. Using ∅′, decide if the 2c + 2 bits of ΩU [Xs] from s − c to s + c + 1 are
all zero. If these bits are all zero, let Xs+1 = Xs ∪ {σs}. Otherwise, let Xs+1 = Xs.
Consider the first case. Because ΩU [{σs}] > 2−s−c−1 there exists j ≤ s + c + 1 such that
the j-th bit of ΩU [{σs}] is 1. On the other hand, because ΩU [{σs}] ≤ 2−s+c, we have
ΩU [{σs}] � s − c − 1 = 0s−c−1. Then there is s − c ≤ j ≤ s + c + 1 such that the j-th bit of
ΩU [{σs}] is 1. Notice that if bit s− c is 1 then all the bits of positions greater than s− c are
0. Hence, ΩU [Xs+1] � s− c− 1 = ΩU [Xs] � s− c− 1. Therefore, the work of earlier stages has
been preserved and also ΩU [Xs+1] is not all zeros on the block of bits from s− c to s+ c+ 1.

It follows inductively that, for every s, the block of bits of ΩU [X] from s− c to s+ c+ 1
is not all zeros. Therefore, ΩU [X] is not normal and hence not random.

Notice that this construction works independently of the optimal machine chosen U and
the binary representation of ΩU [Xs] in case such real is a dyadic rational.

The above result can be dramatically improved: Theorem 6.2 (cf. §6) shows that there are
∆0

2 sets X such that ΩU [X] is a rational number. Another improvement shows that hardness
is not enough to get randomness.
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Theorem 4.8. For every optimal U and any A ⊆ N, there is a ∆0,A
2 set X ⊆ 2<ω which is

Σ0,A
1 -hard and such that ΩU [X] is not random.

In particular, if n ≥ 1 there is a ∆0
n+1 set X ⊆ 2<ω which is Σ0

n-hard and such that ΩU [X] is
not random.

Proof. Modify the proof of Theorem 4.7 as follows.

1. At stage s deal with the digits from (2c + 1)s − c to (2c + 1)s + c so as the [(2c + 1)s −
c, (2c+ 1)s+ c]’s are disjoint intervals.

2. Let Z ⊂ N2 be Σ0,A
1 universal. Denote by Zi the section {j : (i, j) ∈ Z}. Define a total

computable map fi : N → 2<ω as follows: fi(j) = 10C(i,j) where C : N2 → N is Cantor
polynomial bijection. In order that fi be a reduction of Zi to X, set

10C(i,j) ∈ X ⇔ j ∈ Zi

This uses oracle A′ (the jump of A) and makes X a ∆0,A
2 set.

3. Let Ds = {10C(i,j) : j ∈ Zi ∧ C(i, j) ∈ [(2c+ 1)s− c, (2c+ 1)s+ c]}. Observe that
- two words in Ds have different lengthes,
- for s large enough, Ds contains at most one word.

The construction is the same as before except that the definition of Xs+1 contains Xs ∪Ds

and a possible σs which is not in Ds nor in 10∗.

4.3 Failure of n-randomness for Σ0
n and Π0

n sets

Theorem 4.9. Let A ⊂ N be such that ∅′ ≤T A (where ≤T is Turing reducibility). If U is
any optimal machine and X ⊆ 2<ω is Σ0,A

1 or Π0,A
1 then ΩU [X] is not random in A.

In particular, if n ≥ 2 and X is Σ0
n or Π0

n then ΩU [X] is not n-random.

Proof. The case X is finite is trivial since then ΩU [X] is ∆0
2 hence computable in ∅′.

Case X is infinite Σ0,A
1 . Fix m ∈ N. With oracle ∅′, we can (uniformly in m) find a finite

subset Z ⊂ 2<ω such that ΩU [Z] > ΩU−2−m−1 and compute ε > 0 such that ε < inf{ΩU [{z}] :
z ∈ Z}. Then ∑

σ:ΩU [{σ}]≤ε ΩU [{σ}] < 2−m−1 (6)

Let (xs)s∈N be an injective A-computable enumeration of X and set Xs = {xt : t < s}.
We build an A-Martin-Löf test (Tm)m∈N for ΩU [X]. The idea is to define a Σ0,A

1 class Tm

by laying down successive intervals right to ΩU [Xs]. Set Tm =
⋃

s∈N Im,s where Im,s =
]ΩU [Xs],ΩU [Xs] + δ[ and δ = ε2−m−1.
For s big enough, ΩU [Xs] < ΩU [X] < ΩU [Xs] + δ, so that ΩU [X] ∈ Im,s. Thus, ΩU [X] ∈ Tm.
For q ∈ Q and Z ∈ P<ω(2<ω), condition 0 < q < ΩU [Z] is computable with ∅′ and condition
q > ΩU [Z] is Σ0,∅′

1 (express it as ∃η > 0 ¬(q − η < ΩU [Z])). Thus, Im,s and Tm are Σ0,A
1

(uniformly in m, s and m).
Since ΩU [Xs+1] = ΩU [Xs] + ΩU [{xs}], we have

ΩU [{xs}] ≥ δ ⇒ Im,s and Im,s+1 are disjoint

⇒ µ(
⋃

t≤s+1

Im,t) = µ(
⋃
t≤s

Im,t) + δ

10



Now, for all s, µ(
⋃

t≤s+1 Im,t) ≤ µ(
⋃

t≤s Im,t) + ΩU [{xs}]. Since ε ≥ δ, the above properties
yield

µ(Tm) ≤ (
∑

s:ΩU [{xs}]≤ε

ΩU [{xs}]) + δ ]{s : ΩU [{xs}] > ε}

< 2−m−1 + δ(1/ε) = 2−m

(use (6) and the fact that #{σ : ΩU [{σ}] ≥ ε} ≤ ΩU/ε ≤ 1/ε since the U−1(σ)’s are pairwise
disjoint).
Thus, we have constructed an A-Martin-Löf test (Tm)m∈N such that ΩU [X] ∈

⋂
m∈N Tm,

proving that ΩU [X] is not random in A.

Case X is Π0,A
1 . Since ΩU [X] = ΩU −ΩU [2<ω \X], use the above case and the fact that ΩU

is A-computable.

5 Positive results about the Conjecture

In this section we give positive instances of Conjecture 1.2; in particular, the random numbers
yielded by Theorems 5.2 and 5.3 are not necessarily computably enumerable. The proof
method we use broadens the known proof techniques, which relied on the property that the
numbers be computably enumerable in their degree of randomness.

5.1 Completeness and computable choice

To prove 1-randomness in Theorems 5.2, 5.3, we use the following technical Lemma 5.1,
which insures that some computable reductions associated to complete sets can be used as
computable choice functions in a highly non computable environment.

Lemma 5.1. Let A ⊂ N be such that ∅′ ≤T A. Suppose X ⊆ N is Σ0,A
1 -complete and

R ⊆ 2<ω × P<ω(N) is Σ0,A
1 and satisfies

∀Z ∈ P<ω(N) {σ : R(σ,Z)} has at least ](Z) + 1 elements (7)

(in particular, this is the case if {σ : R(σ,Z)} is infinite for all Z).
Then there exists f : 2<ω → N injective total computable such that

∀σ ∈ 2<ω [(∃Z ⊂ X R(σ,Z)) ⇒ ∃Z ⊂ X (R(σ,Z) ∧ f(σ) ∈ X \ Z)]

Moreover, for such an f one can take some computable reduction of {σ : ∃Z ∈ P<ω(X) R(σ,Z)}
to X. Also, an index for f as a partial computable function can be computed from indexes
for X and R as Σ0,A

1 set and relation.

Proof. 1. Let W (A) ⊂ N2 be universal for Σ0,A
1 subsets of N, i.e. W is Σ0,A

1 and every
Σ0,A

1 subset of N is a section W
(A)
e = {n : (e, n) ∈ W (A)} of W (A) for some e. Since X is

Σ0,A
1 -complete, there exists a total computable injective reduction F : N2 → N of W (A) to X,

i.e. W (A) = F−1(X). Then, for every e, the map Fe : N → N such that Fe(n) = F (e, n) is a
total computable injective reduction of W (A)

e to X.

2. Let S={σ : ∃Z ∈ P<ω(X) R(σ,Z)}. Clearly, S is Σ0,A
1 . Property (7) insures that S is

11



infinite.
Letting e be some integer (to be fixed by the recursion theorem such that WA

e = range(θe) =
S), uniformly in e, we inductively define an injective total A-computable map θe : N → S (to
be an enumerations of S).
Since Fe is computable, its range is computable with oracle ∅′, so that the set X \ range(Fe)
is Σ0,A

1 . Fix some A-computable enumeration ρ of R.

Stage s. Let (σ,Z) be the least pair (relative to ρ) such that

σ /∈ {θe(t) : t < s} ∧ Z ⊆ {Fe(θe(t)) : t < s} ∪ (X \ range(Fe)) (8)

Property (7) insures that there is always such a σ. Set θe(s) = σ.

3. Let ξ : N → N be total computable such that range(θe) = WA
ξ(e). The recursion theorem

insures that there exists e so that WA
e = WA

ξ(e).
Since Fe is an injective total computable reduction of WA

e to X, the last equality insures that
Fe is a reduction of range(θe) to X. In particular,

range(Fe ◦ θ) = Fe(range(θe)) = Fe(WA
ξ(e)) = Fe(WA

e ) = range(Fe) ∩X

Hence range(Fe◦θe)∪(X\range(Fe)) = X. Using (8), this insures that σ ∈ S. This also yields
that every finite subset of X is included in {Fe(θe(t)) : t < s} ∪ (X \ range(Fe)) for s large
enough. Using (8) again, we see that every σ ∈ S is in the range of θe. Thus, S = range(θe).

4. Let f = Fe. Then f is injective total computable. Also, if σ = θe(s) and Z is as in property
(8), then R(σ,Z) holds and, since Fe ◦ θe is injective, f(σ) = Fe(θe(s)) /∈ {Fe(θe(t)) : t < s},
hence f(σ) /∈ Z.

5.2 Randomness of ΩU [X] when X is Σ0
n or Π0

n complete, n ≥ 2

The above Lemma 5.1 allows to extend Chaitin’s argument to prove randomness of ΩU to
ΩU [X].

Theorem 5.2. Let U be optimal. If X ⊆ 2<ω is Σ0,A
1 -complete for some A ⊂ N such that

∅′ ≤T A then ΩU [X] is 1-random.
In particular, if n ≥ 2 and X is Σ0

n complete then ΩU [X] is 1-random.

Proof. 1. Last assertion of the Theorem. Set A = ∅(n−1).

2. The relation R ⊂ 2<ω × P<ω(N). In order to apply Lemma 5.1, we set

R = {(λ, ∅)} ∪ {(σ,Z) : σ ∈ domain(U) ∧ ΩU [Z] > U(σ)}

where U(σ) is identified with a dyadic rational number. Observe that digits of ΩU [Z] can be
computed from the finite set Z using oracle ∅′, and the strict inequality ΩU [Z] > U(σ) can
be decided using oracle ∅′. Since ∅′ ≤T A, this insures that R is A-computable. One easily
checks that R satisfies property (7) of Lemma 5.1 (in fact {σ : R(σ,Z)} is even infinite when
Z 6= ∅).

3. A constant from the invariance theorem.
Let f be given by Lemma 5.1. Consider the restriction of f to domain(U). This is a partial
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computable function with prefix-free domain. Hence there exists a constant c such that, for
all σ ∈ domain(U),

KU (f(σ)) ≤ Kf�domain(U)(f(σ)) + c ≤ |σ|+ c

4. Chaitin’s argument pushed up to ΩU [X].
Consider the infinite binary expansion of ΩU [X] which, in case it is dyadic (which is not
the case, in fact), does end with 1ω. For m ∈ N, let σ be such that U(σ) = ΩU [X] � m.
Since ΩU [X] > ΩU [X] � m, we see that there exists a finite subset Z of X such that
ΩU [Z] > ΩU [X]� m, i.e. such that R(σ,Z).
Clearly, Z must contain all elements a ∈ X such that ΩU [{a}] > 2−m.
Using Lemma 5.1, we see that f(σ) ∈ X \ Z. Thus, ΩU [{f(σ)}] ≤ 2−m. In particular,
KU (f(σ)) ≥ m. Now, since σ ∈ domain(U), Point 2 yields KU (f(σ)) ≤ |σ| + c. Hence
|σ| ≥ m− c.
Thus, every program σ such that U(σ) = ΩU [X] � m has length ≥ m − c. This proves that
KU (ΩU [X]� m) ≥ m− c and hence that ΩU [X] is random.

The case of Π0,A
1 -complete sets X is obtained with a similar argument.

Theorem 5.3. Let A ⊂ N be such that ∅′ ≤T A.
If X is Π0,A

1 -complete then ΩU [X] is random.
In particular, if n ≥ 2 and X is Π0

n complete then ΩU [X] is random.

Proof. 1. The relation R. We now let

R = {(σ,Z) : σ ∈ domain(U) ∧ ΩU − ΩU [Z] < U(σ) + 2−|U(σ)|+1}

Now, R is Σ0,A
1 (express ΩU − ΩU [Z] < ... as ∃m ΩU � m − ΩU [Z] � m + 2−m+1 < (...) � m)

and satisfies property (7) from Lemma 5.1.

2. Chaitin’s argument pushed up to ΩU [X].
For m ∈ N, let σ be such that U(σ) = ΩU [X]� m. Observe that,

Ω− ΩU [N \X] = ΩU [X] < ΩU [X]� m+ 2−m+1

so that there exists a finite subset Z of N \X such that

Ω− ΩU [Z] < ΩU [X]� m+ 2−m+1

i.e. such that R(σ,Z).
Observe that if z ∈ N \ (Z ∪X) then

Ω ≥ ΩU [Z] + ΩU [X] + ΩU [{z}]
ΩU [{z}] ≤ Ω− ΩU [Z]− ΩU [X]

≤ ΩU [X]� m+ 2−m+1 − ΩU [X]
≤ 2−m+1 since ΩU [X]� m− ΩU [X] ≤ 0

Let f be as in Lemma 5.1. Then f(σ) ∈ (N \ X) \ Z. Therefore ΩU [{f(σ)}] ≤ 2−m+1. In
particular, KU (f(σ)) ≥ m− 1. Now, since σ ∈ domain(U), Point 2 of the proof of Theorem
5.2 yields KU (f(σ)) ≤ |σ|+ c. Hence |σ| ≥ m− 1− c.
Thus, every program σ such that U(σ) = ΩU [X] � m has length ≥ m − 1 − c. Which proves
that ΩU [X] is random.
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6 The set {ΩU [X] : X ⊆ 2<ω}

6.1 A lemma about sums of subseries

Lemma 6.1. Let (ai)i∈N be a sequence of strictly positive real numbers satisfying

1. limi→+∞ ai = 0;

2. ai ≤
∑

j>i aj for all i.

Let α =
∑

i∈N ai (which may be +∞). Then

{
∑
i∈I

ai : I ⊆ N} = [0, α]

Furthermore, for every r ∈ [0, α] there exists I(r) ⊆ N such that
∑

i∈I(r) ai = r and which is
computable (non uniformly) from r and (ai)i∈N.

Proof. Take r ∈ [0, α]. We define a monotone increasing sequence (It(r))t∈N of finite subsets
of N by the following induction:

I0(r) = ∅ , It+1(r) =

{
It(r) ∪ {t} if at +

∑
i∈It(r)

ai ≤ r;
It(r) otherwise.

Let I(r) =
⋃

t∈N It(r). Since inequality
∑

i∈It(r)
ai ≤ r is true for all t, we get

∑
i∈I(r) ai ≤ r.

We show that r =
∑

i∈I(r) ai.

Case r = α. Then I(r) = N and the equality is trivial.

Case r < α and there are infinitely many t’s such that It+1(r) = It(r). For such t’s we have∑
i∈It(r)

ai ≤ r < at +
∑

i∈It(r)
ai. Taking limits over such t’s and using condition 1, we get

equality
∑

i∈I(r) ai = r.

Case r < α and there are finitely many t’s such that It+1(r) = It(r). We show that this
case does not occur. Since r < α we have I(r) 6= N so that there is at least one t such that
It+1(r) = It(r). Let u be the largest such t. Then,

∑
i∈Iu(r) ai ≤ r < au +

∑
i∈Iu(r) ai and, for

all v > u, Iv+1 = Iv ∪ {v}. Therefore, I(r) = Iu(r) ∪ {i : i > u}. Since condition 2 insures
au ≤

∑
i>u ai, we get r <

∑
i>u ai +

∑
i∈Iu(r) ai =

∑
i∈I(r) ai, which contradicts inequality∑

i∈I(r) ai ≤ r.

The last assertion of the Lemma about the relative computability of I(r) is trivial if I(r)
is finite. Since the at’s are strictly positive, if I(r) is infinite then r 6= at +

∑
i∈It(r)

ai for all
t. Thus, enumerating the digits of r and at +

∑
i∈It(r)

ai, we get at some finite time either
r < at +

∑
i∈It(r)

ai or r > at +
∑

i∈It(r)
ai, which proves that the test in the definition of

It+1(r) can be done recursively in r and (ai)i∈N.

6.2 {ΩU [X] : X ⊆ 2<ω} is a finite union of closed intervals

Point 2 of the following theorem gives an alternative proof of Theorem 4.7 above.

14



Theorem 6.2. Let U be optimal.
1. The set {ΩU [X] : X ⊆ 2<ω} is the union of finitely many pairwise disjoint closed intervals
with positive lengths, i.e.

{ΩU [X] : X ⊆ 2<ω} = [a1, b1] ∪ [a2, b2] ∪ ... ∪ [an, bn]

where 0 = a1 < b1 < ... < an < bn = ΩU .

2. Every real s ∈ {ΩU [X] : X ⊆ 2<ω} is of the form ΩU [Y ] for some Y which is recursive in
s ⊕ ∅′. In particular, there exists some ∆0

2 set X ⊆ 2<ω such that ΩU [X] is rational, hence
not random.

Proof. 1i. First, we get α > 0 such that {ΩU [X] : X ⊆ 2<ω} ⊇ [0, α].
Let d, d′ ∈ N be the constants of Lemma 4.6 and let k be such that 22d+1(i+1) ≤ 2i/(d′i2) for
i ≥ k. Using this inequality and Lemma 4.6, one can inductively define a sequence of pairwise
disjoint sets of strings (Si)i≥k such that #Si = 22d+1 and 2−i−d−1 < ΩU [{σ}] ≤ 2−i+d for
every σ ∈ Si. Notice that, as in Theorem 4.7, the sequence (Si)i≥k is computable in ∅′.

We define an enumeration ψ of S =
⋃

i∈N Si : for i,m ∈ N andm < 22d+1, let ψ(22d+1i+m)
be the m-th element of Sk+i.

Set ai = ΩU [{ψ(i)}], it is clearly positive and limi→+∞ ai = 0. Observe that for any
m ∈ [0, 22d+1), 2−(k+j)−d−1 < a22d+1j+m ≤ 2−(k+j)+d and it is computable in ∅′. Then, for
any such m we have∑

j>22d+1q+m

aj ≥
∑
j>q

∑
s<22d+1

a22d+1j+s

>
∑

j>q 22d+12−(k+j)−d−1 = 2−(k+q)+d ≥ a22d+1q+m

Thus, the conditions of Lemma 6.1 are satisfied: {ΩU [Y ] : Y ⊆ S} = [0, α] where
∑

i∈N ai =
α > 0.

1ii. Now,

{ΩU [X] : X ⊆ 2<ω} = {ΩU [Y ] + ΩU [Z] : Y ⊆ S, Z ∩ S = ∅}
= [0, α] + {ΩU [Z] : Z ∩ S = ∅}
=

⋃
r∈R

[r, r + α]

where R = {ΩU [Z] : Z ∩ S = ∅} and 0 ∈ R.
Let Ri = R∩ [iα, (i+ 1)α[. Observe that if r, r′ ∈ Ri then [r, r + α] and [r′, r′ + α] have non
empty intersection. Hence the union

⋃
r∈Ri

[r, r+α] is an interval Ji (a priori not necessarily
closed). Since Ri = ∅ for iα > 1, we see that R = R1 ∪ ... ∪ R` where ` ≤ d 1

αe. Thus,
{ΩU [X] : X ⊆ 2<ω} = J1 ∪ ... ∪ J`. Grouping successive intervals Ji’s having non empty
intersection, we get the representation {ΩU [X] : X ⊆ 2<ω} = I1 ∪ ... ∪ In where the Ii’s are
pairwise disjoint intervals in [0, 1].

1iii. Since the map X 7→ ΩU [X] is continuous from the compact space P (2<ω) (with the
Cantor topology) to [0, 1], its range {ΩU [X] : X ⊆ 2<ω} is compact. In particular, the
intervals Ii’s may be taken closed. This proves Point 1 of the Theorem.

2. First, observe that if I ⊆ N is recursive in ∅′ then so is {ψ(n) : n ∈ I}. Given σ ∈ 2<ω, using
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∅′, one can check whether 2−j < ΩU [{σ}]. Hence one can compute i and m such that such
that σ is the m-th element of Sk+i, i.e. such that σ = ψ(22d+1i+m). Then σ ∈ {ψ(n) : n ∈ I}
if and only if 22d+1i+m ∈ I

Case s ∈ [0, α]. Lemma 6.1 insures that there is a set I(s) ⊆ N, computable from s ⊕ ∅′,
such that

∑
i∈I(s) ai = s. Let X = {ψ(n) : n ∈ I(s)}. Then X is computable from s⊕ ∅′ and

ΩU [X] = s.

Case s ∈ [r, r + α) for some r ∈ R. Let s = ΩU [Z] + β where r = ΩU [Z] and Z ∩ S = ∅
and β < α. Let Z ′ be a finite subset of Z such that ΩU [Z \ Z ′] < α − β. Then the real
ΩU [Z ′] is computable in ∅′ and ΩU [Z \ Z ′] + β = s − ΩU [Z ′] is computable in s ⊕ ∅′. Since
ΩU [Z \ Z ′] + β < α, Lemma 6.1 yields X ⊆ S which is computable in s ⊕ ∅′ such that
ΩU [Z \Z ′]+β = ΩU [X]. Since Z ′ is finite, we see that X ∪Z ′ is computable in s⊕∅′. Finally,
s = ΩU [X ∪ Z ′].

Case s ∈ [aj , bj) with 1 ≤ j ≤ n. Observe that
⋃

r∈Ri
[r, r + α) is equal to Ji with the right

endpoint removed. Suppose Ij = Ji ∪ ... ∪ Ji+m. Then

[aj , bj) =
⋃

i≤p≤i+m

⋃
r∈Rp

[r, r + α)

Thus, s ∈ [r, r + α) for some r ∈ R and the previous case applies.

Case s = bj with 1 ≤ j ≤ n. Let bj = ΩU [X]. If σ /∈ X then ΩU [X ∪ {σ}] > bj hence
ΩU [X ∪ {σ}] ≥ aj+1. In particular, ΩU [{σ}] ≥ aj+1 − bi. Which proves that the complement
of X contains at most d 1

aj+1−bj
e elements. Thus, X is cofinite, hence recursive.

In relation with Theorem 6.2, we consider the following question: how much disconnected
is {ΩU [X] : X ⊆ 2<ω} ?

Proposition 6.3. Let U be optimal. For each n ≥ 1, there exists a finite modification V of
U which is still optimal and such that the set {ΩV [X] : X ⊆ 2<ω} is not the union of less
than n intervals.

Proof. Let (pi)i∈N be an enumeration of domain(U) and inductively define integers i0 <
i1 < ... < in such that i0 = 0 and, for k = 0, ..., n − 1, letting Hk =

∑
ik≤i<ik+1

2−|pi| and
Tk =

∑
i≥ik

2−|pi|,

Hk >
Tk

2
(9)

We define a first finite modification V̂ of U as follows:

V̂ (pi) =
{

0k if ik ≤ i < ik+1 and 0 ≤ k < n
U(pi) if i ≥ in

Clearly, for 0 ≤ k < n,

{ΩbV [X] : 0k ∈ X ∧ ∀` < k 0` /∈ X} ⊆ [Hk, Tk] (10)

{ΩbV [X] : ∀` < n 0` /∈ X} ⊆ [0, Tn] (11)

Now, ΩU = T0 and inequalities (9) insure that Tk+1 = Tk −Hk < Hk for 0 ≤ k < n. Thus,
the intervals [0, Tn], [Hn−1, Tn−1],..., [H0, T0] are pairwise disjoint. Since the sets on the left
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in (10), (11) are non empty, we see that {ΩbV [X] : X ⊆ 2<ω} is not the union of less than
n+ 1 intervals.
However, if universal functions take each value infinitely many times, an optimal function,
such as U is, may take some values only once. Therefore, V̂ may be no more surjective,
hence non optimal. We have to insure that U(p0), ..., U(pin−1) are indeed values of V . In
that purpose, observe that there are infinitely many x’s such that U−1(x) has at least two
elements. Else, for x large enough, KU (x) would be 2−|p| where p is the unique element such
that U(p) = x, which would make KU computable, contradicting optimality of U .
Now, compute in many distinct indexes j, all ≥ in, such that the U(j)’s are distinct and the
U−1(U(j))’s have at least two elements. Let j0, ..., jin−1 be such indexes and set

V (pi) =

 V̂ (pi) if i < in
U(p`) if ` < in and i = j`
U(pi) if i ≥ in and i is not among j0, ..., jin−1

V is still a finite modification of U but has the same range as U , hence is surjective. Being
surjective and equal to the optimal U almost everywhere, V is also optimal. Finally, observe
that inclusions (10), (11) are still true for V since V and V̂ coincide on the pi’s for i < in.

6.3 ΩU [X] is n-random for some ∆0
n+1 sets

As a corollary of Theorem 6.2, we get the following result which is in contrast with Theorems
4.7, 4.8 and 4.9.

Corollary 6.4. 1. For any optimal machine U and any A ⊆ N such that ∅′ ≤T A, there is
a ∆0,A

2 set X such that ΩU [X] is random in A.

2. For every n ≥ 2 there is a ∆0
n+1 set X such that ΩU [X] is n-random. For n = 1, there is

a computable such X.

Proof. 1. Let α be as in Point 2 of Theorem 6.2, let r be Chaitin real Ω(A) = ΩU(A) [2<ω]
associated to some optimal machine U (A) with oracle A and k ∈ N be such r2−k < α. Then r
and r2−k are ∆0,A

2 and random in A. Theorem 6.2 insures that there exists some set X which
is computable in r2−k ⊕ ∅′ such that r2−k = ΩU [X]. Since ∅′ ≤T A, such an X is ∆0,A

2 .

2. If n = 1, set X = 2<ω and apply Chaitin’s celebrated result. If n ≥ 2, apply Point 1.

7 Varying U and X in ΩU [X]

¿From point 2 of Theorem 6.2, it follows that, for any given optimal machine U , every c.e.
random real is ΩU [X] for some X ⊆ 2<ω which is ∆0

2. We now show that X can be any Σ0
1

set if we pick an appropriate optimal machine U .
To prove this, we need some well-known facts. In [3] Calude et al. showed that for any

c.e. real a there exists a prefix-free set R ⊆ 2<ω such that a = µ(R2ω).
Let us recall the definition of Solovay’s domination between c.e. reals: Let a and b be c.e.

reals. We say that a dominates b, and write b ≤S a iff there is a constant c and a partial
computable function f : Q → Q such that for each rational q < a, f(q) is defined and f(q) < b
and b− f(q) ≤ c(a− q).
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In [7], Downey et al. proved that if a and b are c.e. reals such that b ≤S a, then there is
a c.e. real d and constant c such that ca = b+ d.

Using these results, we can prove the following:

Theorem 7.1. Let X ⊆ 2<ω be Σ0
1, X 6= ∅, and let a ∈ (0, 1) be c.e. random. There is V

optimal machine such that a = ΩV [X].

Proof. Let U be the usual optimal by adjunction machine such that

U(0e−11p) = Me(p)

By Chaitin’s Theorem (cf.Point 1 of Theorem 1.4), ΩU [X] is a c.e. random real and following
[8] we know that a ≡S ΩU [X]. Hence, from [7] there is a c such that 2−cΩU [X] < 1 − a
and a− 2−cΩU [X] is a c.e. real in (0, 1). From [3] there is an r.e. prefix-free set R such that
a− 2−cΩU [X] = µ(R2ω).
We define the Kraft-Chaitin list for V with the axioms {(|r|, y) : r ∈ R} and {(|p|+ c, U(p)) :
U(p) ↓}, where y ∈ X. Since for any p, if U(p) ↓ then U(p) = V (q), for some q with
|q| = |p|+c, we conclude that V is optimal by adjunction. By construction, we have ΩV [X] =
µ(R2ω) + 2−cΩU [X] = a.

8 Conjecture for infinite computations

Considering possibly non halting computations, one can associate to any monotone Turing
machine (the machine can not erase nor overwrite its current output) a total map U∞ : 2ω →
2≤ω (cf. [1]) where 2≤ω is the set of finite or infinite binary sequences. For X ⊆ 2≤ω we define

Ω∞
U [X ] = µ((U∞)−1(X )).

i.e. Ω∞
U [X ] is the probability that U∞ gives an output in X .

An analog of Conjecture 1.2 can be stated for infinite computations on optimal monotone
machines.

Conjecture 8.1. For any proper subset X of 2≤ω, the probability Ω∞
U [X ] that an arbitrary

infinite input to an optimal monotone machine performing infinite computations gives an
output in X is random.

Relatively to monotone Turing machines which are optimal by adjunction, this conjecture
has been proved in [1, 2] for many X ⊆ 2≤ω, considering the effective levels of the Borel
hierarchy on 2≤ω with a spectral topology (for which the basic open sets are of the form
s2≤ω, for s ∈ 2<ω).

Theorem 8.2 ([1, 2]). Let X ⊆ 2≤ω be Σ0
n(spectral) and hard for the class Σ0

n(2ω) with respect
to effective Wadge reductions, for any n ≥ 1. Then, Ω∞

U [X ] is random in ∅(n−1).

We now prove that the conjecture fails in about the same way as Conjecture 1.2. The key
fact is that Lemma 4.6 can be transferred to infinite computations.

Lemma 8.3. Let U be a monotone prefix Turing machine which is optimal by adjunction (cf.
Def.3.1). Then ∃d ∀n ∃σ 2−n−d ≤ Ω∞

U [{σ}] ≤ 2−n+d. In fact, for some constant d′, there are
at least 2n/(d′ n2) strings σ ∈ 2<ω satisfying the inequalities.
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Proof. Fix some total recursive injective function θ : 2<ω → 2<ω with recursive prefix-free
range. Thanks to Lemma 4.6, it suffices to prove that there exists k such that for any σ ∈ 2<ω,

2−kΩU [{σ}] ≤ Ω∞
U [{θ(σ)}] ≤ 2kΩU [{σ}],

Consider the relation R ⊂ 2<ω × 2<ω such that (p, u) ∈ R if and only if the computation of
U∞ on any infinite extension of p has current output u. Let M : 2<ω → 2<ω be the machine
such that M(p) halts and outputs σ if and only if (p, θ(σ)) ∈ R but (q, θ(σ)) /∈ R for any
proper prefix of p. Clearly, M is partial recursive and has prefix-free domain.
Using optimality by adjunction, let τ ∈ 2<ω be such that M(p) = U(τp) for all p. Thus,
for any Z ∈ 2ω if U∞(Z) = θ(σ), then there exists n such that U(τ(Z � n)) halts and
U(τ(Z � n)) = σ. Hence,

Ω∞
U [{θ(σ)}] ≤ µ({Z ∈ 2ω : ∃n U(τ(Z � n)) = σ})

=
∑

U(τp)=σ

2−|p|

≤ 2|τ | ΩU [{σ}].

For the other inequality, let N : 2<ω → 2<ω be the machine such that N(p) = θ(U(p)) and
let ρ be such that U(ρp) = N(p) = θ(U(p)). Then

ΩU [{θ(σ)}] ≥ 2−|ρ|
∑

U(ρp)=θ(σ)

2−|p|

= 2−|ρ|
∑

U(p)=σ

2−|p|

= 2−|ρ| ΩU [{σ}]

To conclude, observe that Ω∞
U [{θ(σ)}] ≥ ΩU [{θ(σ)}] and take k = max(|τ |, |ρ|).

From Lemma 8.3, the proofs of Theorems 4.7 and 4.8 adapt easily to Ω∞
U , giving coun-

terexamples which are included in the subset 2<ω of 2≤ω. However, oracle ∅′′ is needed to
check inequalities Ω∞

U [{σ}] > τ and check if a given bit of Ω∞
U [X] is zero for finite subsets X

of 2<ω. Which gives a shift to ∆0
3. We state the analog of Theorem 4.8.

Theorem 8.4. For every optimal U and any A ⊆ N, there is a ∆0,A
3 set X ⊆ 2<ω which is

Σ0,A
1 -hard and such that Ω∞

U [X] is not random.
In particular, if n ≥ 1 there is a ∆0

n+2 set X ⊆ 2<ω which is Σ0
n-hard and such that Ω∞

U [X]
is not random.

The counterparts of Theorem 6.2 and Proposition 6.3 are as follows.

Theorem 8.5. Let U be a monotone Turing machine optimal by adjunction.

1. The set {Ω∞
U [X] : X ⊆ 2<ω} is the union of finitely many pairwise disjoint closed

intervals.
For every real s in the above set there exists X ⊆ 2<ω recursive in s ⊕ ∅′′ such that
s = Ω∞

U [X].

2. The set {Ω∞
U [X ] : X ⊆ 2≤ω ∧ (U∞)−1(X ) is measurable} is the union of finitely many

pairwise disjoint closed intervals.
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Proof. 1. Points 1 and 2i, 2ii of the proof of Theorem 6.2 adapt easily. To adapt point 2iii,
we show that Ω∞

U yields a continuous map P (2<ω) → [0, 1] where P (2<ω) is endowed with
the compact Cantor topology.
Observe that, for all s ∈ 2<ω, the set (U∞)−1({s}) is a Borel subset of 2ω. In fact it is the
difference of two open sets since U∞(α) = s if and only if at all times t, the current output is
a prefix of s and at some time it is s. Now, equality Ω∞

U [X] =
∑

x∈X µ((U∞)−1({x}) proves
that X 7→ Ω∞

U [X] yields a continuous map P (2<ω) → [0, 1].

2. The proof uses an argument in the spirit of Radon-Nykodim theorem.
First, observe that for every ξ ∈ 2≤ω, the set (U∞)−1({ξ}) is a Borel subset of 2ω. The case
ξ ∈ 2<ω has been checked above. If ξ ∈ 2ω then this set is Gδ since U∞(α) = ξ if and only if
at all times t there is an n such that the current output is a prefix of ξ � n and for all n there
is some time at which the current output is ξ � n. Now, let

A = 2<ω ∪ {α ∈ 2ω : µ((U∞)−1({α})) > 0}
B = {α ∈ 2ω : µ((U∞)−1({α})) = 0}

We prove that, for some c ≥ 0 and some finite sequence 0 = a1 < b1 < ... < an < bn,

(∗) {Ω∞
U [X ] : X ⊆ A} = [a1, b1] ∪ ... ∪ [an, bn]

(∗∗) {Ω∞
U [X ] : X ⊆ B ∧ (U∞)−1(X ) is measurable} = [0, c]

Point 2 then follows since every Ω∞
U [X ], with X ⊆ 2≤ω such that (U∞)−1(X ) is measurable,

is the sum Ω∞
U [X ∩A] + Ω∞

U [X ∩ B].

Clearly, A is countable. As above, Ω∞
U yields a continuous map P (A) → [0, 1] with the

compact Cantor topology on P (A). So that the proof of Theorem 6.2 adapts easily, proving
(∗).

Consider the lexicographic ordering ≺ on 2ω, which is a total ordering, and let f : 2ω →
[0, 1] be the map such that

f(α) = µ((U∞)−1(B ∩ {β : β � α}))

Let’s see that this map is well defined. Observe that, since A and B partition 2ω, we have
(U∞)−1(B) = (U∞)−1(2ω)\(U∞)−1(A). Since A is countable, this set is Borel. Also, {β : β �
α} is Borel an so is (U∞)−1({β : β � α}). Thus, f(α) = µ((U∞)−1(B)∩(U∞)−1({β : β � α}))
is the measure of a Borel set.
The two following facts prove that the range of f is a closed interval [0, c]. This yields (∗∗)
since f(1ω) = Ω∞

U [B] is the maximum value of the Ω∞
U [X ]’s for X ⊆ B.

Fact 1. 1. f is monotone increasing with respect to ≺.

2. f(α) is also equal to µ((U∞)−1(B ∩ {β : β ≺ α})).

3. f(1ω) = µ((U∞)−1(B)) and f(0ω) = 0 and f(u01ω) = f(u10ω) for all u ∈ 2<ω.

4. f is continuous.

Fact 2. Suppose g : 2ω → [0, 1] is a continuous map such that

g(u01ω) = g(u10ω) for all u ∈ 2<ω (12)
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Then the range of g is a closed interval.

Proof of Fact 1. Point 1 is obvious.
2. Observe that f(α) − µ((U∞)−1(B ∩ {β : β ≺ α})) = µ((U∞)−1(B ∩ {α})). Now, 2 is
obvious if α /∈ B. Else, use the definition of B.
3. The assertion about f(1ω) is obvious. For f(0ω), use 2. Finally, using 2 again, and the
fact that u01ω is the predecessor of u10ω, we get

f(u10ω) = µ((U∞)−1(B ∩ {β : β ≺ u10ω}))
= µ((U∞)−1(B ∩ {β : β � u01ω}))
= f(u01ω)

4. It is sufficient to show that if (αn)n∈N is a monotone increasing or decreasing sequence in
2ω with limit α and all αn’s are different from α then f(α) is the limit of the f(αn)’s. In case
the αn’s are increasing with limit α, we have β ≺ α if and only if β � αn for some n. Thus,

f(α) = µ((U∞)−1(B ∩ {β : β ≺ α}))
= µ((U∞)−1(B ∩

⋃
n∈N

{β : β � αn}))

= sup
n∈N

µ((U∞)−1(B ∩ {β : β � αn}))

= sup
n∈N

f(αn)

In case the αn’s are decreasing, we argue similarly, using the fact that β � α if and only if
β � αn for all n. 2

Proof of Fact 2. Let θ : [0, 1] → (2ω\2<ω0ω)∪{0ω} be the bijective map such that θ(0) = 0ω

and, for 0 < r ≤ 1, θ(r) is the sequence of dyadic digits of r which lies in 2ω \ 2<ω0ω.
Using (12), we see that range(g) = range(g ◦ θ). Since the range of a continuous map [0, 1] →
[0, 1] is always a closed interval, it suffices to prove that g ◦ θ is continuous. I.e. to prove that
if (rn)n∈N is a monotone increasing (resp. decreasing) sequence of reals in [0, 1] with limit
r > 0 (resp. r < 1) and such that rn’s all different from r then g(θ(r)) is the limit of the
g(θ(rn))’s.
Case r is not dyadic rational. Then θ(r) is the limit of the θ(rn)’s and we can apply continuity
of g.
Case r is dyadic rational and the rn’s are increasing. Then the limit of the θ(rn)’s is the
dyadic expansion of r of the form u01ω where u ∈ 2<ω, which is exactly θ(r). Again, we apply
continuity of g.
Case r is dyadic rational and the rn’s are decreasing. Then the limit of the θ(rn)’s is the
dyadic expansion of r of the form u10ω where u ∈ 2<ω. Applying continuity of g, we see that
the limit of the g(θ(rn))’s is g(u10ω). To conclude, observe that u01ω = θ(r) and that (12)
insures g(u10ω) = g(u01ω).

Proposition 8.6. Let U be optimal. For each n ≥ 1, there exists a finite modification
V of U which is still optimal and such that none of the sets {Ω∞

U [X] : X ⊆ 2<ω} and
{Ω∞

U [X ] : X ⊆ 2≤ω} is the union of less than n intervals.
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